JPS6249321B2 - - Google Patents

Info

Publication number
JPS6249321B2
JPS6249321B2 JP56134825A JP13482581A JPS6249321B2 JP S6249321 B2 JPS6249321 B2 JP S6249321B2 JP 56134825 A JP56134825 A JP 56134825A JP 13482581 A JP13482581 A JP 13482581A JP S6249321 B2 JPS6249321 B2 JP S6249321B2
Authority
JP
Japan
Prior art keywords
less
temperature
electrical steel
low
punching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56134825A
Other languages
Japanese (ja)
Other versions
JPS5837122A (en
Inventor
Tooru Asai
Masayuki Matsuda
Hisanari Okabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13482581A priority Critical patent/JPS5837122A/en
Publication of JPS5837122A publication Critical patent/JPS5837122A/en
Publication of JPS6249321B2 publication Critical patent/JPS6249321B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は家庭電機製品用モーター等に使用され
る低グレード電磁鋼板の製造方法に関するもので
ある。 低グレードの電磁鋼板は、Si含有量が例えば
1.0%以下と少なく鉄損値は劣つているが、透磁
率が良好なこと、打抜き加工性がよいこと、かつ
安価なことから家庭電機製品用モーター、小型モ
ーター等に使用されている。 この種の電磁鋼板は所定形状に打抜き後の歪取
り焼鈍により必要レベルの磁性に材質調整した後
モーター等に組込まれるいわゆるセミプロセス型
の電磁鋼板であるが、歪取焼鈍での再結晶後に充
分結晶粒が生長し磁気特性が向上する事と、安定
した打抜作業が遂行されるために、打抜型とその
材質、クリアランス、潤滑方法等によつて決る一
定の板硬度と良好な平坦度を併せ持つ事が必要と
されている。 ところでSi含有量が例えば1.0%以下の電磁鋼
板では磁性改善のためにAlを含有させる場合が
ある。このAl含有により磁性の改善を図るには
微細なAlNが析出し、結晶粒の生長を妨げないよ
うにする必要がある。 このため、従来においてはAl含有量を0.20〜
0.60%程度と多くし、かつスラブ加熱温度を1200
〜1050℃程度として、結晶粒の生長を阻害しない
ような大きなサイズのAlNとしている。これと圧
下率数%から10%で行なうスキンパス圧延により
歪取り焼鈍のさい結晶粒を生長させている。これ
によると歪取り焼鈍にて結晶粒の生長が生じそれ
なりの効果があるが、結晶粒の生長を生じやすく
しているので、その反面硬度が低く打抜時に打抜
カエリが発生しやすくなる。 また、冷間圧延後、650〜700℃の温度で5分以
内のいわゆる低温域で再結晶焼鈍する方法があ
る。この場合、再結晶しているが結晶粒の異常生
長は生じておらず、比較的硬度が高く打抜き性も
若干改善される。しかし、十分とはいいがたい。 さらに、打抜性の改善のために、P,Mnを添
加して鋼板を硬質とする試みがあり、例えばPを
0.10%程度、Mnを0.50%程度含有させるものも
あるが、それら成分の含有を多くすることはコス
ト上昇をきたすので問題である。 本発明はこのような実情から、Alを含有した
電磁鋼を素材とする際に、歪取り焼鈍にて結晶粒
の生長が生じやすく、打抜性のすぐれた低級電磁
鋼板を製造すべく種々検討した。 その結果、Al含有の電磁鋼の熱間圧延におい
て650℃以上900℃以下の温度で捲取るかあるいは
BをNとの重量比B/Nで0.5〜2.5でかつ0.0100
%以下含有させることにより歪取り焼鈍にて結晶
粒が生長すること、および冷間圧延の後、連続焼
鈍炉にて400℃以上再結晶温度未満の温度で0.35
Kg/mm2以上の張力をかけて回復焼鈍することより
打抜性がすぐれることを知見し、本発明の低級電
磁鋼板の製造方法を提供するものである。 次に本発明を詳細に説明する。 まず鋼成分について述べる。 Cは磁気特性に有害であり、かつその量が多い
と歪取り焼鈍での脱炭に長時間を要するので0.10
%以下にする。 Siは磁気特性、特に鉄損値を改善する役目があ
り必要レベルに応じ含有されるが、本発明の如き
低級電磁鋼板では製造コストを安価に押える必要
があり0.3%を超える含有は不必要である。 Mn,Pは再結晶焼鈍される電磁鋼板の場合に
はその固溶効果能を利用して打抜き作業に最適な
レベルに鋼板硬度を調整する目的で比較的多量に
含有されるのであるが、本発明では鋼板の硬度は
主として冷間圧延後の回復焼鈍にて調整されるた
め、含有量を節減する事が可能となる。歪取焼鈍
後の部材強度の確保のために或程度の含有が望ま
れるから、Mn0.30%未満、P0.08%未満の範囲で
含有される。 Sは磁気特性を劣化させる成分であり0.05%以
下にする必要がある。 Alは脱酸作用と磁気特性を改善する作用のあ
る成分であり、脱酸するには0.005%以上の含有
が必要である。また一方、その含有量が多くなる
と製造コストを高めるので本発明では低級電磁鋼
板を対象とするから上限は0.10%とする。 また不純物のTi,Nb,V,Zrはいずれも所定
形状に打抜き後の歪取り焼鈍において結晶粒の生
長を阻害するので、各成分とも0.005%以下とす
る。 Nは磁気特性を劣化させるので0.01%以下とす
る。 さらに必要に応じて、BをNとの重量比B/N
で0.5〜2.5含有される。このBの含有によりBN
が生成しAlNの生成が抑制され歪取り焼鈍におい
て結晶粒の生長が生じる。この作用を発揮するに
はB/Nとして0.5〜2.5のBの含有が必要であ
る。好ましいB/Nは0.65〜1.50である。 Bの上限は、その含有量が多くなるとスラブ割
れを呈するので0.0100%とする。このB含有によ
り熱間圧延において捲取温度を650℃以下として
も歪取り焼鈍にて結晶粒の生長が生じる。 上記成分からなる残部が鉄および不可避的不純
物からなる鋼スラブを熱間圧延し、次いで冷間圧
延して所定の板厚にするのであるが、Bを含有し
ない場合には、熱間圧延後、650℃以上の温度で
捲取る必要がある。この650℃以上の高温捲取り
によりAlNによる結晶粒の生長抑制が解消され
る。 捲取温度の上限は、その温度が余りにも高くな
ると捲取装置の寿命が短かくなる等の設備的な問
題から900℃とする。 なおBを含有した場合には捲取り温度を規制す
る必要はない。 冷間圧延の後、鋼成分、冷間圧下率等によつて
決まる再結晶温度未満で400℃以上の温度でのい
わゆる回復焼鈍にて鋼板硬度を調整するのである
が、同時に鋼帯に0.35Kg/mm2以上の張力をかける
事で平坦度を向上させる。従つて必然的に焼鈍方
法としては連続焼鈍炉を採用しなければならな
い。加熱温度としては400℃未満では回復の効果
もなく、又鋼帯の軟化が不充分なために平担度も
向上しないので、400℃以上とする。一方、再結
晶温度以上に加熱すると鋼板硬度の大幅な低下を
来し、打抜き作業に最適な鋼板硬度の確保が困難
となるので再結晶温度未満とする。焼鈍時の張力
については、0.35Kg/mm2未満では鋼帯の平坦度を
向上させる機能が低いので、0.35Kg/mm2以上の張
力をかけて連続焼鈍炉を通板する。 尚連続焼鈍炉での加熱後の冷却速度の制御を規
制する事は必要なく、又過時効処理も不必要であ
る。 連続焼鈍後のスキンパス圧延若しくはレベラー
による平坦度の矯正は、本発明においては必須で
はないが、平坦度をより向上させる目的で適用す
る事は何等問題ない。 次に本発明の実施例を下記に説明する。 第1表に示した各種熱延鋼帯を、冷間圧延にて
0.8mm,0.65mmとした後、連続焼鈍炉で500℃×60
秒の加熱を行いながら0.4Kg/mm2のテンシヨンを
かけて平坦度矯正した鋼板の歪取り焼鈍後の磁性
特性を、第2表に示している。
The present invention relates to a method for producing a low grade electrical steel sheet used for motors for household electrical appliances and the like. Low-grade electrical steel sheets have a Si content of, for example,
Although it has a low iron loss value of less than 1.0%, it is used in motors for home appliances, small motors, etc. because of its good magnetic permeability, good punching workability, and low price. This type of electrical steel sheet is a so-called semi-processed electrical steel sheet that is assembled into motors, etc. after punching it into a predetermined shape and adjusting the material to the required level of magnetism through strain relief annealing. In order for the crystal grains to grow and the magnetic properties to improve, and for stable punching work to be performed, a certain plate hardness and good flatness are determined by the punching die, its material, clearance, lubrication method, etc. It is necessary to have both. By the way, in electrical steel sheets having a Si content of, for example, 1.0% or less, Al may be contained in order to improve magnetism. In order to improve magnetism by including Al, it is necessary to prevent fine AlN from precipitating and hindering the growth of crystal grains. For this reason, in the past, the Al content was reduced from 0.20 to
Increase it to around 0.60% and increase the slab heating temperature to 1200.
The temperature is set at ~1050°C, and the AlN size is large enough not to inhibit the growth of crystal grains. This and skin pass rolling performed at a rolling reduction of several percent to 10% are used to grow crystal grains during strain relief annealing. According to this method, strain relief annealing causes growth of crystal grains and has a certain effect, but since the growth of crystal grains tends to occur, on the other hand, the hardness is low and punching burrs are likely to occur during punching. Another method is to perform recrystallization annealing at a temperature of 650 to 700° C. within 5 minutes in a so-called low temperature range after cold rolling. In this case, although recrystallization occurs, no abnormal growth of crystal grains occurs, the hardness is relatively high, and the punchability is slightly improved. However, it is far from sufficient. Furthermore, in order to improve punchability, there have been attempts to make steel sheets harder by adding P and Mn.
Some contain about 0.10% Mn and about 0.50% Mn, but increasing the content of these components is problematic because it increases costs. In view of these circumstances, the present invention has conducted various studies in order to produce a low-grade electrical steel sheet that is easy to grow crystal grains during strain relief annealing and has excellent punchability when using electrical steel containing Al as a material. did. As a result, in hot rolling of Al-containing electrical steel, it is necessary to roll it at a temperature of 650°C or higher and 900°C or lower, or the weight ratio of B to N is 0.5 to 2.5 and 0.0100.
% or less, crystal grains grow during strain relief annealing, and after cold rolling, a continuous annealing furnace is used at a temperature of 400°C or higher and lower than the recrystallization temperature.
It has been found that punching property is improved by recovery annealing by applying a tension of Kg/mm 2 or more, and the present invention provides a method for manufacturing a low-grade electrical steel sheet. Next, the present invention will be explained in detail. First, let's talk about the steel components. C is harmful to magnetic properties, and if its amount is large, it will take a long time to decarburize during strain relief annealing, so 0.10
% or less. Si has the role of improving magnetic properties, especially iron loss value, and is contained according to the required level, but in low-grade electrical steel sheets such as the one of the present invention, it is necessary to keep manufacturing costs low, so it is unnecessary to contain more than 0.3%. be. In the case of recrystallization annealed electrical steel sheets, Mn and P are contained in relatively large amounts in order to adjust the hardness of the steel sheet to the optimum level for punching operations by utilizing their solid solution effect. In the invention, since the hardness of the steel plate is mainly adjusted by recovery annealing after cold rolling, it is possible to reduce the content. Since a certain amount of content is desired to ensure the strength of the member after strain relief annealing, the content is within the range of less than 0.30% Mn and less than 0.08% P. S is a component that deteriorates magnetic properties and must be kept at 0.05% or less. Al is a component that has the effect of deoxidizing and improving magnetic properties, and must be contained in an amount of 0.005% or more to deoxidize. On the other hand, if the content increases, manufacturing costs will increase, so the upper limit is set to 0.10% since the present invention is intended for low-grade electrical steel sheets. In addition, the impurities Ti, Nb, V, and Zr all inhibit the growth of crystal grains during strain relief annealing after punching into a predetermined shape, so each component is set at 0.005% or less. Since N deteriorates magnetic properties, it should be kept at 0.01% or less. Furthermore, if necessary, the weight ratio of B to N is B/N.
Contains 0.5 to 2.5. Due to this B content, BN
is generated, the formation of AlN is suppressed, and crystal grains grow during strain relief annealing. In order to exhibit this effect, it is necessary to contain B in a B/N ratio of 0.5 to 2.5. A preferable B/N is 0.65 to 1.50. The upper limit of B is set at 0.0100% since slab cracking occurs when its content increases. Due to this B content, crystal grains grow during strain relief annealing even if the winding temperature is 650° C. or lower during hot rolling. A steel slab consisting of the above components, the remainder of which is iron and unavoidable impurities, is hot rolled and then cold rolled to a predetermined thickness.If B is not included, after hot rolling, It is necessary to roll it at a temperature of 650℃ or higher. This high-temperature winding at 650°C or higher eliminates the inhibition of crystal grain growth caused by AlN. The upper limit of the winding temperature is set at 900°C because of equipment problems such as shortening the life of the winding device if the temperature is too high. Note that when B is contained, there is no need to regulate the winding temperature. After cold rolling, the hardness of the steel strip is adjusted by so-called recovery annealing at a temperature of 400°C or higher, below the recrystallization temperature determined by the steel composition, cold reduction rate, etc. Flatness is improved by applying a tension of /mm 2 or more. Therefore, it is necessary to use a continuous annealing furnace as the annealing method. If the heating temperature is less than 400°C, there will be no recovery effect, and the degree of flatness will not improve due to insufficient softening of the steel strip, so the heating temperature should be 400°C or higher. On the other hand, if heated above the recrystallization temperature, the hardness of the steel sheet will significantly decrease, making it difficult to ensure the optimum hardness of the steel sheet for punching work, so the temperature should be lower than the recrystallization temperature. Regarding the tension during annealing, if the tension is less than 0.35 Kg/mm 2 , the ability to improve the flatness of the steel strip is poor, so the strip is passed through a continuous annealing furnace with a tension of 0.35 Kg/mm 2 or more applied. It is not necessary to regulate the cooling rate after heating in the continuous annealing furnace, and there is no need for over-aging treatment. Although flatness correction using skin pass rolling or a leveler after continuous annealing is not essential in the present invention, there is no problem in applying it for the purpose of further improving flatness. Next, examples of the present invention will be described below. The various hot rolled steel strips shown in Table 1 are cold rolled.
After making it 0.8mm and 0.65mm, it was annealed at 500℃×60 in a continuous annealing furnace.
Table 2 shows the magnetic properties of the steel plate after strain relief annealing, which was subjected to flatness correction by applying a tension of 0.4 kg/mm 2 while heating for 2 seconds.

【表】【table】

【表】【table】

【表】 この結果からわかるように、本発明により適度
の磁気特性をもつ低級電磁鋼板が製造される。 また打抜性について、各鋼種について連続焼鈍
炉で加熱したのち、100枚づつ打抜き試験を行な
つて、その打抜カエリ高さを調査したが、本発明
材はいずれも平均値で0.03mm以下であり問題なか
つた。なお打抜カエリ高さは0.05mm以下であれば
良好といわれている。 以上の如く適度の磁気特性を有し、且つ適正な
板硬度と平坦度を兼ね備える事で打抜特性を向上
させた低級の電磁鋼板を供給する製造方法として
本発明は極めて有効である。
[Table] As can be seen from the results, the present invention produces a low-grade electrical steel sheet with appropriate magnetic properties. Regarding punchability, after heating each steel type in a continuous annealing furnace, a punching test was conducted on 100 sheets at a time to investigate the punching burr height. There was no problem. It is said that a punching burr height of 0.05 mm or less is good. As described above, the present invention is extremely effective as a manufacturing method for supplying a low-grade electrical steel sheet that has appropriate magnetic properties and has improved punching characteristics by having appropriate plate hardness and flatness.

Claims (1)

【特許請求の範囲】 1 C:0.10%以下、Si:0.3%以下、Mn:0.30
%未満、P:0.08%未満、S:0.05%以下、Al:
0.005〜0.10%、N:0.01%以下を含み、残部が鉄
および不可避的不純物からなる鋼を熱間圧延し、
650℃以上900℃以下の温度で捲取り、次いで冷間
圧延した後、連続焼鈍炉にて400℃以上再結晶温
度未満の温度に加熱し、0.35Kg/mm2以上の張力を
かけ通板し、回復焼鈍することを特徴とする低級
電磁鋼板の製造方法。 2 C:0.10%以下、Si:0.3%以下、Mn:0.30
%未満、P:0.08%未満、S:0.05%以下、Al:
0.005〜0.10%、N:0.01%以下、BをNとの重量
比B/Nで0.5〜2.5で、かつ0.0100%以下を含
み、残部が鉄および不可避的不純物からなる鋼
を、熱間圧延し、冷間圧延した後、連続焼鈍炉に
て、400℃以上再結晶温度未満の温度に加熱し、
0.35Kg/mm2以上の張力をかけ通板し、回復焼鈍す
ることを特徴とする低級電磁鋼板の製造方法。
[Claims] 1 C: 0.10% or less, Si: 0.3% or less, Mn: 0.30
%, P: less than 0.08%, S: 0.05% or less, Al:
Hot rolling steel containing 0.005 to 0.10%, N: 0.01% or less, and the balance consisting of iron and unavoidable impurities,
After being rolled at a temperature of 650°C or higher and 900°C or lower, then cold rolled, it is heated in a continuous annealing furnace to a temperature of 400°C or higher and lower than the recrystallization temperature, and then threaded under a tension of 0.35Kg/mm 2 or higher. , a method for producing a low-grade electrical steel sheet, characterized by recovery annealing. 2 C: 0.10% or less, Si: 0.3% or less, Mn: 0.30
%, P: less than 0.08%, S: 0.05% or less, Al:
Hot-rolled steel containing 0.005 to 0.10%, N: 0.01% or less, B to N weight ratio B/N of 0.5 to 2.5, and 0.0100% or less, with the balance consisting of iron and unavoidable impurities. After cold rolling, it is heated in a continuous annealing furnace to a temperature of 400℃ or higher and lower than the recrystallization temperature,
A method for manufacturing low-grade electrical steel sheets, characterized by passing the sheet under a tension of 0.35 Kg/mm 2 or more and recovery annealing.
JP13482581A 1981-08-29 1981-08-29 Production of low grade electrical steel plate Granted JPS5837122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13482581A JPS5837122A (en) 1981-08-29 1981-08-29 Production of low grade electrical steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13482581A JPS5837122A (en) 1981-08-29 1981-08-29 Production of low grade electrical steel plate

Publications (2)

Publication Number Publication Date
JPS5837122A JPS5837122A (en) 1983-03-04
JPS6249321B2 true JPS6249321B2 (en) 1987-10-19

Family

ID=15137350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13482581A Granted JPS5837122A (en) 1981-08-29 1981-08-29 Production of low grade electrical steel plate

Country Status (1)

Country Link
JP (1) JPS5837122A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837121A (en) * 1981-08-29 1983-03-04 Nippon Steel Corp Production of low-grade electrical steel plate
JPS60190521A (en) * 1984-03-08 1985-09-28 Sumitomo Metal Ind Ltd Manufacture of nonoriented electrical steel sheet
JPS6144125A (en) * 1984-08-07 1986-03-03 Sumitomo Metal Ind Ltd Manufacture of semiprocessed electrical steel sheet
JPH03104844A (en) * 1989-09-18 1991-05-01 Nippon Steel Corp Nonoriented silicon steel sheet excellent in magnetic characteristics and its manufacture
JP2008001990A (en) * 2007-07-13 2008-01-10 Shin Etsu Chem Co Ltd Method for manufacturing ferrous alloy sheet material for hard disk voice coil motor yoke
JP2013076161A (en) * 2011-09-15 2013-04-25 Nisshin Steel Co Ltd Steel sheet for rotor core of high-speed ipm motor, method of manufacturing the same, rotor core of ipm motor, and ipm motor
JP2013076159A (en) * 2011-09-15 2013-04-25 Nisshin Steel Co Ltd Steel sheet for rotor core of ipm motor excellent in flatness, method for manufacturing the same, rotor core of ipm motor, and ipm motor
JP5947539B2 (en) * 2011-12-27 2016-07-06 日新製鋼株式会社 Steel plate for rotor core of high-speed rotation IPM motor excellent in magnetic property anisotropy, manufacturing method thereof, rotor core of IPM motor and IPM motor
JP2016180176A (en) * 2015-03-24 2016-10-13 日新製鋼株式会社 Steel sheet for rotor iron core of ipm motor, manufacturing method thereof, rotor iron core of ipm rotor, and ipm motor
KR20230110338A (en) * 2020-11-27 2023-07-21 닛폰세이테츠 가부시키가이샤 Non-oriented electrical steel sheet and manufacturing method thereof, and hot-rolled steel sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112324A (en) * 1974-07-20 1976-01-30 Kawasaki Steel Co
JPS5585630A (en) * 1978-12-25 1980-06-27 Kawasaki Steel Corp Annealing method for nondirectional silicon steel hoop
JPS5837121A (en) * 1981-08-29 1983-03-04 Nippon Steel Corp Production of low-grade electrical steel plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112324A (en) * 1974-07-20 1976-01-30 Kawasaki Steel Co
JPS5585630A (en) * 1978-12-25 1980-06-27 Kawasaki Steel Corp Annealing method for nondirectional silicon steel hoop
JPS5837121A (en) * 1981-08-29 1983-03-04 Nippon Steel Corp Production of low-grade electrical steel plate

Also Published As

Publication number Publication date
JPS5837122A (en) 1983-03-04

Similar Documents

Publication Publication Date Title
RU2572919C2 (en) Method for manufacturing textured steel tapes or sheets applied in electric engineering
US6331215B1 (en) Process for producing grain-oriented electromagnetic steel sheet
NO137240B (en) PROCEDURES FOR THE MANUFACTURE OF SINGLE-ORIENTED ELECTROST PLATES WITH HIGH MAGNETIC FIELD STRENGTH.
EP3901311A1 (en) Oriented electrical steel sheet and manufacturing method thereof
JPS6249321B2 (en)
JP2020056105A (en) Method for manufacturing grain-oriented electrical steel sheet
JP6079580B2 (en) Method for producing grain-oriented electrical steel sheet
JPH0456109B2 (en)
US20220333226A1 (en) Non-oriented electrical steel sheet and manufacturing method therefor
KR100359752B1 (en) Non-oriented magnetic steel sheet with a low watt loss and method of manufacturing the same
JP4790151B2 (en) Non-oriented electrical steel sheet with extremely excellent iron loss and magnetic flux density and method for producing the same
JPS6221849B2 (en)
US5308411A (en) Ultrahigh silicon, grain-oriented electrical steel sheet and process for producing the same
US3814636A (en) Method for production of low carbon steel with high drawability and retarded aging characteristics
JPS63100134A (en) Manufacture of cold rolled steel sheet for extra deep drawing of thick product
JPH0144771B2 (en)
KR101538777B1 (en) Oriented electrical steel sheets and method for manufacturing the same
JPH0797628A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in core loss
KR960005225B1 (en) Making method of excellent deep drawing cold steel sheet
EP4001448A1 (en) Non-oriented electrical steel plate and manufacturing method therefor
JP2971192B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing
JP4626046B2 (en) Method for producing semi-processed non-oriented electrical steel sheet
JP2870817B2 (en) Manufacturing method of semi-process non-oriented electrical steel sheet with excellent magnetic properties
JPS60106947A (en) Semiprocess electrical steel sheet having excellent electromagnetic characteristic and blanking characteristic
KR100627453B1 (en) Method for final annealing grain oriented electrical steel sheet