JPS6249155B2 - - Google Patents

Info

Publication number
JPS6249155B2
JPS6249155B2 JP14348283A JP14348283A JPS6249155B2 JP S6249155 B2 JPS6249155 B2 JP S6249155B2 JP 14348283 A JP14348283 A JP 14348283A JP 14348283 A JP14348283 A JP 14348283A JP S6249155 B2 JPS6249155 B2 JP S6249155B2
Authority
JP
Japan
Prior art keywords
slag
welding
flux
sio
alf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14348283A
Other languages
Japanese (ja)
Other versions
JPS6061195A (en
Inventor
Osamu Tanaka
Kazuhiro Takeuma
Yukinobu Matsushita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14348283A priority Critical patent/JPS6061195A/en
Publication of JPS6061195A publication Critical patent/JPS6061195A/en
Publication of JPS6249155B2 publication Critical patent/JPS6249155B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3603Halide salts
    • B23K35/3605Fluorides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はスラグ剥離性の良好な肉盛溶接用フラ
ツクスに関し、詳細には帯状電極を用いるエレク
トロスラグ肉盛溶接、特に高速肉盛溶接に際して
剥離性が良好で肉盛金属との間に焼付きを生じな
いスラグを与えるフラツクス組成に関するもので
ある。 帯状電極を用いる肉盛溶接は潜弧溶接型とエレ
クトロスラグ溶接型に分類されるが、後者の溶接
法では母材による希釈が少ない為1層溶接でも設
計通りの肉盛金属が得られるという利点があり、
又ビードが滑らかに形成される為融合不良等の欠
陥が少ないという利点もあつて、適用領域が拡大
されつつある。しかしエレクトロスラグ溶接の場
合は一般に低速溶接(通常15cm/分程度)を行な
つている為、溶接金属と母材の境界部で水素によ
る解離割れを起こし易く、又母材のHAZにおけ
る結晶粒の粗大化が進んで延性劣化や割れ等の問
題が露呈しつつあり、適用領域拡大化の一途にあ
つたものがここに来て頓座を余儀なくされてい
る。そこで溶接速度を例えば30cm/分程度(但し
肉盛厚さを確保する必要が生じる為溶接電流も同
時に高める)に速めることが提案されている。し
かしこの方策を、例えば石油精製装置や化学反応
装置に使用されているSUS347系ステンレス鋼の
エレクトロスラグ肉盛溶接に適用したところ、ス
ラグの剥離性が非常に悪く、特にビード表面に対
するスラグの焼付きが発生した為、液体浸透探傷
検査の実施に難渋するということが明らかになつ
た。又単に検査実施上の問題だけでなく、次パス
溶接に先立つスラグ剥離作業に膨大な労力と時間
が必要になり又剥離不十分部では次パス溶接に際
してスラグの巻込みが発生し溶接欠陥の原因にな
つていた。 本発明者等はかねてより上記の様な状況を憂慮
し、先に特開昭58―20398号記載のフラツクスを
発明し、前述のSUS347系を代表とする各種ステ
ンレス鋼の肉盛溶接に多大の貢献を果した。しか
しその後の研究によると、上記発明のフラツクス
を用いても高速溶接時にはビードの縁に若干のス
ラグ焼付現象が残ることが判明し、尚一層の改良
を行なう必要があることを知つた。 本発明はこの様な状況下でなされたものであ
り、スラグの剥離性及び耐焼付性を一層改善でき
る様なフラツクスの提供を目的とするものであ
る。 上記目的を十分満足できる様に達成できた本発
明のフラツクスは、 CaF2:30〜60% Al2O3:10〜30% SiO2:5〜15% CaO:10%以下 MgF2及び/又はAlF3:合計で3〜20% MgO及び/又はBaO:合計で2〜15% を含み、且つ (MgF2+AlF3)/SiO2:0.50以上の条件を満
足することを要旨とするものであり、これによつ
て上記目的はことごとく達成されたがスラグの耐
焼付性を更に改善する為にSの単体及び/又は化
合物を合計で0.01〜0.1%(S換算)含有させた
ものも本発明の要旨に含まれる。 上記成分のうち、CaF2、Al2O3、SiO2、CaO及
びMgOは前出の特開昭58―20398号のフラツクス
と共通の成分でありMgF2、AlF3、BaO及びS
(単体又は化合物)が本発明において特に選択さ
れた成分であるが、各成分毎に夫々含有率を定め
ているので以下各論的に選択理由及び組成範囲設
定理由を説明する。 CaF2:30〜60% スラグの電気伝導性を高める成分であり、エレ
クトロスラグ溶接を行なう為に必須の成分であ
る。しかし30%末満では十分な電気伝導性が得ら
れずエレクトロスラグ溶接そのものが実施できな
くなる。他方60%を越えるとスラグの流動性が過
大になつて良好なビード形状が得られ難くなる。 Al2O3:10〜30% ビードの平滑性、ビード止端部の濡れ性や直線
性を良好にする成分であるが、10%末満ではこの
効果が発揮されない。他方30%を越えるとスラグ
の電気伝導度を下げて通電性を妨げるので溶接作
業性が劣化する。 SiO2:5〜15% 溶融スラグに適度の粘性を与えることによつて
ビード形状及びビード外観を良好に整える成分で
あるが、5%未満ではその効果が発揮されない。
他方15%を越えるとスラグの粘性が過剰になつて
スラグ剥離性の悪化を招き、且つスラグの焼付き
が激しくなる。 CaO:10%以下 ビード表面を平滑にする他、スラグの塩基度を
高めて溶接金属の清浄度を高める成分である。こ
れらの作用はその存在量に比例するものであつ
て、下限値を定めなければならないものではない
が、1%以上の配合は特に推奨されるところであ
る。他方上限については、10%を越えると溶接ス
ラグの流動性が過大になつてビード形状及び外観
が悪化する。 MgF2及び/又はAlF3:合計で3〜20% これら両成分はスラグの剥離性及び耐焼付性を
改善するという点で本発明のもつとも特徴的な成
分であるが、両者は単独・併用の如何を問わず上
記作用を発揮する。しかし合算して3%に満たな
いときは上記作用が不十分であり、他方20%を越
えると溶融スラグの流動性が過大になつてビード
止端部が不揃いになる等、ビード形状の悪化を招
く。 MgO及び/又はBaO:合計で2〜15% いずれもスラグ剥離性の向上に寄与する成分で
あり、単独使用及び併用の如何を問わず有効な作
用を発揮するが、合算して2%に満たないときは
上記作用が不十分である。他方15%を越えるとビ
ードのなじみが劣化し、スラグの巻込み、融合不
良、更にはアンダーカツト等の欠陥が発生し易く
なる。 本発明は少なくとも上記成分を含み、必要によ
り他の成分、例えばFeO、Na2O、合金成分等を
含み得るが、他成分の種類や含有量については格
別の制限を受けることがない。しかし特に重要な
成分として下記のSが挙げられる。 S(単体又は化合物として):0.01〜0.1%(S
換算) S(単体)及び/又は化合物(FeSやMnS等の
硫化物)を、S換算で0.01%以上配合したフラツ
クスを用いると、スラグの耐焼付性は更に改善さ
れる。即ちSは強力な表面活性成分であり、溶融
金属と溶融スラグの界面で反応に携わつて界面性
状を変化させる結果、スラグ焼付けの原因となる
化合物の形成を妨げ、それによつてスラグ剥離を
促進し、且つスラグの耐焼付性を向上するものと
思われる。この様な作用効果は、本発明の様に弗
化物(CaF2、MgF2、AlF3等)を多く含むフラツ
クスでは特に顕著に発揮され、相剰作用に依るも
のと思われる。かし過剰量含有されたものでは溶
接金属中のS含有量が増大して耐高温割れ性等の
性能が劣化するので、その上限を0.1%と定め
た。 以上でフラツクス中への配合成分個々について
説明したが、(MgF2+AlF3)/SiO2で与えられる
比もスラグの剥離性や耐焼付性に重大な影響を与
えるので更に説明する。即ちSiO2は前記説明か
ら理解される様にスラグの剥離性及び耐焼付性に
悪影響を与えるものであり、この観点からは少な
い方が良い。しかしビード形状及びビード外観を
良好にするという目的で5〜15%配合せざるを得
ない、ところがSiO2が共存する場合には、MgF2
及び/又はAlF3は単に前記範囲で配合されてお
れば良いという訳ではなく、SiO2の含有量に対
して、その半量以上(含有率計算)を保証量とし
て配合しなければならず、前記比で与えられる値
が0.5未満になるとスラグの焼付きが発生する。 上記で積極的な配合成分について夫々説明した
が、上記の各効果が安定的に発揮される為には、
フラツクスに含有される水素量を150ppm以下にす
ることが特に推奨されるので以下補足的に説明す
る。即ちフラツクス中に含有される水素は、水分
(主として結晶水)として吸蔵されているもので
あるが、この水分から発生する水素の一部が溶接
時に溶接金属内に侵入して割れ発生の原因となる
ことは良く知られている。一方フラツクス中の水
分の一部は溶接熱によつてガス化し、スラグを通
して外部へ飛散するが、一部はスラグ中に捕捉さ
れてスラグをポーラス化する。その結果スラグ自
身は砕け易いものとなるが、この様なスラグでは
全体が一様に剥離することがなく、部分的に細か
な焼付きとなつてビード表面に残ることがある。
上記の如きスラグのポーラス化は、フラツクス中
の水素量が150ppmを越えると著しくなることを見
出したので、本発明ではフラツクス中の水素量を
150ppm以下にすることを推奨する。この様な条件
は溶融型フラツクスでは簡単に満足されるが、焼
結型フラツクスの場合は焼結温度を500℃以上に
すれば150ppm以下に押えることができる。尚本発
明は溶融型及び焼結型の如何を問わず提供できる
が、後者の場合は、Mn、Ni、Cr、Nb、Mo等の
合金成分を添加することが可能である。 本発明フラツクスは上記の如く構成されている
ので、以下に示す実施例からも理解できる様に、
SUS347系で代表されるステンレス鋼のエレクト
ロスラグ肉盛溶接において、スラグの剥離性及び
耐焼付性が満足できる程度まで改善され、特にそ
れが高速溶接の条件下で達成されることになつた
ので、エレクトロスラグ肉盛溶接の汎用化に大き
く貢献できた。 第1表に示す組成のフラツクスを調製し下記の
条件で肉盛溶接を行なつたところ、第1表に併記
する様な結果が得られた。 <溶接条件> (1) 母材 軟鋼:50mmt×50mmw×600mml (2) 使用した帯状電極 サイズ:0.4mmt×75mmw 成 分:0.01%C−0.2%Si−1.8% Mn−11%Ni−21%Cr−1.1%Nb(残
部Fe及び不可避不純物) (3) エレクトロスラグ溶接条件 DC・RP 1200A−25V−15cm/分及び 2100A−25V−30cm/分 の両条件でいずれも1層肉盛溶接
The present invention relates to a flux for overlay welding that has good slag releasability, and in particular, has good releasability and prevents seizure from the overlay metal during electroslag overlay welding using a strip electrode, especially high-speed overlay welding. It concerns a flux composition that provides slag that does not form. Overlay welding using a strip electrode is classified into submerged arc welding type and electroslag welding type, but the latter welding method has the advantage that overlay metal as designed can be obtained even with one layer welding because there is less dilution by the base metal. There is,
Furthermore, since the beads are formed smoothly, there are fewer defects such as poor fusion, and the range of application is expanding. However, in the case of electroslag welding, low-speed welding (usually about 15 cm/min) is performed, which tends to cause dissociative cracking due to hydrogen at the interface between the weld metal and the base metal, and the crystal grains in the HAZ of the base metal are likely to occur. Problems such as deterioration of ductility and cracking are becoming apparent as the coarsening progresses, and products that were expected to expand their application range are now being forced to stop. Therefore, it has been proposed to increase the welding speed to, for example, 30 cm/min (however, since it is necessary to ensure the build-up thickness, the welding current must also be increased at the same time). However, when this method was applied to electroslag overlay welding of SUS347 stainless steel, which is used in oil refineries and chemical reaction equipment, for example, the slag peelability was very poor, and the slag was stuck on the bead surface in particular. It became clear that it would be difficult to carry out liquid penetrant testing due to the occurrence of this problem. Moreover, it is not only a problem in carrying out inspections, but also a huge amount of labor and time is required to remove the slag before the next pass welding, and in areas where the removal is insufficient, slag gets caught up in the next pass welding, causing welding defects. I was getting used to it. The inventors of the present invention have long been concerned about the above-mentioned situation, and have previously invented the flux described in JP-A-58-20398. made a contribution. However, subsequent research revealed that even when the flux of the invention was used, a slight slag burning phenomenon remained at the edges of the bead during high-speed welding, and it became clear that further improvements were needed. The present invention was made under these circumstances, and it is an object of the present invention to provide a flux that can further improve the peelability and seizure resistance of slag. The flux of the present invention that satisfactorily achieves the above objectives is as follows: CaF 2 : 30-60% Al 2 O 3 : 10-30% SiO 2 : 5-15% CaO: 10% or less MgF 2 and/or AlF 3 : 3 to 20% in total MgO and/or BaO : 2 to 15% in total, and (MgF 2 + AlF 3 )/SiO 2 : 0.50 or more. Although all of the above objectives have been achieved by this, in order to further improve the seizure resistance of the slag, the present invention also includes a slag containing 0.01 to 0.1% (in terms of S) of S alone and/or a compound in total. Included in the abstract. Among the above components, CaF 2 , Al 2 O 3 , SiO 2 , CaO and MgO are the same components as the flux of JP-A-58-20398 mentioned above, and MgF 2 , AlF 3 , BaO and S
(Single substance or compound) is a particularly selected component in the present invention, and since the content rate is determined for each component, the reason for selection and the reason for setting the composition range will be explained in detail below. CaF2 : 30-60% A component that increases the electrical conductivity of slag, and is an essential component for electroslag welding. However, at less than 30%, sufficient electrical conductivity cannot be obtained and electroslag welding itself becomes impossible. On the other hand, if it exceeds 60%, the fluidity of the slag becomes excessive and it becomes difficult to obtain a good bead shape. Al 2 O 3 : 10-30% This is a component that improves the smoothness of the bead and the wettability and linearity of the bead toe, but this effect is not exhibited at less than 10%. On the other hand, if it exceeds 30%, the electrical conductivity of the slag is lowered and current conductivity is hindered, resulting in poor welding workability. SiO2 : 5-15% This is a component that improves the bead shape and bead appearance by imparting appropriate viscosity to the molten slag, but if it is less than 5%, its effect will not be exhibited.
On the other hand, if it exceeds 15%, the viscosity of the slag becomes excessive, resulting in deterioration of slag removability and severe seizing of the slag. CaO: 10% or less In addition to smoothing the bead surface, this component increases the basicity of the slag and improves the cleanliness of the weld metal. These effects are proportional to their abundance, and there is no need to set a lower limit, but a blend of 1% or more is particularly recommended. On the other hand, if the upper limit exceeds 10%, the fluidity of the welding slag will become excessive and the bead shape and appearance will deteriorate. MgF 2 and/or AlF 3 : 3 to 20% in total These two components are the most characteristic components of the present invention in that they improve the peelability and seizure resistance of slag, but both can be used alone or in combination. The above effect is achieved regardless of the method. However, when the total amount is less than 3%, the above effect is insufficient, and on the other hand, when it exceeds 20%, the fluidity of the molten slag becomes excessive and the bead toe becomes irregular, causing deterioration of the bead shape. invite MgO and/or BaO: 2 to 15% in total Both are components that contribute to improving slag removability, and exhibit an effective effect regardless of whether they are used alone or in combination, but the total amount is less than 2%. When it is absent, the above effects are insufficient. On the other hand, if it exceeds 15%, the conformability of the bead deteriorates, and defects such as slag entrainment, poor fusion, and even undercuts are likely to occur. The present invention includes at least the above components, and may include other components such as FeO, Na 2 O, alloy components, etc., if necessary, but there are no particular restrictions on the types or contents of other components. However, the following S is mentioned as a particularly important component. S (alone or as a compound): 0.01-0.1% (S
When a flux containing 0.01% or more of S (single substance) and/or compounds (sulfides such as FeS and MnS) in terms of S is used, the seizure resistance of the slag is further improved. That is, S is a strong surface-active component that engages in a reaction at the interface between molten metal and molten slag and changes the interface properties, thereby preventing the formation of compounds that cause slag burning, thereby promoting slag peeling. , and is thought to improve the seizure resistance of the slag. Such effects are particularly remarkable in a flux containing a large amount of fluoride (CaF 2 , MgF 2 , AlF 3 , etc.) as in the present invention, and are thought to be due to a mutual effect. If an excessive amount of S is contained, the S content in the weld metal increases and performance such as hot cracking resistance deteriorates, so the upper limit was set at 0.1%. The individual components added to the flux have been explained above, but the ratio given by (MgF 2 +AlF 3 )/SiO 2 also has a significant effect on the peelability and seizure resistance of the slag, so it will be further explained. That is, as understood from the above explanation, SiO 2 has a negative effect on the peelability and seizure resistance of the slag, and from this point of view, the less the SiO 2 is, the better. However, in order to improve the bead shape and bead appearance, it is necessary to mix 5 to 15%. However, when SiO 2 coexists, MgF 2
And/or AlF 3 does not just have to be blended within the above range; it must be blended in a guaranteed amount at least half of the content of SiO 2 (content rate calculation), and Slag seizure occurs when the value given by the ratio is less than 0.5. We have explained each of the active ingredients above, but in order for each of the above effects to be stably exhibited, it is necessary to
It is particularly recommended that the amount of hydrogen contained in the flux be 150 ppm or less, so a supplementary explanation will be given below. In other words, the hydrogen contained in the flux is stored as moisture (mainly crystal water), but some of the hydrogen generated from this moisture may enter the weld metal during welding and cause cracks. It is well known that this will happen. On the other hand, part of the water in the flux is gasified by the welding heat and scattered to the outside through the slag, but part of it is trapped in the slag and makes the slag porous. As a result, the slag itself becomes brittle, but such slag does not peel off uniformly as a whole, and may remain on the bead surface in the form of fine burnt spots.
It has been found that the above-mentioned porous slag becomes noticeable when the amount of hydrogen in the flux exceeds 150 ppm. Therefore, in the present invention, the amount of hydrogen in the flux is reduced.
It is recommended to keep it below 150ppm. These conditions are easily satisfied with molten flux, but with sintered flux, it can be kept to 150 ppm or less by setting the sintering temperature to 500°C or higher. The present invention can be provided regardless of whether it is a melted type or a sintered type, but in the latter case, it is possible to add alloy components such as Mn, Ni, Cr, Nb, and Mo. Since the flux of the present invention is constructed as described above, as can be understood from the examples shown below,
In electroslag overlay welding of stainless steels such as the SUS347 series, the slag peelability and seizure resistance have been improved to a satisfactory degree, especially under high-speed welding conditions. We were able to greatly contribute to the generalization of electroslag overlay welding. When a flux having the composition shown in Table 1 was prepared and overlay welding was performed under the following conditions, the results shown in Table 1 were obtained. <Welding conditions> (1) Base metal Mild steel: 50mm t × 50mm w × 600mm l (2) Strip electrode used Size: 0.4mm t × 75mm w Composition: 0.01%C-0.2%Si-1.8% Mn-11 %Ni−21%Cr−1.1%Nb (remaining Fe and unavoidable impurities) (3) Electroslag welding conditions DC・RP 1 layer under both conditions of 1200A−25V−15cm/min and 2100A−25V−30cm/min overlay welding

【表】【table】

【表】 No.1はCaF2が少なく、Al2O3が多過ぎる例であ
り、アンダーカツト等の欠陥が発生すると共に、
スラグ焼付きが見られ、ビード外観・形状も悪か
つた。 No.2はCaF2が過剰なものでありビード外観・
形状が悪く、融合不良も認められた。 No.3はAl2O3が不足している例で、同じく良好
なビードが得られていない。 No.4はSiO2が少ないもので、その為スラグの
剥離性は満足できたがビード形状が相当に悪い。 No.5はSiO2が多過ぎる例でありビードは良く
なつたがスラグの焼付きが著しかつた。 No.6はCaOの多い例であり、ビード形状が悪く
なつている。 No.7はMgF2及びAlF3が不足している例であつ
て、スラグの剥離性が悪く、且つ焼付きがあつ
た。 No.8はMgO及びBaOが共に含まれていない例
であり、No.7と同様スラグの剥離性及び耐焼付性
が劣つた。 No.9はMgF2とAlF3の和が過剰でありビード形
状の悪化を招いている。 No.10はMgOが多過ぎるものでビードの形状が
悪い。 No.11は(MgF2+AlF3)/SiO2の比が過小であ
つて、スラグの剥離性が悪く、又焼付けも認めら
れた。 これらに対しNo.12〜20は本発明の各条件を満足
している実施例であり、いずれの項目についても
満足な結果が得られている。
[Table] No. 1 is an example of too little CaF 2 and too much Al 2 O 3 , which causes defects such as undercuts,
Slag burning was observed, and the bead appearance and shape were poor. No. 2 has excessive CaF 2 , and the bead appearance and
The shape was poor and poor fusion was observed. No. 3 is an example in which Al 2 O 3 is insufficient, and good beads are also not obtained. No. 4 had a low SiO 2 content, so the slag removability was satisfactory, but the bead shape was quite poor. No. 5 is an example in which the amount of SiO 2 was too high, and although the bead was improved, the slag seizure was significant. No. 6 is an example with a large amount of CaO, and the bead shape is poor. No. 7 was an example in which MgF 2 and AlF 3 were insufficient, and the slag peelability was poor and seizure occurred. No. 8 is an example in which neither MgO nor BaO is contained, and like No. 7, the slag releasability and seizure resistance were poor. In No. 9, the sum of MgF 2 and AlF 3 was excessive, leading to deterioration of the bead shape. No. 10 has too much MgO and the bead shape is poor. In No. 11, the ratio of (MgF 2 +AlF 3 )/SiO 2 was too small, and the slag peelability was poor, and baking was also observed. On the other hand, Nos. 12 to 20 are examples that satisfy each condition of the present invention, and satisfactory results were obtained for all items.

Claims (1)

【特許請求の範囲】 1 CaF2:30〜60%(重量%の意味、以下同
じ) Al2O3:10〜30% SiO2:5〜15% CaO:10%以下 MgF2及び/又はAlF3:合計で3〜20% MgO及び/又はBaO:合計で2〜15% を含み、且つ (MgF2+AlF3)/SiO2:0.50以上 の条件を満足するものであることを特徴とするエ
レクトロスラグ肉盛溶接用フラツクス。 2 CaF2:30〜60% Al2O3:10〜30% SiO2:5〜15% CaO:10%以下 MgF2及び/又はAlF3:合計で3〜20% MgO及び/又はBaO:合計で2〜15% Sの単体及び/又は化合物:合計で0.01〜0.1
%(S換算) を含み、且つ (MgF2+AlF3)/SiO2:0.50以上 の条件を満足するものであることを特徴とするエ
レクトロスラグ肉盛溶接用フラツクス。
[Claims] 1 CaF 2 : 30 to 60% (weight %, the same applies hereinafter) Al 2 O 3 : 10 to 30% SiO 2 : 5 to 15% CaO: 10% or less MgF 2 and/or AlF 3 : 3 to 20% in total MgO and/or BaO: 2 to 15% in total, and (MgF 2 + AlF 3 )/SiO 2 : 0.50 or more. Flux for slag overlay welding. 2 CaF2 : 30-60% Al2O3 : 10-30% SiO2 : 5-15% CaO: 10% or less MgF2 and/or AlF3 : 3-20% in total MgO and/or BaO: total 2 to 15% S element and/or compound: 0.01 to 0.1 in total
% (in terms of S) and satisfies the conditions of (MgF 2 +AlF 3 )/SiO 2 : 0.50 or more.
JP14348283A 1983-08-04 1983-08-04 Flux for electroslag build-up welding Granted JPS6061195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14348283A JPS6061195A (en) 1983-08-04 1983-08-04 Flux for electroslag build-up welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14348283A JPS6061195A (en) 1983-08-04 1983-08-04 Flux for electroslag build-up welding

Publications (2)

Publication Number Publication Date
JPS6061195A JPS6061195A (en) 1985-04-08
JPS6249155B2 true JPS6249155B2 (en) 1987-10-17

Family

ID=15339725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14348283A Granted JPS6061195A (en) 1983-08-04 1983-08-04 Flux for electroslag build-up welding

Country Status (1)

Country Link
JP (1) JPS6061195A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102941421A (en) * 2012-11-22 2013-02-27 天津市永昌焊丝有限公司 High-alkalinity band electrode electroslag surfacing flux

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111793A (en) * 1983-11-21 1985-06-18 Kawasaki Steel Corp Flux for electroslag build-up welding using belt-like electrode
JPH0763866B2 (en) * 1989-12-01 1995-07-12 株式会社豊田中央研究所 Brazing flux
JP4622267B2 (en) * 2004-03-02 2011-02-02 Jfeスチール株式会社 Electroslag welding method
JP4701619B2 (en) * 2004-03-02 2011-06-15 Jfeスチール株式会社 Large heat input electroslag welding method
JP5086652B2 (en) * 2007-01-26 2012-11-28 株式会社神戸製鋼所 Electroslag overlay welding flux
CN102152029A (en) * 2011-05-05 2011-08-17 河海大学常州校区 Sintered flux for nitrogen alloying of surfacing metal of stainless-steel band electrode electroslag
CN106514053A (en) * 2016-11-04 2017-03-22 四川大西洋焊接材料股份有限公司 Sintering flux used for stainless steel high-speed electro-slag strip surfacing and preparation method for same
JP7440303B2 (en) * 2020-03-06 2024-02-28 株式会社神戸製鋼所 Flux for electroslag welding and electroslag welding method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102941421A (en) * 2012-11-22 2013-02-27 天津市永昌焊丝有限公司 High-alkalinity band electrode electroslag surfacing flux
CN102941421B (en) * 2012-11-22 2015-02-18 天津市永昌焊丝有限公司 High-alkalinity band electrode electroslag surfacing flux

Also Published As

Publication number Publication date
JPS6061195A (en) 1985-04-08

Similar Documents

Publication Publication Date Title
KR100553380B1 (en) Steel wire for carbon dioxide shielded arc welding and welding process using the same
JP5086652B2 (en) Electroslag overlay welding flux
US4764224A (en) Baked flux for submerged arc welding
JP5472244B2 (en) Narrow groove butt welding method for thick steel plates
JPS6249155B2 (en)
JP2007118068A (en) Narrow groove butt welding method for thick steel plate
JP4725700B2 (en) Steel wire for carbon dioxide shielded arc welding and welding method using the same
JPH10291092A (en) Flux-cored wire for gas-shielded metal arc welding
US4436563A (en) Flux for overlay welding
JPH07251292A (en) Solid wire for mag and pulsed mag welding of high tensile steel
JP3150476B2 (en) Ni-base alloy flux cored wire
JPS5937719B2 (en) Sintered flux for submerged arc welding
JP6071798B2 (en) Flux for single-sided submerged arc welding
US1954297A (en) Welding
JP2004188428A (en) Steel wire for carbon dioxide gas-shielded arc welding, and welding method using the same
JP4529482B2 (en) Fillet welding method
JPH0339797B2 (en)
JP2015033700A (en) Flux for one-side submerged arc welding
JPS5823596A (en) Method for horizontal electroslag build-up welding by tubular wire
JP4040765B2 (en) Flux-cored wire for gas shielded arc welding
JP3828088B2 (en) Flux-cored wire for fillet welding
JP5051966B2 (en) Sideways carbon dioxide shielded arc welding method
JPH10180486A (en) Flux-cored wire for 9% ni steel
JPS6244535A (en) Flux for electroslag remelting method
JPH0244636B2 (en)