JPS6248977A - Fluid pump for internal combustion engine - Google Patents

Fluid pump for internal combustion engine

Info

Publication number
JPS6248977A
JPS6248977A JP18825185A JP18825185A JPS6248977A JP S6248977 A JPS6248977 A JP S6248977A JP 18825185 A JP18825185 A JP 18825185A JP 18825185 A JP18825185 A JP 18825185A JP S6248977 A JPS6248977 A JP S6248977A
Authority
JP
Japan
Prior art keywords
pump
fluid pump
drive shaft
internal combustion
driving shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18825185A
Other languages
Japanese (ja)
Inventor
Hiroaki Tsukamoto
塚本 裕彰
Yoichi Ishibashi
羊一 石橋
Koichi Komiyama
込山 公一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP18825185A priority Critical patent/JPS6248977A/en
Publication of JPS6248977A publication Critical patent/JPS6248977A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/08Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/06Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/102Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member the two members rotating simultaneously around their respective axes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

PURPOSE:To prevent a cavitation phenomenon from taking place in a fluid pump and enable high rotation of an engine by driving a fluid pump such as an oil pump, etc. loaded on a motorcycle, etc. via a centrifugal clutch and preventing the number of revolutions of said fluid pump from reaching above a defined value. CONSTITUTION:Hollow parts 3 which extend in a cross-from with a driving shaft 1 as the center, are formed in the internal gear 2 of a gear pump P as an oil pump. A clutch weight 4 and a balancing spring 5 which brings the clutch weight 4 into press contact with the outer peripheral surface of the driving shaft 1, are assembled in this hollow part 3. And, the internal gear 2 is connected to the driving shaft 1 by means of friction between the clutch weights 4 and the outer peripheral surface of the driving shaft 1, to drive the fluid pump P.

Description

【発明の詳細な説明】 「産業上の利用分野j 本発明は、特に二輪車等に搭載される高速回転型内燃機
関に装備されて好適な内燃機関用流体ポンプに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fluid pump for an internal combustion engine, which is particularly suitable for being installed in a high-speed internal combustion engine mounted on a two-wheeled vehicle or the like.

「従来の技術」 内燃機関においては、ピストンやフリツク、ミッノヨン
なとの各種摺動部に潤滑油を供給するためのいわゆるオ
イルポンプが装備されている。
``Prior Art'' Internal combustion engines are equipped with so-called oil pumps for supplying lubricating oil to various sliding parts such as pistons, flicks, and shafts.

このオイルポンプには、例えば二輪車等に搭載される内
燃機関においては、構造が簡r1iて小形化を図りやす
くかつ、安価であるなどの理由に基づき、一般にギヤポ
ツプが多く採用されている。そして、このギヤポンプの
駆動方法としては、通常の場合、機関のクランクソヤフ
トに連動させて駆動する方法が採られている。
For example, in internal combustion engines mounted on two-wheeled vehicles, gear pops are often used as oil pumps because they have a simple structure, are easy to downsize, and are inexpensive. The gear pump is normally driven in conjunction with the crank shaft of the engine.

「発明が解決しようとする問題点」 ところで、二輪車用エンジンのように高速回転型内燃機
関では、その使用回転域ら非常に広くなるため、上記し
たオイルポンプのようなhli n類の適応回転域Gこ
れに応じて広くなければならない。
``Problems to be solved by the invention'' By the way, high-speed internal combustion engines such as motorcycle engines have a very wide operating rotation range, so the applicable rotation range of hlin types such as the oil pump described above is very wide. G must be correspondingly wide.

ところが、この種のオイルポンプは、ある高速回転域を
越えろとギヤヒテーンヨンが発生し、騒音・振動を起こ
すことが知られている。例えば、トロコイド歯形を用い
た内接形ギヤポンプの場合、第6図に示すように、ポン
プの回転数N2においてキャピテーノヨンを発生し、N
2以」二の回転域においては、逆にポンプ機能か低下す
る特性を示すことが知られている。従って、同図に示す
ギャボンブの場合、必要供給量の圧油を発生する回転数
Nlからキヤビテーシヨンを発生ずる回転数N2の範囲
がポツプを有効利用できる適応回転域となる。
However, this type of oil pump is known to suffer from gear locking when it exceeds a certain high-speed rotation range, causing noise and vibration. For example, in the case of an internal gear pump using a trochoidal tooth profile, as shown in FIG.
It is known that in a rotation range of 2 or more, the pump function deteriorates. Therefore, in the case of the gabbon shown in the figure, the range from the rotational speed Nl at which the required supply amount of pressure oil is generated to the rotational speed N2 at which cavitation occurs is the applicable rotational range in which the pop can be used effectively.

しかるに、従来においては、オイルポンプ自体を単にク
ランクシャフトの回転に連動させて回転させる構成とし
ていた関係上、エンジンの回転数に比例してオイルポン
プの回転数も増すことになり、このため、近年において
さらに要求されているエンツノの高回転・高出力化を図
った場合に、オイルポンプの回転数かその何効利用範囲
の上限を越えてしまうという問題点がめった。
However, in the past, the oil pump itself was configured to simply rotate in conjunction with the rotation of the crankshaft, so the rotation speed of the oil pump increased in proportion to the engine rotation speed. When attempting to increase the engine speed and output, which is required further in the industry, the problem often occurred that the oil pump rotation speed exceeded the upper limit of its effective utilization range.

この点の解決手段として、減速ギヤを設けること乙考え
られるが、このようにした場合には、エンツノの低回転
域においてオイルポンプが必要供給量の下池を発生しな
くなるという新たな問題点か生しることになる。
A possible solution to this problem would be to install a reduction gear, but in this case, a new problem would arise in which the oil pump would no longer produce the required amount of oil in the engine's low rotation range. I will know.

「問題点を解決するための手段」 そこで、本発明では、クランクシャフトの回転に連動し
て駆動される内燃機関用流体ポンプにおいて、該流体ポ
ンプの駆動軸とポンプ本体との間に、流体ポンプが所定
回転数以上に達しノこときにのみ11fi記駆動軸から
入力されろ動力を断つ遠心クラノヂ機構を設けた構成と
しfこらのである。
"Means for Solving the Problems" Therefore, in the present invention, in a fluid pump for an internal combustion engine that is driven in conjunction with the rotation of a crankshaft, a fluid pump is provided between a drive shaft of the fluid pump and a pump body. The configuration includes a centrifugal cranoid mechanism that cuts off the power input from the drive shaft only when the rotation speed reaches a predetermined number of revolutions or more.

「作用 」 流体ポンプの回転数が所定回転数以上に達すると、遠心
クラノヂ機構か働いて駆動軸の回転エネルギーはポンプ
本体に伝達されなくなり、この結果、ポンプ本体はそれ
以上の速さで回転することはない。従って、上記所定回
転数を流体ポンプの有効刊用可能な上限回転数とし、こ
こで遠心クラッヂ機構か働くように設定しておくだけて
、流体ポンプの回転数は常にこの有効利用できる回転数
の上限以下に保たれることになり、これによって、機関
をより高速回転さ什てら流体ポツプにキャヒテーンコン
現象などがか生じるようなことはない。
"Function" When the rotational speed of the fluid pump reaches a predetermined rotational speed or higher, the centrifugal cranoid mechanism works and the rotational energy of the drive shaft is no longer transmitted to the pump body, and as a result, the pump body rotates at a higher speed. Never. Therefore, by setting the above predetermined rotational speed as the upper limit rotational speed at which the fluid pump can be used effectively, and by setting the centrifugal crudge mechanism to work at this point, the rotational speed of the fluid pump will always be within this effective rotational speed. This will keep it below the upper limit, so that even if the engine is rotated at higher speeds, a capacitance phenomenon will not occur in the fluid pot.

「実施例」 以下、本発明の実施例を添付の第1図ないし第5図を参
照して説明する 第1図および第2図は、本発明の第一実施例を示すもの
で、これらの図において、符号1は機関のクランクシャ
フトにギヤなどを介して連動させた駆動軸であり、この
駆動軸Iには、該駆動軸lの一部を直接自身のポンプン
ヤフトとする、ポンプ本体Pが組み付けられ、これによ
って、オイルポンプなととして利用される流体ポンプが
構成されている。
"Embodiment" Hereinafter, embodiments of the present invention will be explained with reference to the attached FIGS. 1 to 5. FIGS. 1 and 2 show the first embodiment of the present invention. In the figure, reference numeral 1 is a drive shaft linked to the crankshaft of the engine through gears, etc. This drive shaft I has a pump main body P that directly uses a part of the drive shaft I as its own pump shaft. When assembled, a fluid pump used as an oil pump is constructed.

前記ポツプ本体Pは、実施例ではトロコイド歯形を用い
た内接歯車2と外接歯車3とを備えたいイつゆる内接形
ギヤポンプによって構成されている。
In the embodiment, the pop body P is constituted by any type of internal gear pump including an internal gear 2 and an external gear 3 using a trochoidal tooth profile.

そして、このポンプ本体Pと前記駆動軸1との間には、
流体ポツプが所定回転数以上に達したとき、つまり、流
体ポンプの回転数が該流体ポンプを存効利用可能な回転
数の上限に達したときにのみ、前記駆動軸1から人力さ
れる動力を断つ遠心クラッチ機構Kが装備されている。
And between this pump body P and the drive shaft 1,
Only when the fluid pot reaches a predetermined rotational speed or higher, that is, when the rotational speed of the fluid pump reaches the upper limit of the rotational speed at which the fluid pump can be effectively used, is the power manually applied from the drive shaft 1 released. Equipped with a centrifugal clutch mechanism K for disconnection.

すなわち、この実施例では、内接歯車2内にその駆動軸
1を中心として十字状に延びる空洞部3が形成されてお
り、該空洞部3内に、クラッチウェイト4と該クラッチ
ウェイト4を駆動軸lの外周面に圧接させるためのつり
合いスプリング5とが紹み込まれ、これによって遠心ク
ラッチ機構Kか構成されている。なお、図示例において
は、空洞部3の形状を内接歯車2の輪郭に対応さUて十
字状としている関係上、クラッチウェイト4およびつり
合いスブリン75は四組組み込まれている。ここで、各
クラッチウェイト4の型組、およびつり合いスプリング
5のばね定数などは、遠心クラゾチ機構にの機能を左右
することになるので、該重量やぼね定数なとの設定は当
然、適用される流体ポンプの上限回転数に応して決定さ
れることになる。同図において、符号6は軸受を示して
いる。
That is, in this embodiment, a cavity 3 is formed in the internal gear 2 and extends in a cross shape around the drive shaft 1, and a clutch weight 4 and a drive shaft for driving the clutch weight 4 are formed in the cavity 3. A counterbalance spring 5 is introduced to press against the outer circumferential surface of the shaft l, thereby forming a centrifugal clutch mechanism K. In the illustrated example, since the shape of the cavity 3 is cross-shaped to correspond to the contour of the internal gear 2, four sets of clutch weights 4 and counterweights 75 are installed. Here, since the type of each clutch weight 4 and the spring constant of the counterbalance spring 5 will affect the function of the centrifugal clutch mechanism, the settings for the weight and spring constant will naturally not be applied. It is determined according to the upper limit rotation speed of the fluid pump. In the figure, reference numeral 6 indicates a bearing.

上記のような遠心クラッヂ機構を装備した内燃機関用流
体ポンプでは、機関の低回転域においては、各クラッチ
ウェイト4がつり合いスプリング5の付勢力により駆動
軸の外周面にそれぞれ圧接され、互いの)γ擁力によっ
てポンプ本体Pに駆動力か伝達される。機関の回転数上
界に伴い、クラッチウェイトに作用する遠心力ら大きく
なると、駆動軸とクラッチウェイト間の摩擦力は減少し
、オヘリを生じるようになる。そして、さらに回転敗が
上界し、第5図においてN2の回転数まで上昇すると、
クラッチウェイト4は駆動軸1の外周面から離れ、駆動
力は伝達されなくなる。この状態になると、内接歯車2
の回転速度が落ちるため、クラッチウェイト4は再び駆
動軸Iに接するようになり、駆動力が伝達される。この
ようにして、流体ポンプかある回転数以上になると、遠
心クラッチ機構Kが作用・不作用動作を繰り返し、いわ
ゆるハンヂング状態になる(第5図参照)。この状態に
なると、機関回転数かさらにト昇してら流体ポツプの回
転数はそれ以上上昇することはない。したがって、遠心
クラノヂ機構Kが働く回転数と、流体ポンプの有効利用
可能な上限回転数とを、第5図においてN2の回転数と
なるように設定しておけば、高回転・高出力化を図った
機関においてら、流体ポンプをキヤビテーシヨンの発生
しない適正な回転域において効率良く働かせることがで
きる。
In the fluid pump for an internal combustion engine equipped with the centrifugal clutch mechanism as described above, in the low rotation range of the engine, each clutch weight 4 is pressed against the outer peripheral surface of the drive shaft by the biasing force of the balance spring 5, and The driving force is transmitted to the pump body P by the γ retaining force. As the engine speed increases, the centrifugal force acting on the clutch weight increases, and the frictional force between the drive shaft and the clutch weight decreases, causing over-heeling. Then, when the rotational speed increases further and reaches the rotational speed of N2 in Fig. 5,
The clutch weight 4 separates from the outer peripheral surface of the drive shaft 1, and the driving force is no longer transmitted. In this state, internal gear 2
Since the rotational speed of the clutch weight 4 decreases, the clutch weight 4 comes into contact with the drive shaft I again, and the driving force is transmitted. In this way, when the rotational speed of the fluid pump exceeds a certain level, the centrifugal clutch mechanism K repeats activation and deactivation, resulting in a so-called hanging state (see FIG. 5). In this state, even if the engine speed increases further, the fluid pop rotation speed will not increase any further. Therefore, if the rotational speed at which the centrifugal cranochage mechanism K operates and the upper limit rotational speed at which the fluid pump can be effectively used are set to the rotational speed N2 in Fig. 5, high rotational speed and high output can be achieved. In such an engine, the fluid pump can be operated efficiently in an appropriate rotation range where cavitation does not occur.

ここで、機関の一般的な運転状況を考慮した場合、流体
ポンプの回転数がN2の回転数に達することは少なく、
また達した場合でも一時的なものであることか多いので
、このように遠心クラソヂ賎購を装備することは極めて
aα義である。
Here, when considering the general operating conditions of the engine, the rotation speed of the fluid pump rarely reaches the rotation speed of N2,
Moreover, even if it is achieved, it is likely to be temporary, so it is extremely wise to equip a centrifugal clasp in this way.

第3図および第4図は、本発明の第一実施例を示す乙の
で、この実施例では、ポンプ本体P自体がポンプシャフ
トフ付きの独立構成とされ、そのボンプノヤフト7と駆
動軸Iとの間に遠心クラノヂ機+、¥tKが設けられた
構成となっている。すなわち、遠心クラノヂ機tM K
は、内部にクラッチウェイト4およびつり合いスプリン
グ5か組み込まれた中空円盤状の回転体8を備え、該回
転体8の中心部に駆動軸1か回転自在に挿入されてこの
駆動軸1の外周面に1iii記クラツチウエイト4か圧
接しており、また、回転体8には、駆動軸lと同軸的な
ボス部9がポンプ本体P側に向けて突設され、該ボス部
9内に前記ポンプシャフト7が挿入されてそこに固定さ
れ、これによって、駆動軸1とボンブンヤフト7とか同
軸的に連絡された構成となっている。
3 and 4 show the first embodiment of the present invention. In this embodiment, the pump main body P itself has an independent structure with a pump shaft, and the pump shaft 7 and the drive shaft I are connected to each other. The configuration includes a centrifugal cranoid machine + and ¥tK in between. That is, centrifugal cranoid machine tM K
is equipped with a hollow disk-shaped rotating body 8 in which a clutch weight 4 and a balance spring 5 are incorporated, and a drive shaft 1 is rotatably inserted into the center of the rotating body 8, and the outer peripheral surface of the drive shaft 1 is inserted into the center of the rotating body 8. The clutch weight 4 (1iii) is in pressure contact with the rotating body 8, and a boss portion 9 coaxial with the drive shaft l is provided on the rotating body 8 and protrudes toward the pump main body P side, and the pump is inserted into the boss portion 9. A shaft 7 is inserted and fixed there, so that the drive shaft 1 and the bomb shaft 7 are coaxially connected.

この実施例による流体ポンプにあっても、その作用・効
果は先の実施例の場合とほぼ同様であろか、ポンプ本体
Pをボンプノヤフト7付きの独立構成としているため、
該ポンプ本体Pの整備や交換などが容易で、メンテナン
ス上からも好都合な乙のとなる。
The action and effect of the fluid pump according to this embodiment are almost the same as those of the previous embodiment, and since the pump main body P has an independent configuration with a pump shaft 7,
Maintenance and replacement of the pump body P is easy, which is convenient from a maintenance standpoint.

「発明の効果」 以上説明したように、本発明にあっては、クランクシャ
フトの回転に連動して駆動される内燃機関用流体ポンプ
において、該流体ポンプの駆動軸とポンプ本体との間に
、流体ポンプか所定回転数以上に達したときにのみ前記
駆動軸から入力されろ動力を断つ遠心クラッチ機構を設
けた構成としたから、流体ポンプの有効利用可能な上限
回転域において遠心クラッチ機構が働くように設定して
おくだけで、高回転・高出力化を図った機関においてら
、流体ポンプをキャビテーションの発生しない適正な回
転域において効率良く働かせることができ、しから、該
流体ポンプは機関の低回転域でも従来と同じように動く
ので、これによって流体ポンプの適応回転域を大きく広
げろことがてきるなどの浸れた効果を奏する。
"Effects of the Invention" As explained above, in the present invention, in the fluid pump for an internal combustion engine that is driven in conjunction with the rotation of the crankshaft, there is a gap between the drive shaft of the fluid pump and the pump body. Since the configuration includes a centrifugal clutch mechanism that cuts off the power input from the drive shaft only when the fluid pump reaches a predetermined rotation speed or higher, the centrifugal clutch mechanism operates in the upper limit rotation range where the fluid pump can be effectively used. By simply setting these settings, the fluid pump can be operated efficiently in an appropriate rotation range where cavitation does not occur, even in engines designed for high rotation and high output. Since it operates in the same manner as before even in the low rotation range, it has the advantage of greatly expanding the applicable rotation range of the fluid pump.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ本発明の第一実施例を示
す断面図、第3図および第4図はそれぞれ本発明の第二
実施例を示す断面図、第5図は実施例による流体ポンプ
の特性図、第6図は従来例における流体ポンプの特性図
である。 l・・駆動軸、P・・ポンプ本体、K・遠心クラッヂ機
構。 第3図 第4図
1 and 2 are sectional views showing a first embodiment of the present invention, FIGS. 3 and 4 are sectional views showing a second embodiment of the present invention, and FIG. 5 is a sectional view showing a fluid flow according to the embodiment. FIG. 6 is a characteristic diagram of a fluid pump in a conventional example. L: Drive shaft, P: Pump body, K: Centrifugal clutch mechanism. Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] クランクシャフトの回転に連動して駆動される内燃機関
用流体ポンプにおいて、該流体ポンプの駆動軸とポンプ
本体との間に、流体ポンプが所定回転数以上に達したと
きにのみ前記駆動軸から入力される動力を断つ遠心クラ
ッチ機構を設けたことを特徴とする内燃機関用流体ポン
プ。
In a fluid pump for an internal combustion engine that is driven in conjunction with the rotation of a crankshaft, an input signal is input from the drive shaft between the drive shaft of the fluid pump and the pump body only when the fluid pump reaches a predetermined rotation speed or higher. A fluid pump for an internal combustion engine, characterized in that it is equipped with a centrifugal clutch mechanism that cuts off the power generated by the engine.
JP18825185A 1985-08-27 1985-08-27 Fluid pump for internal combustion engine Pending JPS6248977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18825185A JPS6248977A (en) 1985-08-27 1985-08-27 Fluid pump for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18825185A JPS6248977A (en) 1985-08-27 1985-08-27 Fluid pump for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS6248977A true JPS6248977A (en) 1987-03-03

Family

ID=16220421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18825185A Pending JPS6248977A (en) 1985-08-27 1985-08-27 Fluid pump for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS6248977A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036091A1 (en) * 2001-10-13 2003-05-01 Robert Bosch Gmbh Internal gear pump
JP2009162250A (en) * 2007-12-28 2009-07-23 Honda Motor Co Ltd Oil pump drive device for engine
KR101154395B1 (en) 2006-12-12 2012-06-15 현대자동차주식회사 Fuel pump structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036091A1 (en) * 2001-10-13 2003-05-01 Robert Bosch Gmbh Internal gear pump
US7052257B2 (en) 2001-10-13 2006-05-30 Robert Bosch Gmbh Internal gear pump
KR101154395B1 (en) 2006-12-12 2012-06-15 현대자동차주식회사 Fuel pump structure
JP2009162250A (en) * 2007-12-28 2009-07-23 Honda Motor Co Ltd Oil pump drive device for engine

Similar Documents

Publication Publication Date Title
WO2007098595A1 (en) Reduced rotor assembly diameter vane pump
JPH0942317A (en) Lubricating structure of hydraulic clutch
JP2003201850A (en) Supercharger
JP3017281B2 (en) Rotation control device
JPH10103074A (en) Auxiliary machine driving gear
JPH09296858A (en) Gear pair and fluid mechanism using gear pair
JPS6248977A (en) Fluid pump for internal combustion engine
JPH02125113A (en) Frictional clutch
JPH08338498A (en) Torque sensitive type speed controller
JP3350633B2 (en) Gear driven oil pump
JPH04101844U (en) variable inertia flywheel
KR200158192Y1 (en) Engine oil pump
JPH0648085Y2 (en) Oil pump device for output adjustable engine
JPS5851291A (en) Fluid machine
US2608884A (en) Automatic torque converter
JPS5938420B2 (en) Engine auxiliary drive system
KR100243763B1 (en) Controllable balancing equipment
JPS6363780B2 (en)
KR20150069399A (en) Internal gear type gear pump
KR20010066003A (en) Changeable turning apparatus having inertia of crankshaft
JPH1073154A (en) Engine accessories driving device
JPH0547420U (en) Damper device for fuel injection pump for diesel engine
JP2003156122A (en) Fluid coupling
JPH0724568Y2 (en) Oil pump device for output adjustable engine
JPH0522839U (en) Oil film damper