JPS6248844B2 - - Google Patents

Info

Publication number
JPS6248844B2
JPS6248844B2 JP7341181A JP7341181A JPS6248844B2 JP S6248844 B2 JPS6248844 B2 JP S6248844B2 JP 7341181 A JP7341181 A JP 7341181A JP 7341181 A JP7341181 A JP 7341181A JP S6248844 B2 JPS6248844 B2 JP S6248844B2
Authority
JP
Japan
Prior art keywords
temperature
tank
constant
fluidized bed
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7341181A
Other languages
Japanese (ja)
Other versions
JPS57189219A (en
Inventor
Kosei Aikawa
Koji Yanagisawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHINOO KK
Original Assignee
CHINOO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHINOO KK filed Critical CHINOO KK
Priority to JP7341181A priority Critical patent/JPS57189219A/en
Publication of JPS57189219A publication Critical patent/JPS57189219A/en
Publication of JPS6248844B2 publication Critical patent/JPS6248844B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Fluid Pressure (AREA)

Description

【発明の詳細な説明】 本発明は、恒温槽あるいは反応炉等として用い
られる流動床の流量制御方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the flow rate of a fluidized bed used as a constant temperature bath, a reactor, or the like.

流動床は、粉粒体が充てんされている槽の下方
から粉粒体内に気体を送り込み、その気体圧力に
より粉粒体を槽内において浮動させ、液体のよう
な流動状態を作り出すものである。従つて、粉粒
体の重力と、粉粒体が気体から受ける力との関係
が適正でなくなると、均一な温度分布が得られな
くなつたり、また、逆に気胞が大きくなりすぎて
振動を発生し、槽内のセンサを損傷させる等の問
題が生ずることになる。
In a fluidized bed, gas is sent into the powder from below a tank filled with powder, and the gas pressure causes the powder to float in the tank, creating a fluid-like state similar to that of a liquid. Therefore, if the relationship between the gravity of the granular material and the force that the granular material receives from the gas is not appropriate, a uniform temperature distribution may not be obtained, or conversely, the air cells may become too large and cause vibrations. This will cause problems such as damage to the sensor inside the tank.

流動床は、槽内温度や変化すると気体の体積及
び粘性に変化が生ずるため、温度変化に伴つて、
流動状態、すなわち粉粒体の重力と、粉粒体が気
体から受ける力との関係に変化が生ずることにな
る。こうした温度変化に伴う流動状態の変化は、
槽内に送り込まれる気体の流量を調整することに
より是正して、上述した問題の発生を回避するの
であるが、従来は、温度を変更する際に直接槽内
を監視しながらその流量を手動で調節していた。
In a fluidized bed, the volume and viscosity of the gas change as the temperature inside the tank changes.
This results in a change in the fluid state, that is, the relationship between the gravity of the powder and the force that the powder receives from the gas. Changes in the fluid state due to these temperature changes are
This is corrected by adjusting the flow rate of gas sent into the tank to avoid the above problems, but conventionally, when changing the temperature, the flow rate was manually adjusted while directly monitoring the inside of the tank. I was adjusting.

このように手動で行つていたのは、流動状態と
いう形態そのもの及びその変化を検出し、またそ
の状態を判断することを自動化することは高度な
コンピユータシステムでも用いない限り困難であ
るためであり、こうした従来の手動による流量調
節は、煩雑であるばかりか作業者の勘に頼るもの
であつて、信頼性に問題があつた。
The reason this was done manually is that it is difficult to automate the process of detecting the flow state itself, its changes, and determining the state without using an advanced computer system. However, such conventional manual flow rate adjustment is not only complicated but also relies on the intuition of the operator, resulting in reliability problems.

本発明者は種々実験・研究を重ねた結果、流動
状態の変化に対する温度、流量、及び分散板の下
部位置における圧力の関係を見出し、本発明を完
成したものである。すなわち本発明は、流動床の
温度変化に伴う流体の体積変化及び粘性変化が生
じても、一定の流動状態を保持することができる
制御方法を提供することを目的とするものであ
る。
As a result of various experiments and studies, the inventor of the present invention has discovered the relationship between temperature, flow rate, and pressure at the lower position of the dispersion plate with respect to changes in the flow state, and has completed the present invention. That is, an object of the present invention is to provide a control method that can maintain a constant fluid state even if the volume and viscosity of the fluid change due to changes in the temperature of the fluidized bed.

次に、本発明の一実施例を図面について説明す
る。第1図は本発明に係る方法で制御される流動
床の断面図、第2図は本発明の一実施例を示すブ
ロツク図である。
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of a fluidized bed controlled by the method according to the present invention, and FIG. 2 is a block diagram showing an embodiment of the present invention.

図において1は流動床を構成する槽であり、こ
の槽1は略円筒状とされ、下部開口にはセラミツ
クフイルタが分散板2として取り付けられてお
り、上部開口にはセンサ挿入管3が固設される蓋
体4が取り付けられている。この槽1内に充てん
される粉粒体5として平均粒径100μmのアルミ
ナ微粉末が用いられており、その総重量は35Kgと
され、比熱は0.24cal/g℃とされている。
In the figure, 1 is a tank constituting a fluidized bed. This tank 1 has a substantially cylindrical shape. A ceramic filter is attached as a dispersion plate 2 to the lower opening, and a sensor insertion tube 3 is fixed to the upper opening. A lid body 4 is attached. Fine alumina powder with an average particle size of 100 μm is used as the powder 5 filled in this tank 1, its total weight is 35 kg, and its specific heat is 0.24 cal/g°C.

上記槽1の外周には、螺線に巻かれて筒状とさ
れるヒータ6が設置され、さらにこのヒータ6の
外周には筒状の流路形成板7が設置されており、
この流路形成板7のさらに外周には筒状の外筐8
が設置されている。上記ヒータ6、流路形成板
7、外筐8の各横断面はそれぞれ槽1と同心円と
され、互いに所定間隔を置いて設置されており、
その外筐8と流路形成板7との間が上向流路9a
とされ、流路形成板7と槽1との間が下向流路9
bとされている。上記下向流路9bは槽1の下部
開口と連通され、上向流路9aは送風管10と連
通されており、該上向流路9aと下向流路9bと
は上部で連通状とされている。一方、上記外筐8
における蓋体4の近傍には排気管11が接続さ
れ、この排気管11の途中にはセラミツクフイル
タ12が取り付けられており、また、槽1内には
粉粒体5内に挿入される第1の温度センサS1が取
り付けられ、槽1と上記ヒータ6との間、すなわ
ちヒータ6の近傍には第2の温度センサS2が取り
付けられている。さらに上述した蓋体4を除く槽
1の一部及び外筐8の外周全体は、セラミツクウ
ールによる断熱材13で覆われており、上述した
構成全体は支持フレーム14により保持されてい
る。
A heater 6 wound spirally into a cylindrical shape is installed on the outer periphery of the tank 1, and a cylindrical flow path forming plate 7 is installed on the outer periphery of the heater 6.
Further, a cylindrical outer casing 8 is provided on the outer periphery of this flow path forming plate 7.
is installed. The cross sections of the heater 6, flow path forming plate 7, and outer casing 8 are each concentric with the tank 1, and are placed at a predetermined distance from each other.
Between the outer casing 8 and the flow path forming plate 7 is an upward flow path 9a.
A downward flow path 9 is formed between the flow path forming plate 7 and the tank 1.
b. The downward passage 9b communicates with the lower opening of the tank 1, the upward passage 9a communicates with the blow pipe 10, and the upward passage 9a and the downward passage 9b communicate with each other at the upper part. has been done. On the other hand, the outer casing 8
An exhaust pipe 11 is connected to the vicinity of the lid 4 in the tank 1, and a ceramic filter 12 is attached to the middle of the exhaust pipe 11. A second temperature sensor S 1 is attached between the tank 1 and the heater 6, that is, a second temperature sensor S 2 is attached near the heater 6. Furthermore, a part of the tank 1 except for the lid 4 mentioned above and the entire outer periphery of the outer casing 8 are covered with a heat insulating material 13 made of ceramic wool, and the entire structure described above is supported by a support frame 14.

上記第1及び第2の温度センサS1,S2は、第2
図に示すように切換スイツチ15を介して温度調
節計16の入力側に接続され、この切換スイツチ
15は温度計節計16の警報信号により第1の温
度センサS1の検出信号から、第2の温度センサS2
の検出信号に切り換えて上記温度調節計16に入
力信号を加える構成とされている。17は、上記
調節計16の出力信号に応じて前記ヒータ6を制
御するヒータ制御回路であり、該ヒータ制御回路
17は商用電源18とヒータ6との間に設けら
れ、サイリスタ回路等が用いられている。
The first and second temperature sensors S 1 and S 2 are
As shown in the figure, it is connected to the input side of a temperature controller 16 via a changeover switch 15, and this changeover switch 15 changes the detection signal of the first temperature sensor S1 from the detection signal of the second temperature sensor S1 in response to the alarm signal of the thermometer 16. Temperature sensor S 2
The configuration is such that the input signal is applied to the temperature controller 16 by switching to the detection signal of the temperature controller 16. Reference numeral 17 denotes a heater control circuit that controls the heater 6 according to the output signal of the controller 16. The heater control circuit 17 is provided between the commercial power source 18 and the heater 6, and uses a thyristor circuit or the like. ing.

一方、前記送風管10は、流量調整バルブ19
を介してコンプレツサー(図示せず)に接続され
ており、上記流量調製バルブ19より下流側の送
風管10若しくは流路9a,9bには圧力計20
が取り付けられている。21は、この圧力計20
の検出値に応じて上記流量調整バルブ19の開閉
操作を行う流量調節計であり、流量調整バルブ1
9より下流側の圧力、すなわち分散板2の下部圧
力が常に一定の圧力となるようにフイードバツク
制御を行う構成とされている。
On the other hand, the blow pipe 10 has a flow rate adjustment valve 19
A pressure gauge 20 is connected to the air pipe 10 or flow paths 9a and 9b on the downstream side of the flow rate adjustment valve 19.
is installed. 21 is this pressure gauge 20
This is a flow rate controller that opens and closes the flow rate adjustment valve 19 according to the detected value of the flow rate adjustment valve 1.
Feedback control is performed so that the pressure on the downstream side of the dispersion plate 9, that is, the pressure below the dispersion plate 2, is always kept constant.

次に、上述した構成による装置の作用を説明す
る。
Next, the operation of the device configured as described above will be explained.

上記送風管10より気体を送り込むと、気体
は、送風管10から上向流路9aを上昇して上部
位置で折り返され、下向流路9bを下降して分散
板2の下部位置に至る。この下向流路9bを流れ
る間に、気体はヒータ6により予熱される。さら
に分散板2を通過して槽1内を上昇する気体は、
粉粒体5に上方向の力を加え、その力が粉粒体5
の重力と釣合つた状態となると、粉粒体5は液体
のように流動するようになる。こうして粉粒体5
には対流が生ずると共に、粉粒体5内に生ずる気
胞により撹拌されて粉粒体5全体はほぼ均一の温
度分布となる。
When gas is sent through the blast pipe 10, the gas ascends from the blast pipe 10 through the upward passage 9a, is turned back at the upper position, descends through the downward passage 9b, and reaches the lower position of the dispersion plate 2. The gas is preheated by the heater 6 while flowing through the downward flow path 9b. Furthermore, the gas passing through the dispersion plate 2 and rising inside the tank 1 is
An upward force is applied to the granular material 5, and the force is applied to the granular material 5.
When the powder or granular material 5 is in balance with the gravity of In this way, the powder 5
Convection occurs, and the powder and granules 5 are agitated by air cells generated within the powder and granules 5, so that the entire powder and granules 5 have a substantially uniform temperature distribution.

ここで槽内の温度を例えば650℃としたい場合
には、温度調節計16の目標設定温度を650℃と
し、警報信号発生温度、すなわちスイツチ切換設
定温度を600℃にセツトする。このとき槽内温度
が600℃以下の場合には、切換スイツチ15が第
1の温度センサS1をON状態とし、この槽内に取
り付けられる第1の温度センサS1の検出値に応じ
てヒータ6が制御される。
If the temperature inside the tank is desired to be, for example, 650°C, the target set temperature of the temperature controller 16 is set to 650°C, and the alarm signal generation temperature, that is, the switch switching set temperature is set to 600°C. At this time, if the temperature inside the tank is 600°C or lower, the changeover switch 15 turns on the first temperature sensor S 1 and turns on the heater according to the detected value of the first temperature sensor S 1 installed in the tank. 6 is controlled.

従つて、第3図Cに示すように、ヒータ温度と
槽内温度が上昇してゆき、槽内温度が切換設定温
度である600℃を上回ると温度調節計16は警報
信号を発生し、切換スイツチ15を切り換えて、
今度はヒータ6の近傍に位置されている第2の温
度センサS2をON状態とする。このときヒータ温
度は目標温度である650℃を超えているので、ヒ
ータ6への電流はOFF状態とされ、目標温度に
降下するまでOFF状態が保持される。一方、槽
内温度は上記ヒータ6が目標温度をオーバーした
熱量により上昇せしめられて目標温度に達し、そ
の後は第2の温度センサS2の検出値に基づいて制
御され、目標温度が一定に保持される。
Therefore, as shown in FIG. 3C, when the heater temperature and the temperature inside the tank rise and the temperature inside the tank exceeds the switching set temperature of 600°C, the temperature controller 16 generates an alarm signal and switches the switch. Switch switch 15 and
This time, the second temperature sensor S2 located near the heater 6 is turned on. At this time, since the heater temperature exceeds the target temperature of 650° C., the current to the heater 6 is turned off, and the off state is maintained until the temperature drops to the target temperature. On the other hand, the temperature inside the tank is raised by the amount of heat generated by the heater 6 that exceeds the target temperature, and reaches the target temperature.After that, the temperature in the tank is controlled based on the detected value of the second temperature sensor S2 , and the target temperature is maintained constant. be done.

尚、上記目標温度に対する切換設定温度は、粉
粒体5の量及び材質によつて変化するものであ
り、各流動床ごとに実験を行つてその値を得る必
要があるが、調節計16に任意の目標温度をセツ
トし、切換スイツチ15を作動させずに槽内に取
り付けられている第1の温度センサS1のみで流動
床を稼動させれば、容易に得ることができる。す
なわち、上記第1の温度センサS1のみで稼動させ
ると第3図Bに示すような槽内温度曲線が得られ
るものであり、その実験稼動に用いた目標温度を
切換設定温度としてセツトし、槽内温度曲線の頂
点温度を目標温度としてセツトすれば良い。
The switching setting temperature for the above-mentioned target temperature changes depending on the amount and material of the granular material 5, and it is necessary to conduct an experiment for each fluidized bed to obtain the value. This can be easily obtained by setting an arbitrary target temperature and operating the fluidized bed only with the first temperature sensor S1 installed in the tank without operating the changeover switch 15. That is, when operating only with the first temperature sensor S1 , a temperature curve in the tank as shown in FIG. 3B is obtained, and the target temperature used in the experimental operation is set as the switching setting temperature, The apex temperature of the tank internal temperature curve may be set as the target temperature.

また、上記流動床の温度を順次変更して用いる
場合においても、各温度について上記実験をあら
かじめ行つておき、各目標温度に対する切換設定
温度をグラフ等に表わしておけば、各目標温度に
対してオーバーシユートのおそれがなく、然も迅
速に目標温度に到達させることができる。尚、流
動床は熱容量が大きく、降温させるのに時間を要
するため、低い温度から順に昇温させるようにす
るのが好ましい。
In addition, even when using the fluidized bed by changing the temperature of the fluidized bed sequentially, it is possible to perform the above experiment for each temperature in advance and express the switching set temperature for each target temperature in a graph etc. There is no risk of overshoot, and the target temperature can be quickly reached. Incidentally, since the fluidized bed has a large heat capacity and requires time to cool down, it is preferable to raise the temperature in order from a low temperature.

上述したように槽内温度を変化させると、気体
の体積変化及び粘性変化が生じ、粉粒体の流動状
態が変動することになり、粉粒体の重力と粉粒体
が気体から受ける力とが釣り合わなくなると、充
分な流動状態が得られなくなつて均一な温度分布
が得られなくなつたり、気胞が大きくなりすぎて
振動を発生し槽内のセンサを損傷させる等の問題
が生ずることになる。
As mentioned above, when the temperature inside the tank is changed, a change in the volume and viscosity of the gas occurs, which changes the flow state of the powder and granules, and the gravity of the powder and the force that the powder receives from the gas If the balance is out of balance, problems may occur such as not being able to obtain a sufficient flow state and uniform temperature distribution, or the air bubbles becoming too large and causing vibrations that can damage the sensor inside the tank. Become.

従つて温度に応じて、槽内に流入させる気体の
流量を変化させる必要がある。
Therefore, it is necessary to change the flow rate of gas flowing into the tank depending on the temperature.

ここで、上記槽内温度と粉粒体の流動状態につ
いて考えてみると、前記分散板2の下部位置にお
ける圧力Pは、槽1の上部が大気圧とされている
と、粉粒体5による圧力損失△P1と分散板2によ
る圧力損矢△P2の和と見なせるので下記式が成
り立つ。
Now, considering the temperature inside the tank and the flow state of the powder and granular material, the pressure P at the lower position of the dispersion plate 2 will be Since it can be regarded as the sum of the pressure loss △P 1 and the pressure loss △P 2 due to the dispersion plate 2, the following formula holds true.

P=△P1+△P2 … 上記粉粒体5による圧力損失△P1は、流動床の
特性として粉粒体5が流動状態であれば、常に一
定であるため下記式が得られる。
P=ΔP 1 +ΔP 2 ... The pressure loss ΔP 1 due to the powder 5 is always constant as long as the powder 5 is in a fluidized state as a characteristic of a fluidized bed, so the following formula is obtained.

△P1=constant … これは、粉粒体5の一粒について考えると、粉
粒体にかかる重力mgと粉粒体が気体から受ける力
Fとが釣合つているためであり、その粉粒体が気
体から受ける力Fと、気体の粘度μ、粉粒体の表
面積A、気体速度V、粉粒体間距離xとの関係は
次式で表わすことができる。
△P 1 = constant... This is because when considering a grain of powder 5, the gravity mg applied to the powder and the force F that the powder receives from the gas are balanced, and the The relationship between the force F that the body receives from the gas, the viscosity μ of the gas, the surface area A of the granular material, the gas velocity V, and the distance x between the granular materials can be expressed by the following equation.

mg=F=μAV/x=constant … 一定の流動状態とは、粉粒体間距離xが一定の
状態のことであるから、式より次式が得ら
れ、この式が一定流動状態の条件である。
mg=F=μAV/x=constant... A constant flow state means a state in which the distance x between powder and granules is constant, so the following equation is obtained from the equation, and this equation is under the condition of a constant flow state. be.

μ・V=constant … この気体の粘度μは温度により定まるから、温
度に応じて気体速度V、すなわち槽1内に流入さ
れる気体流量を調整すれば一定の流動状態が得ら
れることが理解できる。
μ・V=constant...Since the viscosity μ of this gas is determined by the temperature, it can be understood that a constant flow state can be obtained by adjusting the gas velocity V, that is, the flow rate of the gas flowing into the tank 1, according to the temperature. .

ところで、分散板2についても、粉粒体5と同
様に分散板2の通気孔における表面積の和
A′と、その通気孔の平均すき間x′を考えれば、分
散板2に加わる力F′と、分散板2による圧力損
失△P2及び分散板面積Sとの関係から次式が得
られる。
By the way, regarding the dispersion plate 2 as well, the sum of the surface areas in the ventilation holes of the dispersion plate 2 is
Considering A' and the average gap x' between the ventilation holes, the following equation can be obtained from the relationship between the force F' applied to the dispersion plate 2, the pressure loss ΔP 2 due to the dispersion plate 2, and the area S of the dispersion plate.

F′=△P2・S=μA′V/x′ … ここで一定流動状態の条件であるμ・V=
constantが実現した場合に、通気孔の表面積の和
A′と、通気孔の平均すき間x′と、分散板面積Sと
はそれぞれ定数であるから、圧力損失△P2は次式
で表わすことができる。
F′=△P 2・S=μA′V/x′ … Here μ・V= which is the condition of constant flow state
The sum of the surface areas of the vents if constant is realized.
Since A', the average gap x' of the ventilation holes, and the area S of the dispersion plate are constants, the pressure loss ΔP 2 can be expressed by the following equation.

△P2=constant … 上述した、、式よりμ・V=constantな
らば、温度とは無関係に分散板2の下部位置にお
ける圧力Pは一定となることが理解できる。
ΔP 2 =constant... From the above equation, it can be understood that if μ·V=constant, the pressure P at the lower position of the dispersion plate 2 will be constant regardless of the temperature.

従つて、上記分散板2の下部位置における圧力
Pが常に一定となるように、流量を調整すれば、
どんな温度条件下においても一定の流動状態が得
られるものである。この流量制御は、第2図に示
すように温度に対して独立しているため、流量調
節計21において、1度だけ所定の圧力値を設定
すれば、温度設定変更時における再設定の必要が
なく、圧力計20の検出値が一定となるように流
量調整バルブ19を制御するという簡単なフイー
ドバツクループで行うことができる。
Therefore, if the flow rate is adjusted so that the pressure P at the lower position of the dispersion plate 2 is always constant,
A constant flow state can be obtained under any temperature conditions. This flow rate control is independent of temperature as shown in Figure 2, so once a predetermined pressure value is set in the flow rate controller 21, there is no need to reset it when the temperature setting is changed. This can be done with a simple feedback loop in which the flow rate adjustment valve 19 is controlled so that the detected value of the pressure gauge 20 is constant.

以上説明したように、本発明によれば、流動床
の分散板の下部位置における圧力を検出し、この
圧力検出値が一定値となるように流量調整バルブ
をフイードバツク制御して、温度変化とは無関係
に、分散板の下部位置における圧力を一定に保持
させるので、流動床の温度変化に伴う流体の体積
変化及び粘性変化が生じても、流動状態を一定に
保持することができる効果がある。
As explained above, according to the present invention, the pressure at the lower position of the dispersion plate of the fluidized bed is detected, and the flow rate adjustment valve is feedback-controlled so that the detected pressure value becomes a constant value. Regardless, since the pressure at the lower part of the distribution plate is held constant, even if the volume and viscosity of the fluid change due to changes in the temperature of the fluidized bed, the fluidized state can be held constant.

従つて、本発明によれば、温度を変更しても自
動的にその温度に対する適正流量が得られ、この
ことから流動床を均一な温度分布に保つことがで
きる効果があり、また、槽内のセンサを損傷させ
るおそれがない効果があると共に、不要な流体を
送り込むことがないのでエネルギーを浪費するお
それがない効果がある。
Therefore, according to the present invention, even if the temperature is changed, an appropriate flow rate for that temperature can be automatically obtained, which has the effect of maintaining a uniform temperature distribution in the fluidized bed. There is an effect that there is no risk of damaging the sensor, and there is also an effect that there is no risk of wasting energy because unnecessary fluid is not sent.

また、本発明によれば人手を頼らず、然も簡単
なフイードバツクループで実施できるので、信頼
性が高く、コスト的な負担も極めて少ないという
効果がある。
Furthermore, according to the present invention, the process can be carried out without relying on human labor and with a simple feedback loop, resulting in high reliability and extremely low cost burden.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る方法で制御される流動床
の断面図、第2図は本発明の一実施例を示すブロ
ツク図、第3図A,B,Cは流動床の昇温特性を
説明するためのグラフ図である。 1……流動床を構成する槽、2……分散板、1
9……流量調整バルブ、20……圧力計、21…
…流量調節計。
Fig. 1 is a cross-sectional view of a fluidized bed controlled by the method according to the present invention, Fig. 2 is a block diagram showing an embodiment of the present invention, and Fig. 3 A, B, and C show the temperature rise characteristics of the fluidized bed. It is a graph diagram for explanation. 1... Tank constituting a fluidized bed, 2... Dispersion plate, 1
9...Flow rate adjustment valve, 20...Pressure gauge, 21...
...Flow rate controller.

Claims (1)

【特許請求の範囲】[Claims] 1 流動床の温度変化に伴う流体の体積変化及び
粘性変化により変動する流動状態を一定に制御す
る方法であつて、流動床の分散板の下部位置にお
ける圧力を検出し、この圧力検出値が一定値とな
るように流量調整バルブをフイードバツク制御し
て、温度変化とは無関係に分散板の下部位置にお
ける圧力を一定に保持させることを特徴とする流
動床の流量制御方法。
1 A method of controlling the fluid state, which fluctuates due to changes in the volume and viscosity of the fluid due to changes in the temperature of the fluidized bed, to a constant level, by detecting the pressure at the lower position of the distribution plate of the fluidized bed, and ensuring that this pressure detection value remains constant. 1. A flow rate control method for a fluidized bed, characterized in that the pressure at a lower position of a dispersion plate is held constant regardless of temperature changes by feedback controlling a flow rate adjustment valve so as to maintain a constant pressure at a lower position of a dispersion plate regardless of temperature changes.
JP7341181A 1981-05-18 1981-05-18 Flow rate controlling method for fluidized bed Granted JPS57189219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7341181A JPS57189219A (en) 1981-05-18 1981-05-18 Flow rate controlling method for fluidized bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7341181A JPS57189219A (en) 1981-05-18 1981-05-18 Flow rate controlling method for fluidized bed

Publications (2)

Publication Number Publication Date
JPS57189219A JPS57189219A (en) 1982-11-20
JPS6248844B2 true JPS6248844B2 (en) 1987-10-15

Family

ID=13517421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7341181A Granted JPS57189219A (en) 1981-05-18 1981-05-18 Flow rate controlling method for fluidized bed

Country Status (1)

Country Link
JP (1) JPS57189219A (en)

Also Published As

Publication number Publication date
JPS57189219A (en) 1982-11-20

Similar Documents

Publication Publication Date Title
JP2754104B2 (en) Granular material feeder for pulling semiconductor single crystal
US4291575A (en) Liquid level monitor
JPH05291142A (en) Liquid source supplying equipment
CN107532298A (en) Vaporizer/supplier
JP3826072B2 (en) Liquid material vaporizer
JP3828821B2 (en) Liquid material vaporizer
JPH0366469A (en) Apparatus and method for distributing molten metal
JPS6248844B2 (en)
US4050289A (en) Method for temperature calibration of probes and the like
US7514033B1 (en) Molten metal level burner output control for aluminum melt furnace
US3196251A (en) Thermostatically controlled fluidized solid particle bath apparatus
EP0091483B1 (en) Automatic adjustment of cooling wind in a forehearth
JPH01245120A (en) Method and apparatus for measuring fluid medium
US4615720A (en) Method and apparatus for melting glass
JP7337796B2 (en) Method for controlling the level of molten material received in a reservoir of a melting system from a melting grid
JPH07163857A (en) Apparatus and method for supplying solid existing in flow of gas and solid from fluidized bed
JP2868824B2 (en) Temperature and atmosphere control device for firing furnace
JPH01234700A (en) Steam tracing device
JPH0135298B2 (en)
JPH052701U (en) Liquid material vaporizer
JPH03205524A (en) Calibrating device for temperature sensor
JPH0250007A (en) Supplying method of fluid medium for fluidized bed furnace
JPH0214144B2 (en)
JPH10146526A (en) Control of granulation of powdery particles in fluidized bed treatment apparatus
US5116580A (en) Gas generating apparatus and a method of feeding liquid thereto