JPS6248882B2 - - Google Patents

Info

Publication number
JPS6248882B2
JPS6248882B2 JP53129241A JP12924178A JPS6248882B2 JP S6248882 B2 JPS6248882 B2 JP S6248882B2 JP 53129241 A JP53129241 A JP 53129241A JP 12924178 A JP12924178 A JP 12924178A JP S6248882 B2 JPS6248882 B2 JP S6248882B2
Authority
JP
Japan
Prior art keywords
magnetic field
excitation coil
magnetizing
capacitor
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53129241A
Other languages
Japanese (ja)
Other versions
JPS5556606A (en
Inventor
Hideki Obara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP12924178A priority Critical patent/JPS5556606A/en
Publication of JPS5556606A publication Critical patent/JPS5556606A/en
Publication of JPS6248882B2 publication Critical patent/JPS6248882B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coils Or Transformers For Communication (AREA)
  • Measuring Magnetic Variables (AREA)

Description

【発明の詳細な説明】 本発明は着磁精度と安定性が要求される永久磁
石を着磁する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for magnetizing a permanent magnet that requires magnetization accuracy and stability.

適正強度に着磁された永久磁石は、磁気バブル
チツプや磁気抵抗効果素子のバイアス磁界供給手
段に用いられる。例えば磁気バブルチツプにおい
てはその正常な記憶動作のためには適正なバイア
ス磁界が必要であり、そのバイアス磁界を所定の
値に設定しないと磁気バブルチツプの記憶動作マ
ージン巾が狭くなる。
Permanent magnets magnetized to an appropriate strength are used as bias magnetic field supply means for magnetic bubble chips and magnetoresistive elements. For example, a magnetic bubble chip requires an appropriate bias magnetic field for its normal storage operation, and if the bias magnetic field is not set to a predetermined value, the storage operation margin of the magnetic bubble chip will be narrowed.

また磁気抵抗効果素子を用いて、磁気記録媒体
に記録されている情報をその極性を識別して読み
出すためには、磁気抵抗効果素子にバイアス磁界
を印加しておく必要がある。バイアス磁界の強さ
は、磁気抵抗効果素子内の磁化の方向がその容易
軸方向から丁度45度傾くような強さに設定される
ことが望ましく、それから外れるに従つて入力信
号に対し対称性の良い出力波形の得られる範囲が
狭くなる。
Furthermore, in order to read information recorded on a magnetic recording medium by identifying its polarity using a magnetoresistive element, it is necessary to apply a bias magnetic field to the magnetoresistive element. It is desirable to set the strength of the bias magnetic field to such a strength that the direction of magnetization within the magnetoresistive element is tilted at exactly 45 degrees from the easy axis direction, and as it deviates from this direction, the symmetry with respect to the input signal increases. The range in which good output waveforms can be obtained becomes narrower.

このようにバイアス磁界印加手段として永久磁
石を用いる場合には、その着磁強度の精度ととも
に、外部磁界に対し安定であることも要求され
る。
When a permanent magnet is used as a bias magnetic field applying means in this way, it is required not only to have precision in its magnetization strength but also to be stable against external magnetic fields.

従来のこの種の着磁装置としては、磁気バブル
モジユールの着磁に用いられたもので、磁気シー
ルドケース内に収められた永久磁石を一旦直流電
磁石下で飽和着磁した後、電磁石の供給する電流
の方向を反転して永久磁石を減磁し、モジユール
内のバイアス磁界を規定値に設定し、その後で永
久磁石の磁化の安定化のために交番磁界を加える
ように構成したものが知られている。これは、た
とえば、1976年11月発行のアイ・イー・イー・イ
ートランザクシヨンズ オン マグネテイツクス
(IEEETransactions on Magnetics)第12巻、第
6号、645頁〜647頁に記載されている。
Conventional magnetizing devices of this type are used to magnetize magnetic bubble modules, and after a permanent magnet housed in a magnetic shield case is once saturated and magnetized under a DC electromagnet, the electromagnet is supplied. There is a known structure in which the direction of the current is reversed to demagnetize the permanent magnet, the bias magnetic field in the module is set to a specified value, and then an alternating magnetic field is applied to stabilize the magnetization of the permanent magnet. It is being This is described, for example, in IEEE Transactions on Magnetics, Vol. 12, No. 6, pp. 645-647, published November 1976.

ところが、かかる装置による磁気バブルモジユ
ールの着磁では、飽和着磁に必要な磁界がほぼ
10KOe 減磁磁界がほぼ数KOeいるのに対し、交
番磁界が高々数百Oeにしかならないため、磁気
バブルモジユールは外部からの妨害磁界に対して
弱いばかりでなく、希望するバイアス磁界値への
減磁磁界による設定値が交番磁界の印加によりず
れてしまうため、設定精度が悪い欠点があつた。
However, when magnetizing a magnetic bubble module using such a device, the magnetic field required for saturation magnetization is almost
The demagnetizing magnetic field is approximately several KO e , whereas the alternating magnetic field is only a few hundred O e at most. Therefore, the magnetic bubble module is not only weak against external disturbance magnetic fields, but also weak against the desired bias magnetic field. Since the set value caused by the demagnetizing magnetic field deviates due to the application of the alternating magnetic field, the setting accuracy was poor.

本発明による着磁装置は、飽和着磁後に交番磁
界を用いる減磁を可能にすることを特徴とし、そ
の第1の目的は、磁気バブルモジユール等のバイ
アス磁界設定にさいし、高い設定精度の得られる
着磁装置を提供することにある。また、第2の目
的はモジユールの外部妨害磁界に対する安定度を
強化するような着磁のできる着磁装置を提供する
ことにある。
The magnetizing device according to the present invention is characterized in that it enables demagnetization using an alternating magnetic field after saturation magnetization, and its first purpose is to achieve high setting accuracy when setting a bias magnetic field in a magnetic bubble module, etc. The object of the present invention is to provide a magnetizing device that can be obtained. A second object is to provide a magnetizing device capable of magnetizing the module in a manner that enhances its stability against external disturbing magnetic fields.

以下図面について本発明を詳細に説明する。 The invention will be explained in detail below with reference to the drawings.

第1図は本発明の着磁装置の一実施例であつて
10は電圧値可変の直流電源、20,30,40
はスイツチ、31はダイオード、50はコンデン
サ、60は励磁コイル、70は磁化ヨーク、80
は磁気バブルモジユールで、スイツチ40から左
側の回路が励磁器を構成する。これを動作するに
は、先ず、第2図Aのごとく、スイツチ20を閉
じ、コンデンサ50を直流電源10の電圧値にほ
ぼ等しく充電しておく。次に、スイツチ20を開
きスイツチ40を閉じて、励磁コイル60にコン
デンサ50の電荷を放電させる。この時励磁コイ
ル60に流れる電流の波形は、ダイオード31に
つながつたスイツチ0の開閉によつて2通りに切
換えられる。
FIG. 1 shows an embodiment of the magnetizing device of the present invention, in which 10 is a DC power supply with variable voltage value, 20, 30, 40
is a switch, 31 is a diode, 50 is a capacitor, 60 is an exciting coil, 70 is a magnetizing yoke, 80
is a magnetic bubble module, and the circuit on the left side from switch 40 constitutes an exciter. To operate this, first, as shown in FIG. 2A, the switch 20 is closed and the capacitor 50 is charged approximately equal to the voltage value of the DC power supply 10. Next, the switch 20 is opened and the switch 40 is closed to cause the excitation coil 60 to discharge the charge in the capacitor 50. At this time, the waveform of the current flowing through the excitation coil 60 is switched between two ways by opening and closing a switch 0 connected to the diode 31.

すなわちスイツチ30を閉じると、第2図Bに
示すようにコンデンサ50に2個の並列回路、す
なわち励磁コイル60およびダイオード31とス
イツチ30との直列回路が接続される。したがつ
て、先ずコンデンサ50の電荷が放電すると励磁
コイルに矢印90の方向に電流が流れる。その結
果コンデンサ50には以前と逆極性の電荷が蓄積
される。この電荷はスイツチ30とダイオード3
1からなる抵抗性負荷を通して放電され、矢印9
1の方向に電流が流れる。このようにして、励磁
コイル60には単極性の電流のみが流れ、磁気バ
ブルモジユール80には飽和着磁用単極性磁界1
00が供給される。
That is, when the switch 30 is closed, two parallel circuits, ie, a series circuit of the excitation coil 60 and the diode 31 and the switch 30, are connected to the capacitor 50 as shown in FIG. 2B. Therefore, when the charge in the capacitor 50 is first discharged, a current flows in the exciting coil in the direction of the arrow 90. As a result, charge of the opposite polarity is accumulated in the capacitor 50. This charge is transferred to switch 30 and diode 3.
1 and is discharged through a resistive load consisting of arrow 9
Current flows in one direction. In this way, only a unipolar current flows through the excitation coil 60, and a unipolar magnetic field 1 for saturation magnetization flows through the magnetic bubble module 80.
00 is supplied.

一方スイツチ30の開いている時は、第2図C
に示すようにコンデンサ50と励磁コイル60よ
り成るLC並列共振回路が構成され、コンデンサ
50に充電されていた電荷が共振回路内を往復す
る。この結果励磁コイル60には減衰性交番電流
が流れ、磁気バブルモジユール80に磁気ヨーク
70を介して、減磁用減衰交番磁界101を発生
できる。このようにして発生する励磁コイル60
を流れる電流の振巾は直流電源10の電圧値を変
化させてコンデンサ50への充電電圧を変えるこ
とにより任意に選ぶことができる。
On the other hand, when the switch 30 is open,
As shown in FIG. 2, an LC parallel resonant circuit consisting of a capacitor 50 and an excitation coil 60 is constructed, and the charge stored in the capacitor 50 reciprocates within the resonant circuit. As a result, an attenuated alternating current flows through the excitation coil 60, and a demagnetizing attenuating alternating magnetic field 101 can be generated in the magnetic bubble module 80 via the magnetic yoke 70. Excitation coil 60 generated in this way
The amplitude of the current flowing through the capacitor 50 can be arbitrarily selected by changing the voltage value of the DC power supply 10 and changing the charging voltage to the capacitor 50.

第3図は、第2図に示した着磁装置における磁
気バブルモジユールの着磁操作に必要な励磁コイ
ルへの電流パターンである。単極性励磁コイル電
流300は第2図AとB図で示される動作で与え
られ、その振巾はIMAGである。これは磁界に換
算して振巾10KOe以上の磁界を磁気バブルモジユ
ールに与え、モジユール内の永久磁石を完全に一
方向に飽和着磁する。次いで、前述の第2図Aと
Cで示される動作を行なうことにより、減衰性の
交番励磁コイル電流310を与えるようにすれ
ば、その第2ピーク値IDEMの値に対応して磁気
バブルモジユール内の永久磁石が飽和状態から減
磁される。このIDEMの値は数KOeの減磁磁界を
磁化ヨークに発生する。励磁コイルへの電流の振
巾IMAGとIDEMは直流電源10の電圧値を変化さ
せることにより設定できる。
FIG. 3 shows a current pattern to the excitation coil necessary for magnetizing the magnetic bubble module in the magnetizing device shown in FIG. 2. FIG. A unipolar excitation coil current 300 is provided in the operation shown in FIGS. 2A and 2B, and its amplitude is I MAG . This applies a magnetic field with an amplitude of 10 KO e or more to the magnetic bubble module, completely magnetizing the permanent magnets in the module to saturation in one direction. Next, by carrying out the operations shown in FIG . The permanent magnet in the Yule is demagnetized from its saturated state. This value of I DEM generates a demagnetizing magnetic field of several KO e in the magnetizing yoke. The amplitudes of current I MAG and I DEM to the excitation coil can be set by changing the voltage value of the DC power supply 10.

第4図はこの減磁動作の特性を示したものであ
る。磁気バブルモジユール内に発生するバイアス
磁界HBは、飽和着磁直後は0点に対応する値を
示すが、第2ピーク値IDEM1の減衰性交番電流を
与えることによりHB1に正確に設定できることを
示す。HBとIDEMの関係はほぼリニアであり、
0.5Oe以下のバイアス磁界設立精度が容易に得ら
れる。しかも飽和着磁後の一度の減衰性交番磁界
での減磁によりバイアス磁界を設立できる点は従
来にない利点である。さらにまた、この減磁操作
によれば、IDEM1で設定されたバイアス磁界値H
B1は、IDEM1に対応する磁界より小さな外部磁界
の妨害を受けても何ら変動しない点は利点であ
り、磁気バブルモジユールには数KOeという妨害
磁界を許容できるようになつた。
FIG. 4 shows the characteristics of this demagnetizing operation. The bias magnetic field H B generated in the magnetic bubble module shows a value corresponding to the zero point immediately after saturation magnetization, but it can be set accurately to H B1 by applying a damping cross current of the second peak value I DEM1 . Show what you can do. The relationship between H B and IDEM is almost linear,
Bias magnetic field establishment accuracy of 0.5 Oe or less can be easily obtained. Moreover, the fact that a bias magnetic field can be established by demagnetizing once in an attenuated alternating magnetic field after saturation magnetization is an unprecedented advantage. Furthermore, according to this demagnetization operation, the bias magnetic field value H set in I DEM1
The advantage of B1 is that it does not change in any way even if it is disturbed by an external magnetic field smaller than the magnetic field corresponding to IDEM1 , and the magnetic bubble module can now tolerate a disturbance magnetic field of several KO e .

以上に磁気バブルモジユールを着磁する場合を
例にして具体的に説明したが、被着磁物は他に磁
気抵抗素子用永久磁石でも、その他のものでも全
く同じである。
Although the case of magnetizing a magnetic bubble module has been specifically explained above, the object to be magnetized may be a permanent magnet for a magnetoresistive element or any other object.

以上説明したように、本発明の着磁装置によれ
ば、従来装置の欠点である着磁設定精度の悪さお
よび妨害磁界に対する弱さ等の問題を容易に解決
した装置を提供できる。
As described above, according to the magnetizing device of the present invention, it is possible to provide a device that easily solves the problems of conventional devices, such as poor magnetization setting accuracy and weakness against interfering magnetic fields.

なお、実施例に示した装置の回路構成は単なる
一例として挙げたにすぎずスイツチとして半導体
を使用してもよく、また電源として複数個使用す
るようにしてもよく、さらにまた、スイツチ40
を励磁コイル電流の極性により切換えるような変
形をしてもよいし、また、交番励磁コイル電流3
10を第1ピークを省いた波形に変形してもよ
い。また、第1図の各電流回路には、抵抗などの
回路素子や寄性的な回路素子が挿入されることが
あるが、簡略化されて示されていない。
Note that the circuit configuration of the device shown in the embodiment is merely an example, and a semiconductor may be used as the switch, or a plurality of switches may be used as the power supply.
It may be modified such that it is switched depending on the polarity of the excitation coil current, or alternatively, the alternating excitation coil current 3
10 may be transformed into a waveform that excludes the first peak. Furthermore, although circuit elements such as resistors and parasitic circuit elements may be inserted into each current circuit in FIG. 1, they are not shown in a simplified manner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の着磁装置の構成を示す回路
図、第2図は本発明の装置の動作を説明する回路
図でAはコンデンサを充電する状態、Bは励磁コ
イルに単極性電流を流す状態、Cは励磁コイルに
減衰性交番電流を流す状態を示している。第3図
は本発明の着磁装置の励磁コイル電流波形、第4
図は本発明で使用される減磁曲線を示す図であ
る。なお、図において、10は直流電源、20,
30,40はスイツチ、31はダイオード、50
はコンデンサ、60は励磁コイル、70は磁化ヨ
ーク、80は被着磁物としての磁気バブルモジユ
ール、90,91は電流の方向、100,101
は磁化ヨークで発生し磁気バブルモジユールに加
わる磁界、300,310は励磁コイル電流波形
である。
Fig. 1 is a circuit diagram showing the configuration of the magnetizing device of the present invention, and Fig. 2 is a circuit diagram explaining the operation of the device of the present invention. C indicates a state in which a damped alternating current is passed through the excitation coil. Figure 3 shows the excitation coil current waveform of the magnetizing device of the present invention;
The figure is a diagram showing a demagnetization curve used in the present invention. In addition, in the figure, 10 is a DC power supply, 20,
30, 40 are switches, 31 is a diode, 50
is a capacitor, 60 is an excitation coil, 70 is a magnetizing yoke, 80 is a magnetic bubble module as a magnetized object, 90, 91 is a direction of current, 100, 101
is a magnetic field generated by the magnetization yoke and applied to the magnetic bubble module, and 300 and 310 are excitation coil current waveforms.

Claims (1)

【特許請求の範囲】[Claims] 1 被着磁永久磁石に均一な磁界を供給する励磁
コイルつき磁化ヨークと、前記磁化ヨークの励磁
コイルに並列に、第1のスイツチを介して接続し
たコンデンサと、前記コンデンサに並列に接続し
たダイオードと第2のスイツチから成る回路と、
前記コンデンサに並列に第3のスイツチを介して
接続した直流電源とで構成されたことを特徴とす
る着磁装置。
1. A magnetizing yoke with an excitation coil that supplies a uniform magnetic field to a magnetized permanent magnet, a capacitor connected in parallel to the excitation coil of the magnetization yoke via a first switch, and a diode connected in parallel to the capacitor. and a second switch;
A magnetizing device comprising: a DC power source connected in parallel to the capacitor via a third switch.
JP12924178A 1978-10-20 1978-10-20 Magnetizing device Granted JPS5556606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12924178A JPS5556606A (en) 1978-10-20 1978-10-20 Magnetizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12924178A JPS5556606A (en) 1978-10-20 1978-10-20 Magnetizing device

Publications (2)

Publication Number Publication Date
JPS5556606A JPS5556606A (en) 1980-04-25
JPS6248882B2 true JPS6248882B2 (en) 1987-10-16

Family

ID=15004672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12924178A Granted JPS5556606A (en) 1978-10-20 1978-10-20 Magnetizing device

Country Status (1)

Country Link
JP (1) JPS5556606A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3572877A1 (en) 2018-05-25 2019-11-27 Shin-Etsu Chemical Co., Ltd. Onium salt, chemically amplified positive resist composition, and resist pattern forming process
KR20190134516A (en) 2018-05-25 2019-12-04 신에쓰 가가꾸 고교 가부시끼가이샤 Chemically amplified negative resist composition and resist pattern forming process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4959964A (en) * 1972-10-14 1974-06-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4959964A (en) * 1972-10-14 1974-06-11

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3572877A1 (en) 2018-05-25 2019-11-27 Shin-Etsu Chemical Co., Ltd. Onium salt, chemically amplified positive resist composition, and resist pattern forming process
KR20190134516A (en) 2018-05-25 2019-12-04 신에쓰 가가꾸 고교 가부시끼가이샤 Chemically amplified negative resist composition and resist pattern forming process
KR20190134536A (en) 2018-05-25 2019-12-04 신에쓰 가가꾸 고교 가부시끼가이샤 Onium salt, chemically amplified positive resist composition, and resist pattern forming process
EP3579050A1 (en) 2018-05-25 2019-12-11 Shin-Etsu Chemical Co., Ltd. Chemically amplified negative resist composition and resist pattern forming process

Also Published As

Publication number Publication date
JPS5556606A (en) 1980-04-25

Similar Documents

Publication Publication Date Title
US4439822A (en) Method and apparatus for detecting and preventing impending magnetic saturation in magnetic materials
US3435440A (en) Null sweeping head
KR900006950A (en) Magnetic field reverse circuit
US3638074A (en) Fluxgate magnetometer drive circuit including a sensor demagnetizer
JPH04500285A (en) Control circuit for modulating the magnetic field for recording in magneto-optic memory
ATE41257T1 (en) LAYERED MAGNETIC HEAD FOR A RECORDING MEDIUM TO BE MAGNETIZED VERTICALLY.
US4158795A (en) Brushless DC motors
JPS6248882B2 (en)
Newhouse The utilization of domain-wall viscosity in data-handling devices
US3521249A (en) Magnetic memory arrangement having improved storage and readout capability
RU2217816C2 (en) Method and device for erasing record from magnetic medium
US4001792A (en) Drive field for circular magnetic domain devices
US3189880A (en) Flux-responsive record-reproduce system
JPS647485B2 (en)
US3518534A (en) Magnetometer employing dual thin magnetic film transducers
Lawrence Jr Recent developments in very-high-speed magnetic storage techniques
RU24746U1 (en) MAGNETIC MEDIA RECORDING DEVICE
US3439355A (en) Flux-responsive head
JPS5827911B2 (en) Magnetic bubble memory device magnetization/demagnetization device and its manufacturing method
SU1081650A1 (en) Erasing and biasing device
RU2034337C1 (en) Process of magnetic recording and reproduction from magnetic medium
Yamagishi et al. A new proposal on field-access bubble drives
US3982275A (en) Read-write apparatus for use in a conveyor control
Edwards et al. The design of second-harmonic detector heads and their application to the reading of digital information and the measurement of low speeds of rotation
JPH0684103A (en) Magnetic head apparatus