JPS6249175B2 - - Google Patents

Info

Publication number
JPS6249175B2
JPS6249175B2 JP58075800A JP7580083A JPS6249175B2 JP S6249175 B2 JPS6249175 B2 JP S6249175B2 JP 58075800 A JP58075800 A JP 58075800A JP 7580083 A JP7580083 A JP 7580083A JP S6249175 B2 JPS6249175 B2 JP S6249175B2
Authority
JP
Japan
Prior art keywords
synthetic resin
rolling
thermoplastic synthetic
temperature
resin body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58075800A
Other languages
Japanese (ja)
Other versions
JPS59199210A (en
Inventor
Yasuhiko Ooyama
Hiroshi Iwata
Kyoyasu Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP58075800A priority Critical patent/JPS59199210A/en
Publication of JPS59199210A publication Critical patent/JPS59199210A/en
Publication of JPS6249175B2 publication Critical patent/JPS6249175B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は繊維強化合成樹脂体の転造加工方法に
関する。 合成樹脂製ボルトは腐蝕性の還境で広く使用さ
れているが、ねじの加工が困難であつた。 特公昭48−37931号公報などでは、熱硬化性樹
脂の棒体にねじ切り加工しているが、ねじ切り加
工のため繊維が切断されるし、樹脂の表面のねじ
溝がノツチ効果となり、熱硬化性樹脂自体が伸び
が小さく脆弱な材質であるため、ねじ切り加工中
あるいは使用中に割れなどが生じてしまう欠点が
ある。 又、強化繊維が分散された熱可塑性合成樹脂か
らなる棒体に冷間転造加工法により、ねじ部を形
成し合成樹脂製ボルトを成形することも提案され
ているが、いずれも、ねじ加工の精度と耐熱性に
問題があつた。即ち、ねじ山尖端が丸味を帯びた
り、あるいはねじ山頂部に凹みが生じたりするの
で精度の良い製品が得られない。更には、雰囲気
温度が上昇すると、ねじ山形状が加工前の状態に
戻つてしまい、使用温度が比較的低い温度に限定
されてしまうことである。 本発明は上記従来の欠点を解消し、繊維強化さ
れた熱可塑性合成樹脂体にねじ加工、溝加工して
ボルト等を成形しうるものであり、加工の精度が
良好であると共に耐熱性に優れた製品を得ること
ができ大量生産に適した加工方法を提供するもの
であり、その要旨は少なくとも表面部分が繊維が
分散された結晶性の熱可塑性合成樹脂からなる樹
脂体に対して転造加工するに際し、表面の熱可塑
性合成樹脂を非晶状態もしくは不完全結晶状態に
なした樹脂体に対し、転造ダイスを該熱可塑合成
樹脂の結晶開始温度以上、融点以下に加熱して転
造加工することを特徴とする繊維強化合成樹脂体
の転造加工方法に存する。 本発明において加工の対象となる樹脂体は、少
なくとも部分的には円棒状、角棒状、円錘状、角
錘状になされているのが好ましい。 又、樹脂体は、少なくとも表面部分が繊維が分
散された結晶性の熱可塑性合成樹脂からなる。結
晶性の熱可塑性合成樹脂として、好適なものとし
てはポリエチレンテレフタレート、ポリアミド、
ポリブチレンテレフタレート、ポリアセタール、
ポリエチレン、ポリプロピレンあるいはこれら共
重合物である。 これらの熱可塑性合成樹脂の飽和結晶化度は5
〜100%の範囲であり、好ましくは30〜50%の範
囲になされている。飽和結晶化度が30%未満であ
ると、耐熱性に劣り、弾性率が小さくねじ加工し
た場合でも、ねじの強度が不足する傾向になる。
又飽和結晶化度が50%を越えると、剛性が大きく
なるがもろくなる傾向になる。しかし、飽和結晶
化度が高いものでも熱処理を加減して結晶度を押
えることにより、製品の性状を調整することがで
きる。 樹脂体の少なくとも表面部分を形成する熱可塑
性合成樹脂には強化繊維が分散されている。 熱可塑性合成樹脂を強化する繊維としては、ガ
ラス、硼素、炭化ケイ素、アルミナ等から製した
無機繊維、ポリアミドなどの有機繊維があり、2
種以上の繊維を混合して用いることも可能であ
る。又、該繊維の長さについては特に制限がな
く、熱可塑性合成樹脂の中に分散されうるもので
あればよい。好ましくは、繊維は0.1〜50mmの長
さにあるものがよい。ロービングのような長繊維
は、樹脂体の軸方向に沿つて分散させるのがよ
く、クロス状態の繊維は樹脂体の表面部分を覆う
ように用いるのがよい。 本発明の加工の対象となる樹脂体は、その中心
部の材質は問わない。従つて、樹脂体の中心部は
表面部分と同様に繊維が分散された結晶性の熱可
塑性合成樹脂であつてもよく、鉄、鋼、銅、アル
ミニウム等の強度の大きい金属材料や、繊維強化
熱硬化性合成樹脂、再生利用合成樹脂であつても
よい。尚、中心部に異なる部材を使用する時は、
表面の樹脂と結合をよくするために、中心部材に
溝加工等することができる。 本発明において、繊維強化合成樹脂体を転造加
工する際には、樹脂体の表面の熱可塑性合成樹脂
を非晶状態もしくは不完全結晶状態になしてお
く。非晶状態もしくは不完全結晶状態とは、飽和
結晶化度に対して、0〜80%の結晶度であること
を意味している。より好ましくは、表面の熱可塑
性樹脂は0〜50%の非晶状態もしくは不完全結晶
状態にしておく、繊維強化合成樹脂体の表面の熱
可塑性合成樹脂を、非晶状態もしくは不完全結晶
状態にするには、成形機から突出された時の、あ
るいは一旦融点近くに加熱された繊維強化合成樹
脂体を水などで強制冷却することで行える。尚、
中心部は徐冷するので結晶化は進んでいる。 そして、本発明では繊維強化合成樹脂体を転造
するに際して、転造ダイスを表面の熱可塑性合成
樹脂の結晶開始温度以上、融点以下の温度に加熱
する。結晶開始温度とは1分以内の短時間に加熱
した時に結晶が生成し始める温度であり、ガラス
転移温度よりも10〜50℃高い温度である。結晶開
始温度は、非晶状態の合成樹脂をガラス転移温度
より高い2、3の温度で加熱して結晶度を測定
し、結晶度−加熱温度のグラフから、結晶度0の
温度として決定できる。例えば、ポリエチレンテ
レフタレートはガラス転移温度は約70℃であり、
結晶開始温度は約100℃である。 転造ダイスを結晶開始温度以上に加熱すること
により、繊維強化合成樹脂体の表面部分を塑性変
形させ、結晶化を進行させることができる。転造
の際表面の熱可塑性合成樹脂が非晶状態もしくは
不完全結晶状態であるので、塑性変形は容易であ
り、残留する歪みは小さいものとなつて形状が加
工前に戻る傾向は少ない。 転造ダイスが結晶開始温度以上、融点以下に加
熱されているので、繊維強化合成樹脂体の表面の
熱可塑性合成樹脂の結晶化は進行し、表面の転造
加工部分は剛性が大きく、耐熱性が良好になる。 転造ダイスが結晶開始温度未満であると、表面
の熱可塑性合成樹脂が結晶成長せず、転造加工部
分は非晶状態もしくは不完全結晶状態のまゝであ
るので、残留歪みもあつて耐熱性が悪く、加工前
の形状に戻り易くなる。 転造ダイスが融点を越えると、表面の熱可塑性
合成樹脂が流動状態となつて加工が困難になる。
又、転造ダイスを結晶開始温度以上融点以下に加
熱して、転造を行うことにより、例えばねじを加
工する際に、ねじ山に沿つて強化繊維が配向し、
表面の熱可塑性合成樹脂の結晶化と相俟つてねじ
山の機械強度が向上し、寸法精度の高い加工品が
得られる。 尚、繊維強化合成樹脂体の表面の熱可塑合成樹
脂の結晶化のため、転造ダイスを加熱せず、繊維
強化合成樹脂体を加熱して転造を行つてみたが、
素材全体の弾性率が低くなり、転造した後例えば
ねじ山が丸くなる結果となり本発明のような効果
は得られないことを確認した。 又、本発明転造加工方法は繊維強化合成樹脂体
を、例えば押出成形した後連続的に実行すること
も可能である。 以上、詳述した通り、本発明繊維強化合成樹脂
体の転造加工方法は上記の構成になされているの
で、転造加工が容易に行なえると共に、加工品の
加工精度は高く、しかも耐熱性に優れ機械強度良
好であつて、大量生産に適した転造加工方法とし
て従来にない種々の利点を有する。 実施例 1 飽和結晶化度38%のポリエチレンテレフタレー
ト(鐘淵化学製、EFG−6)に繊維長3mmのガ
ラス繊維を30重量%混入し、押出成形により直径
9mmの丸棒を成形し、急冷して表面を非晶質状態
にした。 転造ダイスを180℃に加熱して、丸棒の表面に
ねじ加工して、メートル並目ねじ規格M10、ピツ
チ1.5mmのねじ棒を得た。このねじ棒の物性を下
表に示す。 実施例 2 飽和結晶化度50%のポリアミド(ε−カプロラ
クタムモノマーを重合したもの、重合度=250)
をポリエチレンテレフタレートの替りに使用し実
施例1の通り行つて、ねじ棒を得た。 比較例 1 実施例1の丸棒に熱処理して飽和結晶化して実
施例1の通りに行つてねじ棒を得た。 比較例 2 実施例1において転造ダイスを常温のまゝで転
造加工して、ねじ棒を得た。 比較例 3 比較例1のように丸棒を飽和結晶化し、常温の
転造ダイスでねじ棒を得た。
The present invention relates to a method for rolling a fiber-reinforced synthetic resin body. Synthetic resin bolts are widely used in corrosive environments, but they are difficult to thread. In Japanese Patent Publication No. 48-37931, a thermosetting resin rod is threaded, but the fibers are cut due to threading, and the thread grooves on the surface of the resin create a notch effect, making it difficult to make thermosetting resin rods. Since the resin itself is a brittle material with low elongation, it has the disadvantage that it can crack during thread cutting or during use. It has also been proposed to mold a synthetic resin bolt by forming a threaded portion on a rod made of thermoplastic synthetic resin with reinforcing fibers dispersed therein using a cold rolling process. There were problems with accuracy and heat resistance. In other words, the tips of the threads become rounded or the tops of the threads are dented, making it impossible to obtain a highly accurate product. Furthermore, when the ambient temperature rises, the thread shape returns to its pre-processing state, limiting the operating temperature to a relatively low temperature. The present invention solves the above-mentioned conventional drawbacks, and enables bolts and the like to be formed by threading and grooving a fiber-reinforced thermoplastic synthetic resin body, and has good processing accuracy and excellent heat resistance. This method provides a processing method that is suitable for mass production, and the gist of this method is to roll a resin body made of crystalline thermoplastic synthetic resin in which fibers are dispersed at least in the surface area. When rolling, a resin body with a thermoplastic synthetic resin on the surface in an amorphous state or an incompletely crystalline state is rolled by heating a rolling die to a temperature above the crystallization start temperature and below the melting point of the thermoplastic synthetic resin. The present invention relates to a method for rolling a fiber-reinforced synthetic resin body. Preferably, the resin body to be processed in the present invention is at least partially shaped like a circular rod, a square rod, a cone, or a pyramid. Furthermore, at least the surface portion of the resin body is made of a crystalline thermoplastic synthetic resin in which fibers are dispersed. Suitable crystalline thermoplastic synthetic resins include polyethylene terephthalate, polyamide,
polybutylene terephthalate, polyacetal,
Polyethylene, polypropylene, or a copolymer thereof. The saturated crystallinity of these thermoplastic synthetic resins is 5
-100%, preferably 30-50%. If the saturated crystallinity is less than 30%, the heat resistance will be poor, and the elastic modulus will be small, so even when threaded, the strength of the thread will tend to be insufficient.
If the saturated crystallinity exceeds 50%, the rigidity increases, but the material tends to become brittle. However, even if the saturated crystallinity is high, the properties of the product can be adjusted by controlling the crystallinity by controlling heat treatment. Reinforcing fibers are dispersed in the thermoplastic synthetic resin forming at least the surface portion of the resin body. Fibers that strengthen thermoplastic synthetic resins include inorganic fibers made from glass, boron, silicon carbide, alumina, etc., and organic fibers such as polyamide.
It is also possible to use a mixture of more than one type of fiber. Further, there is no particular restriction on the length of the fibers, as long as they can be dispersed in the thermoplastic synthetic resin. Preferably, the fibers have a length of 0.1 to 50 mm. Long fibers such as rovings are preferably dispersed along the axial direction of the resin body, and cross-like fibers are preferably used so as to cover the surface portion of the resin body. The material of the center of the resin body to be processed in the present invention does not matter. Therefore, the center part of the resin body may be made of a crystalline thermoplastic synthetic resin with fibers dispersed therein, like the surface part, and may be made of a strong metal material such as iron, steel, copper, or aluminum, or a fiber-reinforced metal material. It may be a thermosetting synthetic resin or a recycled synthetic resin. In addition, when using different parts in the center,
In order to improve bonding with the resin on the surface, the center member can be grooved. In the present invention, when rolling a fiber-reinforced synthetic resin body, the thermoplastic synthetic resin on the surface of the resin body is brought into an amorphous state or an incompletely crystalline state. An amorphous state or an incompletely crystalline state means a crystallinity of 0 to 80% of the saturated crystallinity. More preferably, the thermoplastic resin on the surface is kept in 0 to 50% amorphous state or incompletely crystalline state, and the thermoplastic resin on the surface of the fiber reinforced synthetic resin body is kept in an amorphous state or incompletely crystalline state This can be done by forcibly cooling the fiber-reinforced synthetic resin body with water or the like when it is ejected from a molding machine or once heated to near its melting point. still,
Since the center is slowly cooled, crystallization is progressing. In the present invention, when rolling the fiber-reinforced synthetic resin body, a rolling die is heated to a temperature above the crystallization start temperature and below the melting point of the thermoplastic synthetic resin on the surface. The crystal initiation temperature is the temperature at which crystals begin to form when heated for a short time of 1 minute or less, and is 10 to 50°C higher than the glass transition temperature. The crystallization initiation temperature can be determined as the temperature at which crystallinity is 0 by heating an amorphous synthetic resin at a temperature a few times higher than the glass transition temperature and measuring the crystallinity, and from a graph of crystallinity vs. heating temperature. For example, polyethylene terephthalate has a glass transition temperature of approximately 70°C;
The crystallization onset temperature is approximately 100°C. By heating the rolling die to a temperature higher than the crystallization start temperature, the surface portion of the fiber-reinforced synthetic resin body can be plastically deformed and crystallization can proceed. Since the thermoplastic synthetic resin on the surface is in an amorphous or incompletely crystalline state during rolling, plastic deformation is easy, residual distortion is small, and there is little tendency for the shape to return to the state before processing. Since the rolling die is heated to a temperature above the crystallization initiation temperature and below the melting point, crystallization of the thermoplastic synthetic resin on the surface of the fiber-reinforced synthetic resin body progresses, and the rolled portion on the surface has high rigidity and heat resistance. becomes better. If the temperature of the rolling die is below the crystallization start temperature, the thermoplastic synthetic resin on the surface will not grow as a crystal, and the rolled portion will remain in an amorphous or incompletely crystalline state, resulting in residual strain and poor heat resistance. It has poor properties and tends to return to its pre-processing shape. When the rolling die exceeds its melting point, the thermoplastic synthetic resin on the surface becomes fluid, making processing difficult.
In addition, by heating the rolling die to a temperature above the crystallization start temperature and below the melting point to perform rolling, reinforcing fibers are oriented along the threads when processing a screw, for example.
Together with the crystallization of the thermoplastic synthetic resin on the surface, the mechanical strength of the screw thread is improved, resulting in a processed product with high dimensional accuracy. In addition, because of the crystallization of the thermoplastic synthetic resin on the surface of the fiber-reinforced synthetic resin body, we attempted rolling by heating the fiber-reinforced synthetic resin body without heating the rolling die.
It has been confirmed that the elastic modulus of the entire material becomes low and, after rolling, for example, the threads become rounded, making it impossible to obtain the effects of the present invention. Further, the rolling method of the present invention can be carried out continuously after the fiber-reinforced synthetic resin body is extruded, for example. As detailed above, since the method for rolling a fiber-reinforced synthetic resin body of the present invention has the above-described structure, rolling can be easily performed, the processed product has high processing accuracy, and is heat resistant. It has excellent mechanical strength and has various advantages not found in the past as a rolling process suitable for mass production. Example 1 Polyethylene terephthalate (manufactured by Kanebuchi Chemical, EFG-6) with a saturated crystallinity of 38% was mixed with 30% by weight of glass fibers with a fiber length of 3 mm, and a round bar with a diameter of 9 mm was formed by extrusion molding, and then rapidly cooled. The surface was made into an amorphous state. A rolling die was heated to 180°C and the surface of the round bar was threaded to obtain a threaded bar with a metric coarse thread standard M10 and a pitch of 1.5 mm. The physical properties of this threaded rod are shown in the table below. Example 2 Polyamide with saturated crystallinity of 50% (polymerized with ε-caprolactam monomer, degree of polymerization = 250)
A threaded rod was obtained by carrying out the same procedure as in Example 1 using the following procedure in place of polyethylene terephthalate. Comparative Example 1 The round bar of Example 1 was heat treated to achieve saturated crystallization, and the same procedure as in Example 1 was carried out to obtain a threaded rod. Comparative Example 2 A threaded rod was obtained by performing rolling using the rolling die in Example 1 at room temperature. Comparative Example 3 A round bar was subjected to saturated crystallization as in Comparative Example 1, and a threaded bar was obtained using a rolling die at room temperature.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも表面部分が繊維が分散された結晶
性の熱可塑性合成樹脂からなる樹脂体に対して転
造加工するに際し、表面の熱可塑性合成樹脂を非
晶状態もしくは不完全結晶状態になした樹脂体に
対し、転造ダイスを該熱可塑合成樹脂の結晶開始
温度以上、融点以下に加熱して転造加工すること
を特徴とする繊維強化合成樹脂体の転造加工方
法。
1. A resin body in which at least the surface portion is made of a crystalline thermoplastic synthetic resin with fibers dispersed therein, and the thermoplastic synthetic resin on the surface is made into an amorphous state or an incompletely crystalline state during rolling processing. A method for rolling a fiber-reinforced synthetic resin body, which comprises heating a rolling die to a temperature above the crystallization start temperature and below the melting point of the thermoplastic synthetic resin.
JP58075800A 1983-04-28 1983-04-28 Form rolling of fiber reinforced synthetic resin body Granted JPS59199210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58075800A JPS59199210A (en) 1983-04-28 1983-04-28 Form rolling of fiber reinforced synthetic resin body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58075800A JPS59199210A (en) 1983-04-28 1983-04-28 Form rolling of fiber reinforced synthetic resin body

Publications (2)

Publication Number Publication Date
JPS59199210A JPS59199210A (en) 1984-11-12
JPS6249175B2 true JPS6249175B2 (en) 1987-10-17

Family

ID=13586632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58075800A Granted JPS59199210A (en) 1983-04-28 1983-04-28 Form rolling of fiber reinforced synthetic resin body

Country Status (1)

Country Link
JP (1) JPS59199210A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63188675U (en) * 1987-05-25 1988-12-02
JPH01244473A (en) * 1988-03-25 1989-09-28 Canon Inc Recorder
JPH0285460U (en) * 1988-09-30 1990-07-04

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60201932A (en) * 1984-03-26 1985-10-12 Sekisui Chem Co Ltd Fiber reinforced plastic screw-shaped molding and manufacture thereof
JP6045932B2 (en) * 2013-02-12 2016-12-14 黒田精工株式会社 Resin nut for ball screw and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63188675U (en) * 1987-05-25 1988-12-02
JPH01244473A (en) * 1988-03-25 1989-09-28 Canon Inc Recorder
JPH0285460U (en) * 1988-09-30 1990-07-04

Also Published As

Publication number Publication date
JPS59199210A (en) 1984-11-12

Similar Documents

Publication Publication Date Title
CA1252265A (en) Tubular materials
GB2060469A (en) Drawing thermoplastics material
EP0371769B1 (en) Tubular materials
US3714320A (en) Cold extrusion process
Gibson et al. The manufacture of ultra-high modulus polyethylenes by drawing through a conical die
US4568582A (en) Internally threaded fiber-reinforced plastic member and a method of producing the same
JPS6249175B2 (en)
US5336464A (en) Extrusion blow molding of thermotropic liquid crystalline polymers
Burke et al. Uniaxial roll‐drawing of isotactic polypropylene sheet
US4021521A (en) Manufacture of work-hardened wires and profiles
US4938905A (en) Method of controlling the orientation of short fibers in a short fiber-reinforced article
US2445726A (en) Process of forming and orienting crystalline resinous bodies
CA1249939A (en) Fastening device
JPH0221929B2 (en)
JPS649485B2 (en)
WO1989000493A1 (en) Oriented polymer articles
KR20030053238A (en) Fabrication method of metal metrix composite reinforced by shape memory alloy
JPH0414059B2 (en)
JPS6254666B2 (en)
JPS6372517A (en) Manufacture of fiber reinforced plastic bolt
JPS6249176B2 (en)
JPS6249173B2 (en)
JPS6249174B2 (en)
JPH02307645A (en) Manufacture of high strength bolt
EP0378711A1 (en) A profile for electrolytic treatment and a method for manufacturing the same