JPS6248820A - Two-way optical wavelength converter - Google Patents

Two-way optical wavelength converter

Info

Publication number
JPS6248820A
JPS6248820A JP60189285A JP18928585A JPS6248820A JP S6248820 A JPS6248820 A JP S6248820A JP 60189285 A JP60189285 A JP 60189285A JP 18928585 A JP18928585 A JP 18928585A JP S6248820 A JPS6248820 A JP S6248820A
Authority
JP
Japan
Prior art keywords
light
wavelength
polarization
beam splitter
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60189285A
Other languages
Japanese (ja)
Inventor
Kanze Tanigawa
谷川 侃是
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60189285A priority Critical patent/JPS6248820A/en
Publication of JPS6248820A publication Critical patent/JPS6248820A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To exchange mutually a signal transmission wavelength in both fibers without requiring two each quartz systems and plastic fibers by providing an optical wavelength conversion path composing of a polarized beam splitter and a Farady element. CONSTITUTION:Infrared rays irradiated from a quartz system optical fiber 1 are subject to linearly polarization through a polarizer 51, a half wavelength plate 61 and a Farady element 71. Then the rays are converted into visible rays through a light source 10, a polarized beam splitter 91 and a frequency component 11. The visible rays are made incident on the optical fiber 2 via an optical wavelength converting path composing of a polarized beam splitter 92 transmitting the visible rays only, a Farady element 72, a half wavelength plate 72 and a polarizer 52. The visible rays progress reversely from the fiber 2, are reflected in the splitter 92 and made incident on the fiber 1 via opposite paths through reflecting mirrors 93, 94. Thus, no two each of quartz systems and plastic fibers are required and the signal transmission wavelength in both the fibers is exchanged mutually.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は石英系i7アイバとプラスチゾク元ファイバと
を接続する光通信システムに関(−1特に双方向的に情
報伝送を行い得る双方向光波長変換装fllK関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical communication system that connects a quartz-based i7 fiber and a plastic fiber (-1) In particular, bidirectional optical wavelength conversion capable of bidirectional information transmission. This is related to the installation fllK.

従来の技更 近年光通信の分骨では石英系光ファイバと共にプラスチ
ック光ファイバの使用が進められている。
In recent years, the use of plastic optical fibers as well as silica-based optical fibers has been promoted in optical communications.

これはプラスチック元ファイバは石英系光ファイバに比
べて伝送損失は大きいものの、コア径を1絹と大きくす
ることによって、端面処理むよび接続が容易となるなど
取り扱い易ざで大きく優っておシ、信号の伝送距離が短
かくて伝送損失が大して問題にならないような場合、例
えば加入者系の伝送路に特に使用されつつあり、この場
合費用も低減される。
This is because although plastic fibers have higher transmission loss than silica-based optical fibers, by increasing the core diameter to 1 silk, they are much easier to handle, such as easier end-face treatment and splicing. It is increasingly being used in cases where the signal transmission distance is short and transmission loss is not a big problem, for example, in subscriber system transmission lines, and in this case costs are also reduced.

すなわち企業内の情報伝送を考えた場合、事業所間の遠
距離の情報伝送には石英系光ファイバを用い、同−S業
ffi円の近距離の情報伝送にはプラスチック元ファイ
バが用いられる。
That is, when considering information transmission within a company, quartz-based optical fibers are used for long-distance information transmission between offices, and plastic fibers are used for short-distance information transmission between offices.

一般に石英系光ファイバ中の信号伝送波長は、伝送路の
損失特性、伝送容を等の諸条件を考慮して、約163μ
mまたは約1.5μmに設定されることが多いが、プラ
スチック元ファイバではプラスチック元ファイバの低損
失領域である波長的0.6μmの可視光にする場合が多
い。従って前述の企業内の情報伝送の例で、例えば一つ
の事業所に他の事業所から石英系fi7アイバを伝搬し
てきた赤外x’t、受光器で一旦電気信号にV換し、増
幅、波形整形等の信号処理をしたあとで、可視光を発光
する半導体レーザや発光ダイオード等の発光器を駆動し
て前述の赤外光を可視光にする、という方法が一般的に
用いられていた。
In general, the signal transmission wavelength in a silica-based optical fiber is approximately 163μ, taking into account various conditions such as the loss characteristics of the transmission line and the transmission capacity.
m or about 1.5 μm in many cases, but in the case of plastic fibers, it is often set to visible light having a wavelength of 0.6 μm, which is the low loss region of plastic fibers. Therefore, in the above-mentioned example of information transmission within a company, for example, infrared x't propagated from one business office to another through a quartz FI7 fiber, is converted into an electrical signal by a photoreceiver, and then amplified. A commonly used method is to convert the aforementioned infrared light into visible light by driving a light emitting device such as a semiconductor laser or light emitting diode that emits visible light after signal processing such as waveform shaping. .

従来、この種の双方同情報伝送の一例は、第3図に示す
ように%まず幹線系の石英系光ファイバから加入者系の
プラスチック元ファイバに情報を伝送する場合には、石
英系光ファイバlから出射した赤外光をアヴアランシェ
・フォト・ダイオード等の受光器171で受光して電気
信号に変換し、信号処理部181で増幅、波形整形等の
信号処理を行った後、可視光を発光する半導体レーザ1
91を駆動して可視光をプラスチック元ファイバ2に入
射し、逆にプラスチック元ファイバから石英系党ファイ
バに情@全伝送する場合には、プラスチック”lt7ア
イバ2′から出射した可視光をフォトダイオード等の受
光器172で受光して電気信号に変換し、信号lA即部
182で増幅、鼓形整形等の信号処Fl!を行った後、
赤外光を発光する半導体レーザ192を駆動して赤外光
を石英系光ファイバ1′に入射していた。
Conventionally, an example of this type of information transmission on both sides is as shown in Figure 3.When transmitting information from a trunk system quartz optical fiber to a subscriber system plastic source fiber, first, a quartz optical fiber is used. The infrared light emitted from the infrared light is received by a light receiver 171 such as an Avalanche photo diode and converted into an electrical signal.The signal processing unit 181 performs signal processing such as amplification and waveform shaping, and then emits visible light. Semiconductor laser 1
91 to input visible light into the plastic original fiber 2, and conversely, when transmitting all information from the plastic original fiber to the quartz fiber, the visible light emitted from the plastic LT7 fiber 2' is input to the photodiode. After receiving the light and converting it into an electrical signal with a photodetector 172 such as 172, and performing signal processing Fl! such as amplification and handshape shaping in a signal 1A processing unit 182,
A semiconductor laser 192 that emits infrared light is driven to input the infrared light into the silica optical fiber 1'.

しかしながら、この従来の双方同情報伝送の例では、石
英系党ファイバおよびプラスチック光ファイバ各々2本
ずつを一組にして双方向とする構成であったので、ファ
イバ本数が多くなり、7アイパでFiffされたケーブ
ルの直径が大きくなり、ファイバの軽倚性を生かせなか
ったり、ファイバの使用効率を悪くするという欠点があ
った。
However, in this conventional example of transmitting the same information on both sides, two quartz fibers and two plastic optical fibers were used as a set for bidirectional communication, so the number of fibers was large, and the Fiff This has the disadvantage that the diameter of the cable becomes large, making it impossible to take advantage of the lightness of the fiber and reducing the efficiency of fiber use.

発明が解決しようとする問題点 不発ψ]の目的は、上記の欠点、丁なわち石英系光ファ
イバおよびプラスチックft7yイバが2本ずつ必要に
なるという問題点を解決した双方四元波長変換装置を提
供することにある。
[Problems to be Solved by the Invention] The purpose of the present invention is to develop a bidirectional quaternary wavelength conversion device that solves the above-mentioned drawbacks, namely, the need for two quartz-based optical fibers and two plastic FT7Y fibers. It is about providing.

問題点を解決するための手段 本発明は上述の問題点全解決するために、石英系党ファ
イバの出射光を第1の直線偏光に変換する第1の偏光子
と、第1の中波長板と、第1の偏光面回転素子と、第l
の直線偏光と同方向の偏光面をもつ局部発蚤元の発光源
と、w、1の直線偏光を透過し局部発振光を反射して合
波する第1の偏光ビームスプリッタと、第1の周波数変
換部品と、第1の昼域透過フィルタと、特定波長の可視
光の特定偏光面をもつば線偏光を透過し信金反射する第
2の偏光ビームスプリッタと、第2の偏光面回転素子と
、第2の中波長板と、第2の偏光子とからなり、プラス
チック元ファイバに入射する第1の元波長変撲経路と、
プラスチック光ファイバからの出射光が前記第10元鼓
長変侯経路を逆万同に第2の偏光子、ホ2の牛M長板、
第2の偏光面回転素子の顯VC進付し、第2の@態偏尤
になって第2の偏光ビームスプリブタで反射したのち、
非線形媒質を含む共振器からなる鵠2の周波数変換部品
と、その出力に得られた特定波長の赤外光を通す低域透
過フィルタおよび第2の高域透過フィルタと、元号間変
更手段とからなるバイパスを通って、第1の光波長変換
経路に戻り、第1の偏光面回転素子、帛1の半波長板、
男1の偏光子の順に進行して石英系光ファイバに入射す
る第2の元波長変襖経路とよシなる′a成を採用するも
のであるO 作用 不発明は上述のようにfft&、したので、石英系光フ
ァイバからの出射赤外光A(例えば1,300μfti
 )は、第1の元波長変換経#!+全通って第1の偏光
子によって第lの直線偏光に父えられ、あlの生成。
Means for Solving the Problems In order to solve all of the above-mentioned problems, the present invention provides a first polarizer that converts the output light of a silica fiber into a first linearly polarized light, and a first medium wavelength plate. , a first polarization plane rotation element, and a l-th
a first polarizing beam splitter that transmits the linearly polarized light of w,1 and reflects and combines the locally oscillated light; a frequency conversion component, a first daylight transmission filter, a second polarization beam splitter that transmits linearly polarized light having a specific polarization plane of visible light of a specific wavelength and reflects it to a credit union, and a second polarization plane rotation element. , a first source wavelength variable path that is incident on the plastic source fiber and includes a second medium wavelength plate and a second polarizer;
The light emitted from the plastic optical fiber passes through the 10th Yuanchohenhou path, and then passes through the second polarizer, the second Mlong plate,
The second polarization plane rotating element is moved by the vertical direction of the VC, becomes a second @-polarized state, and is reflected by the second polarization beam splitter.
A frequency conversion component of Mouse 2 consisting of a resonator including a nonlinear medium, a low-pass transmission filter and a second high-pass transmission filter that pass infrared light of a specific wavelength obtained as an output, and an era name changing means. returns to the first optical wavelength conversion path through a bypass consisting of a first polarization plane rotation element, a half-wave plate of Fragment 1,
It adopts a configuration similar to that of the second original wavelength changing path which proceeds in the order of the polarizer of the first polarizer and enters the silica-based optical fiber. Therefore, the infrared light A (for example, 1,300 μfti) emitted from the silica-based optical fiber is
) is the first original wavelength conversion #! + All in all, the first polarizer generates the lth linearly polarized light, producing a l.

長板によって偏光面が90°変えられ、さらに鵠1の偏
光面回転素子によって反時計廻りに456偏九面を回転
して、赤外光A用の累lの偏光ビームスプリッタに、そ
の入射面に画直な偏光方向をもつ篤1のM線傷光となっ
て入射するため、これ全透過する。さらにこの第1の偏
光ビームスブリνりは第1の直線偏光と同一の0iiI
ft面を有し、異なる波長をもつ局部発成光源からの赤
外光C(例えば1.383μm)全反射して第1の直線
偏光と共に第1の周波数変換部品に入射する。この第1
の周波数変換部品では両赤外−fiAおよびCの周波費
の和の可視光B(例えば0.670μm)と、差の赤外
光D(例えば21%7μm)との第1の@線傷光と同一
の偏光面をもつ直線偏光が得られ、第1の高域透過フィ
ルタによりて赤外ft、AおよびCが遮断され可視光B
のみが透過され、ざらに可視光B用の第2の偏光ビーム
スプリッタに、その入射面に垂直な偏光7向をもつ直線
偏光として入射し、この可視光Bの直線偏光のみ全確実
に透過する。次に、この可視光Bは第2の偏光面回転素
子によって45゜反時計方向に偏光面を回転し、第2の
半波長板によってさらに偏光面が90°変えられ、7j
pJ2の偏光子を通りてプラスチック党ファイバに入射
する。
The polarization plane is changed by 90 degrees by the long plate, and then rotated counterclockwise by 456 polarization planes by the polarization plane rotation element of Mouse 1, and the incident plane is changed to the polarization beam splitter of 1 for infrared light A. Since it enters as the M-ray damage light with the polarization direction perpendicular to the image, it is completely transmitted. Furthermore, this first polarized beam drift is 0iiiI, which is the same as that of the first linearly polarized light.
ft plane, and infrared light C (for example, 1.383 μm) from a local light source having a different wavelength is totally reflected and enters the first frequency conversion component together with the first linearly polarized light. This first
In the frequency conversion component of , the first @ line scratch light of visible light B (for example, 0.670 μm), which is the sum of the frequency costs of both infrared fi A and C, and the infrared light D, which is the difference (for example, 21% 7 μm). Linearly polarized light with the same polarization plane is obtained, and the first high-pass filter blocks infrared ft, A and C, and visible light B
Only the linearly polarized visible light B is transmitted, and roughly enters the second polarizing beam splitter for visible light B as linearly polarized light with seven polarization directions perpendicular to the plane of incidence, and only this linearly polarized visible light B is completely transmitted. . Next, this visible light B has its polarization plane rotated by 45 degrees counterclockwise by a second polarization plane rotation element, and the polarization plane is further changed by 90 degrees by a second half-wave plate.
It passes through a pJ2 polarizer and enters a plastic fiber.

−万プラスチック$7アイパかりの出射可視光B(例え
ば0.67μm)l’L前述の第1の光波長変換経路を
逆方向に進行し、纂2の偏光子によって第2の直線伸元
に変えられ、第2の半波長板によって偏光面が90°変
えられ、さらに偏光面回転素子によって反時計廻りに4
59偏元而を回転して可視光B用の第2の偏光ビームス
プリッタに、その入射面に平行な偏光方向をもつぼ線傷
光として入射するため、纂2の@線傷光は、この第2の
偏光ビームスプリッタで反射し、バイパスの第2の周波
数変換部品を含む共振器に入射する。いま共伽器を構図
する材質や位相整合条件を適切に選ぶことなどによシ、
可視光Bは赤外光A(例えば1,300μm)と、赤外
光C(f+1えは1,383μm)とに変換される。さ
らに低域透過フィルタおよび第2の高域透過フィルタ全
通して可視光Bおよび赤外光Cを除き赤外光Aのみを透
過させる。次にこの赤外光Aは反射板などの九方向変更
手段によって果10偏元ビームスプリッタに、その入射
面に平行な偏光方向をもつ@線傷光として入射する。赤
外$Aはこの第1の偏光ビームスプリッタで反射しても
との経路にもどり、第1の偏光面回転素子によって45
°反時計万同に偏光面を回転し、さらに第1の半波長板
によって偏光面が90°変えられ、第1の偏光子を通っ
て石芙系元ファイバに入射する。
- The visible light B (e.g. 0.67 μm) emitted from the plastic $7. The plane of polarization is changed by 90 degrees by the second half-wave plate, and the plane of polarization is changed by 4 degrees counterclockwise by the rotation element of the polarization plane.
59 polarization is rotated and enters the second polarizing beam splitter for visible light B as a ray-scarred light with a polarization direction parallel to the incident plane. It is reflected by a second polarizing beam splitter and enters a resonator containing a bypass second frequency conversion component. It is important to appropriately select the material and phase matching conditions for composing the communicator.
Visible light B is converted into infrared light A (for example, 1,300 μm) and infrared light C (f+1 is 1,383 μm). Furthermore, only the infrared light A is allowed to pass through the low pass filter and the second high pass filter, excluding visible light B and infrared light C. Next, this infrared light A enters the 10-polarized beam splitter by a 9-direction changing means such as a reflection plate as @ray light having a polarization direction parallel to the plane of incidence. The infrared $A is reflected by this first polarization beam splitter and returns to its original path, and is converted to 45 by the first polarization plane rotation element.
The plane of polarization is rotated counterclockwise, the plane of polarization is further changed by 90 degrees by the first half-wave plate, and the light passes through the first polarizer and enters the source fiber of the stone-based fiber.

実施例 次に不発明の実施例について図面を参照して貌明する。Example Next, embodiments of the invention will be explained with reference to the drawings.

本発明の一′:AM例全ブロック図で示す第1図(a)
を参照すると、本発明の双万同元荻長変換裂隨3は、石
英系光ファイバ1と、プラスチック元ファイバ2と全接
続し、石英系光ファイバlの信号伝送波長1.3μmと
プラスチック元ファイバ2の信号伝送波長0.67μm
とを相互に変侠するものであり、石英系光ファイバ1か
ら出射した1、3μmの赤外元t−第1の直載偏光にす
る第1の偏光子51と、第lの半波長板61と、偏光面
回転索子としての弗lのファラデー素子71と、第1の
直M偏光と同一の偏光面をもち異なる波長をもつ局部発
掘元の光源10と、第1の厘嶽偏光を透過し、異なる波
長の局部発振光を反射し゛C合波する第1の偏光ビーム
スプリッタ91と、この合波光から波長0.67μmの
可視−fを発生させる非線形媒質からなる第1の周波数
変換部品11と、波長0.67μmの可視光を通す第1
の高域透過フィルタ11′と、さらに波長0.67μm
の@線偏光で偏光方向がその入射面に垂直な可視光のみ
を透過する第2の偏光ビームスプリッタ92と、偏光面
回転素子としての第2の7アラテー素子72と、第2の
半波長板62と、第2の偏光子52とからなり、0.6
7μmの可視光をプラスチック[7アイバ2に入射する
第1の光波長変羨経路と、この第1の光波長変換経路を
プラスチック元ファイバ2から出射した波長0.67μ
mの可視光が逆方向に進行し、第2のgii1元ビー広
ビームスプリッタ92したのち、非線形媒質12を含む
共撮器121でm成される第2の周波数変換部品と、低
域透過フィルタ13と、第2の高域透過フィルタ14と
、九方向変更手段としての反射鏡93および94とから
なるバイパスを経て第1の偏光ビームスプリッタ91で
反射して第lの光波長変換経路にもどって逆方向に進行
して石英糸光ファイバlに入射する第2の光波長変換経
路とを有している。
Part 1 of the present invention: FIG. 1(a) shows a complete block diagram of an AM example.
Referring to FIG. Signal transmission wavelength of fiber 2: 0.67 μm
and a first polarizer 51 that converts the 1.3 μm infrared element t emitted from the silica optical fiber 1 into a first directly polarized light, and a l-th half-wave plate. 61, a flat Faraday element 71 as a polarization plane rotator, a local excavation source light source 10 having the same polarization plane as the first direct M polarized light but a different wavelength, and the first Rintake polarized light. A first polarizing beam splitter 91 that transmits, reflects and multiplexes local oscillation lights of different wavelengths, and a first frequency conversion component made of a nonlinear medium that generates visible -f with a wavelength of 0.67 μm from this multiplexed light. 11, and the first one that passes visible light with a wavelength of 0.67 μm.
high-pass filter 11' and a wavelength of 0.67 μm.
a second polarizing beam splitter 92 that transmits only visible light whose polarization direction is perpendicular to the plane of incidence of @ line polarized light, a second 7-arrate element 72 as a polarization plane rotation element, and a second half-wave plate. 62 and a second polarizer 52, with a polarizer of 0.6
The first optical wavelength conversion path that enters the plastic fiber 2 and the wavelength 0.67 μm of visible light that is emitted from the plastic original fiber 2.
The visible light of m travels in the opposite direction, passes through the second beam splitter 92, and then passes through the second frequency conversion component formed by the common camera 121 including the nonlinear medium 12, and the low-pass filter. 13, a second high-pass filter 14, and nine reflecting mirrors 93 and 94 as direction changing means, and then reflected by the first polarizing beam splitter 91 and returned to the first optical wavelength conversion path. and a second optical wavelength conversion path which travels in the opposite direction and enters the quartz fiber optical fiber l.

次に第1図を用いて本実施例の動作について説明する。Next, the operation of this embodiment will be explained using FIG.

なお、第1図においては、後の説明の都合上、座標軸を
第1図(k)に示すように決めておく。
In FIG. 1, the coordinate axes are determined as shown in FIG. 1(k) for convenience of later explanation.

すなわち、ztlqの正方向を、前述の石英系光ファイ
バlから出射した元の進行方向にとり、X軸の正方向を
、紙面に垂直でかつ紙面の裏側に向かう1回にとシ、y
軸の正方向を、X軸、z軸に垂直でかつx、y、z軸が
この順番で右手系をなすようにとる。
That is, the positive direction of ztlq is taken as the original traveling direction emitted from the silica-based optical fiber l mentioned above, and the positive direction of the
The positive direction of the axes is taken to be perpendicular to the X and z axes, and the x, y, and z axes form a right-handed system in this order.

まず石英系光ファイバ1から出射した波長1.3μmの
赤外光401は、111g1の偏光子51によシ偏光面
がfJfI1図(b)で示されるような、X軸の正方向
と45°t−なす直線偏光402にに換される。次に直
線偏光402は波長1.3μm用の第1の半波長板61
に入射し、興1図(C)で示されるような、X軸の負号
向と45°をなす直線偏光403に変換される。直線偏
光403は次に偏光面回転素子でるる第1の7アラデー
素子71に入射するが、この第1の7アラテー素子71
は、入射した@線側光の偏光面を、z軸の正方向から見
て反時計回シに45°回転するように得成しであるので
、2AIの77ラデー素子71の出射光404の偏光面
は、第1図(d)及び81で示すようにxQb方向、即
ち紙面に垂直な方向となる。次に、直線偏光404は、
第1の偏光ビームスズリツタ91に入射する。第1の偏
光ビームスプリッタ91は、波長1.3μmでかつその
入射面に垂直な偏光方向:ともつ直線偏光は透過゛rる
。さらに、第1の偏光ビームスプリッタ91には、局部
発成元の光源1Gから出射した前述の@i偏:yt、4
04と1司方向の偏光面を肩する、波長1.383μm
の赤外光の直線偏光405も入射し、この偏光ビームス
プリッタ91はこれを反射して波長1.3μmのffl
 1n(t4元404波長1.383μmの直線偏光4
05とが合波され406となっ−CLiNbQaからな
る非線形性媒質11に入射し、偏光面が紙面に垂直な直
線偏光で波長0.67μITIの可視光と波長21.7
μmの赤外光(両者合せて4tJ7とする〕が発生し、
開城透過フィルタ(短e、長透過フィルタ)IPに入射
し波長0.67μIn (7)’afQ元407’ノみ
が071歳する。なお、可視光407′は直線偏光で、
その偏光面は紙面に垂Wである。次いで前述の可視光4
07′は、@2の偏光ビームスプリッタ92に入射する
。81!2の偏光ビームスプリッタ92は、波長0.6
7μmでかつその入射面に垂直な偏光7同をもつi′l
I線fi1元は透過する。第2の偏光ビームスプリッタ
92f、透過した元408は偏光面の方向を舅1図Ce
)に示すようにして、第2の偏光面回転素子である再2
のファラデー素子72に入射する。
First, infrared light 401 with a wavelength of 1.3 μm emitted from the silica-based optical fiber 1 is polarized by a 111g1 polarizer 51 at an angle of 45° with respect to the positive direction of the X axis, as shown in fJfI1 diagram (b). t-converted into linearly polarized light 402. Next, the linearly polarized light 402 is transferred to a first half-wave plate 61 for a wavelength of 1.3 μm.
It is converted into linearly polarized light 403 that makes an angle of 45° with the negative direction of the X-axis, as shown in Figure 1 (C). The linearly polarized light 403 then enters the first 7-arade element 71, which is a polarization plane rotation element;
is obtained so that the polarization plane of the incident @ line side light is rotated by 45 degrees counterclockwise when viewed from the positive direction of the z-axis, so the output light 404 of the 77 Radhe element 71 of 2AI is The plane of polarization is in the xQb direction, that is, the direction perpendicular to the plane of the paper, as shown in FIG. 1(d) and 81. Next, the linearly polarized light 404 is
The first polarized beam enters the tin slitter 91 . The first polarizing beam splitter 91 transmits linearly polarized light having a wavelength of 1.3 μm and a polarization direction perpendicular to its plane of incidence. Furthermore, the first polarization beam splitter 91 has the above-mentioned @i polarization: yt, 4 emitted from the local light source 1G.
A wavelength of 1.383 μm that overlaps the plane of polarization in the 04 and 1 directions.
Linearly polarized infrared light 405 is also incident, and this polarization beam splitter 91 reflects it to produce ffl with a wavelength of 1.3 μm.
1n (t4 element 404 linearly polarized light with wavelength 1.383 μm 4
05 is combined to form 406, which enters the nonlinear medium 11 made of -CLiNbQa, and the linearly polarized light whose polarization plane is perpendicular to the plane of the paper has a visible light wavelength of 0.67μITI and a wavelength of 21.7μITI.
Infrared light of μm (total of 4tJ7) is generated,
Kaesong transmission filter (short e, long transmission filter) enters the IP with a wavelength of 0.67 μIn (7) 'afQ original 407' is 071 years old. Note that visible light 407' is linearly polarized light,
Its plane of polarization is perpendicular to the plane of the paper. Next, the aforementioned visible light 4
07' is incident on the polarization beam splitter 92 @2. 81!2 polarizing beam splitter 92 has a wavelength of 0.6
i'l with a polarization of 7 μm and perpendicular to its plane of incidence
The I line fi1 element is transmitted. The second polarizing beam splitter 92f, the transmitted beam 408 has the direction of the polarization plane
), as shown in FIG.
is incident on the Faraday element 72.

第2のファラデー素子72は、入射した直線偏光の偏光
面を、z軸の正方向から見て反時計回りに45°(ロ)
転するように’Rffされているので、萬2の7アラデ
ー素子72の111射光409の偏光面しよ、第1図(
f)にも示すように、X軸の正方向と45°をな丁直g
A偏光となる。次に、前述の出射−!409は、波長0
.67μm用の第2の半波長板62に入射し、第111
(g)で示されるようなX軸の負号向と45°金な丁4
線偏光410に変換される。次に、直線偏光410は、
鷹2の1−光子(直線偏光410から見れば検光子にな
る)52に入射するが、9.32の偏光子52は第1図
(g)に示すよりな厘#i!偏光を透過するような構成
であるので、前述の直線側ft410は、偏光面を変え
ずにその′!!、ま第2の偏光子52t−透過し、プラ
スチック元ファイバ2に入射する。
The second Faraday element 72 rotates the polarization plane of the incident linearly polarized light by 45° (b) counterclockwise when viewed from the positive direction of the z-axis.
Since the plane of polarization of the 111 emitted light 409 of the 7 Alade element 72 is as shown in Fig. 1 (
As shown in f), align 45° with the positive direction of the
It becomes A-polarized light. Next, the aforementioned emission-! 409 is wavelength 0
.. It enters the second half-wave plate 62 for 67 μm, and the 111th
The negative direction of the X-axis as shown in (g) and the angle of 45 degrees
It is converted into linearly polarized light 410. Next, the linearly polarized light 410 is
The 1-photon of the hawk 2 (which becomes an analyzer when viewed from the linearly polarized light 410) 52 is incident on it, but the polarizer 52 of 9.32 is more than the photon #i as shown in FIG. 1(g)! Since it is configured to transmit polarized light, the above-mentioned linear side ft410 can be used for that purpose without changing the plane of polarization. ! , the light passes through the second polarizer 52t and enters the plastic original fiber 2.

次に、プラスチック元ファイバ2から出射した波長0.
67μmの可視光が、波長1.3μmの赤外光に変換さ
れる様子を説明する。この場合光の進行方向はz軸の負
号向になる。第1図(a)において、451はプラスチ
ック党ファイバ2の出射光で、第2の偏光子52によシ
、第xfl(g)に示すようにX軸の負号向と45°の
角度をな丁直線側光452に変換される。直線偏光45
2は次に前述の0.67μm用の第2の半波長板62に
入射して、第1図(f)に示すような偏光面がX軸の正
号向と45°の角度をな丁直線偏光453に変換される
。次に、直線偏光453は第2のファラデー素子72に
入射して、偏光面が回転されるが、7アラテー素子での
偏光面の回転方向は元の進行方向とは無関係であるので
、前述の@線側光453の偏光面は、2軸の正号向から
見て反時計回りに45°回転して、m1図(h)に示す
ような紙面に平行方向82の偏光面をもつ直線偏光45
4に変換される。次に直線偏光454は第2の偏光ビー
ムスプリッタ92に入射するが、$2の偏光ビームスプ
リッタ92では、その入射面に平行な方向82に偏光面
をもつrim偏元偏光射され、直線側−f455となっ
て、さらに反射鏡93で反射され、非疎形性媒質LiN
1ps 12 t−含む共振器121に入射する。この
共振器121内では、共保器を構成する媒質や位相整合
条件を適切に選ぶことにより、0.67μmの可視光が
励起光となってパラメトIJツク増−を竹い、L3μm
および1.38μmの赤外光と励起光fn67μmの可
視光と全出射する。次にこれらの3つの波長の元456
はまず低域透過フィルタ13を透過して波長L3μmお
よび波長1.383μmの赤外光457のみがとシ出さ
れ、その後第2の高域透過フィルタ14を透過して波長
1.30μmの赤外光458のみをと9出す。赤外光4
58の偏光面は、82で示すように紙面に平行である。
Next, the wavelength 0.
The manner in which visible light with a wavelength of 67 μm is converted into infrared light with a wavelength of 1.3 μm will be explained. In this case, the traveling direction of the light is in the negative direction of the z-axis. In FIG. 1(a), 451 is the output light of the plastic fiber 2, and the second polarizer 52 makes an angle of 45° with the negative direction of the X-axis as shown in xfl(g). It is converted into a straight line side light 452. Linear polarized light 45
2 is then incident on the second half-wave plate 62 for 0.67 μm, so that the polarization plane as shown in FIG. 1(f) makes an angle of 45° with the positive direction of the X-axis. It is converted into linearly polarized light 453. Next, the linearly polarized light 453 enters the second Faraday element 72, and the plane of polarization is rotated. However, since the direction of rotation of the plane of polarization in the 7Araday element is unrelated to the original traveling direction, the above-mentioned The polarization plane of the @line side light 453 is rotated 45 degrees counterclockwise when viewed from the positive sign direction of the two axes, and becomes linearly polarized light with a polarization plane parallel to the plane of paper 82 as shown in Figure m1 (h). 45
Converted to 4. Next, the linearly polarized light 454 enters the second polarizing beam splitter 92, but the $2 polarizing beam splitter 92 emits rim polarized light having a polarization plane in a direction 82 parallel to the plane of incidence, and the linear side - f455, is further reflected by the reflecting mirror 93, and becomes a non-amorphous medium LiN.
1 ps is incident on the resonator 121 containing 12 t-. In this resonator 121, by appropriately selecting the medium constituting the resonator and the phase matching conditions, visible light of 0.67 μm becomes excitation light, increasing the parameter IJ, and increasing the L3 μm.
Infrared light of 1.38 μm and visible light of excitation light fn 67 μm are all emitted. Next, the source 456 of these three wavelengths
first passes through the low-pass filter 13, and only the infrared light 457 with a wavelength of 3 μm and 1.383 μm is extracted, and then passes through the second high-pass filter 14, and infrared light with a wavelength of 1.30 μm is extracted. Only 458 and 9 lights are emitted. infrared light 4
The plane of polarization at 58 is parallel to the plane of the paper, as shown at 82.

第lのi#i1元ビームスプリッタ91では、その入射
面に平行な方向に偏光面をもつ直線偏光は反射されるの
で、前述の赤外光459は第1の偏光ビームスプリッタ
91で反射されて、第1のファラデー素子71に入射す
る。この場合も、第1の7アラテー素子による偏光面の
回転方向は、元の進行方向には無関係であるので、直線
偏光459の偏光面は、Z軸の正号向から見て反時計回
りに45°向転され、第1の7アラデー素子71の出射
光46の偏光面は、第1図(i)に示すようにxtj@
の負号向と45°をなす直線偏光となる。第1の7アラ
テー素子の出射光460は、波長1.3μrn用の半波
長板61に入射し、第1図(j)で示されるような直線
偏光461に変換される。朱1の偏光子51は前述のよ
うにX軸の正号向と45°をな丁直7iA偏光を通すよ
りな宵或であったので、前述の直線偏光461は41元
面の方向を変えることなく第1の偏光子51を透過して
KM偏偏光62となシ、石英系の元ファイバ1に入射す
る。
In the l-th i#i1 beam splitter 91, linearly polarized light having a plane of polarization in a direction parallel to its incident plane is reflected, so the above-mentioned infrared light 459 is reflected by the first polarizing beam splitter 91. , enters the first Faraday element 71. In this case as well, the rotation direction of the polarization plane by the first 7-arrate element is unrelated to the original direction of travel, so the polarization plane of the linearly polarized light 459 rotates counterclockwise when viewed from the positive direction of the Z-axis. The polarization plane of the emitted light 46 of the first 7-Alade element 71 is rotated by 45 degrees, and the polarization plane of the light 46 is xtj@ as shown in FIG. 1(i).
It becomes linearly polarized light that makes an angle of 45° with the negative direction of . The emitted light 460 from the first 7-arrate element enters a half-wave plate 61 for a wavelength of 1.3 μrn, and is converted into linearly polarized light 461 as shown in FIG. 1(j). As mentioned above, the polarizer 51 of Vermilion 1 was designed to pass 7iA polarized light at 45 degrees with the positive direction of the X axis, so the linearly polarized light 461 mentioned above changes the direction of the 41 element plane. The light passes through the first polarizer 51 without any interference, becomes KM polarized light 62, and enters the quartz-based original fiber 1.

以上詳細に説明したように、波長1.3μmの赤外光と
波長0.67μmの可視光とが、双方的に変換されてい
ることが明らかである。
As explained in detail above, it is clear that infrared light with a wavelength of 1.3 μm and visible light with a wavelength of 0.67 μm are converted bilaterally.

次に第2図は本発明による双方向光波変換装置を、プラ
スチック元ファイバを含んだ光通信システムに適用した
場合の通信システムの具体例である。第2図(a)は石
英系光ファイバ、プラスチック元ファイバ共に各1本ず
つを用いた場合で、m1図(a)とほぼ同じである。
Next, FIG. 2 shows a specific example of a communication system in which the bidirectional light wave conversion device according to the present invention is applied to an optical communication system including a plastic fiber. FIG. 2(a) shows the case where one quartz-based optical fiber and one plastic original fiber are used, and is almost the same as FIG. m1(a).

次に第2図(b)は、石英系光ファイバは1本であるが
、プラスチック元ファイバが3本の場合である。図にお
いて3′は双方向*e長変換装置を組み込んだ中央処理
装置で、中央処理装置間の信号伝送は、石英系光ファイ
バl’に用いて波長1.3μmの赤外光で行い、各端末
装@16と中央処理装置3′との間の信号伝送は、プラ
スチック元ファイバ2を用いて波長0.67μmの可視
光で、合分波装置15を介して行う。なお2を中央処理
装置3′と合分波装置15との間の信号伝送を行う短距
離のプラスチック党ファイバである。このようにして幹
線と3つの端末装置なとの双方向の情報伝送ができる。
Next, FIG. 2(b) shows a case where there is one quartz-based optical fiber, but there are three original plastic fibers. In the figure, 3' is a central processing unit incorporating a bidirectional*e length conversion device, and signal transmission between the central processing units is performed using infrared light with a wavelength of 1.3 μm using a quartz optical fiber l'. Signal transmission between the terminal device @ 16 and the central processing unit 3' is carried out via the multiplexer/demultiplexer 15 using visible light with a wavelength of 0.67 μm using the plastic fiber 2. Note that 2 is a short-distance plastic fiber for transmitting signals between the central processing unit 3' and the multiplexing/demultiplexing device 15. In this way, bidirectional information transmission between the main line and the three terminal devices is possible.

本発明の構成は上述した実施例のみに限定されるもので
はなく、種々の変形が可能である。例えば、第1図の本
実施例では第1の偏光ビームスプリツメを透過する波長
1.3μmの赤外元直線側尤404の偏光方向を紙面に
垂直な方向にし、波長067μmの可視光の直線偏光4
54の偏光方向を紙面に平行な1同としたが、偏光子に
よって設?される偏光面の方向や、ファラテー素子に対
する磁場の向きを変え、さらに適切なm元ビームスプリ
ッタを用いることによシ、前述の赤外光の偏光方向と可
視光の偏光1回とを逆の関係にしてもかまわない。また
本実施例では光方向変更手段として反射鏡を用いたが、
元ファイバその他の光方向変更手段を用いることもでき
る。さらに、本実施例では、石英系光ファイバ、グラス
チック光ファイバ共に偏波面保存型としなかったが、偏
波面保存型の元ファイバを用いてその主軸方向を前述の
、侭元子によって設定される偏光面の方向に一致させる
ような構成でもかまわない。この時偏光子51 。
The configuration of the present invention is not limited to the embodiments described above, and various modifications are possible. For example, in the present embodiment shown in FIG. 1, the polarization direction of the infrared original linear side 404 with a wavelength of 1.3 μm transmitted through the first polarizing beam splitter is set perpendicular to the plane of the paper, and the visible light beam with a wavelength of 067 μm is polarized light 4
The polarization direction of 54 was set to be parallel to the paper surface, but is it set by a polarizer? By changing the direction of the polarization plane and the direction of the magnetic field for the Faraday element, and by using an appropriate m-dimensional beam splitter, it is possible to reverse the polarization direction of the infrared light and the single polarization of the visible light. It doesn't matter if it's a relationship. Also, in this example, a reflecting mirror was used as the light direction changing means, but
Source fibers or other means for changing the direction of light may also be used. Furthermore, in this example, neither the silica-based optical fiber nor the glass optical fiber were polarization-maintaining type, but a polarization-maintaining original fiber was used, and the direction of its principal axis was set by Motoko Kami, as described above. A configuration in which the direction of the polarization plane coincides with the direction of the polarization plane may be used. At this time, the polarizer 51.

52は不要となる。また適切な素子を用いれは、赤外光
の波長や可視光の波長を別の波長にしてもかまわない。
52 becomes unnecessary. Furthermore, if an appropriate element is used, the wavelength of infrared light and the wavelength of visible light may be set to different wavelengths.

発明の効果 以上に説明したように、本発明によれば、石英系光ファ
イバ中の伝送波長の赤外光と、グラスチック光ファイバ
中の伝送波長の可視光とを、双方向的に容易に変換する
ことができるので、企業の事業所間にまたがる情報の送
受や銀行内及び銀行間の情報の送受において、取り扱い
の容易なプラスチックft、7アイバの導入を拡大でき
、石英系光ファイバやグラスチック光ファイバの使用効
率を高めるなどの効果がある。
Effects of the Invention As explained above, according to the present invention, infrared light at a transmission wavelength in a silica-based optical fiber and visible light at a transmission wavelength in a glass optical fiber can be easily transmitted bidirectionally. Since it can be converted, it is possible to expand the introduction of easy-to-handle plastic ft and 7-aibar fibers, which are easy to handle, for sending and receiving information between corporate offices and within and between banks. This has the effect of increasing the efficiency of using optical fibers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明による双方向光波長f換装置の一
実施例のU成因、第1図Φン〜(j]は双方同党波長変
換装置中の一部分におけるイδ号伝送元の偏光方向を示
す図、第1図(ト)】は座標軸方間を示す図。 第2図は本発明による双方同党波長に換装置を光通信シ
ステムに適用した具体例の構成図、第3図は従来の双方
向情報伝送の一例の構成図である。 1.1′・・・石英系光ファイバ、2.2’、2“・・
・グラスチック光ファイバ、3・・・双方四元#を長変
換衾漬、3′・・・中央処理装備、401〜404 、
458〜462・・・波陵1.3μmの赤外光、405
・・・波長1.383μmの赤外光、4o6−w長1.
31Imの赤外光と波Fと1.383μmの赤外光、4
07・・・波長0.67μmの可視光と波長21.9μ
mの赤外光、407’ 、 408〜411,451〜
455・・・波長0.67μmの可視光、456・・・
R艮1.3μm、波長1.383μtnの赤外光と波長
Q、57.amの可視光、457−v長1.3μm 、
 R長1.383 μmの赤外光、51゜52・・・偏
光子、61・・・波長1.3μIn用の半波長板、62
・・・v長0.67μ+n用の半波長板、71.72・
・・7アラデー素子、81.82・・・偏光方向を示す
矢印、91.92・・・偏光ビームスプリッタ、93゜
94・・・反射鏡、10・・・/J&長1.383μm
の赤外光源、11.12・・・LiNbO3から底る非
線形付媒質、121・・・共撮器、13・・・低域透過
フィルタ、11’ 。 】4・・・高域透過フィルタ、15・・・合分波器、1
6・・・端末三装置、171 、172・・・受元器、
181 、182・・・信号処理部、191 、 J9
2・・・半纏体1ノーザ。 回艮゛シシ (a) 第2 図 躬 3 区
FIG. 1(a) shows the U source of an embodiment of the bidirectional optical wavelength f conversion device according to the present invention, and FIG. Figure 1 (G) is a diagram showing the direction of polarization of Figure 3 is a configuration diagram of an example of conventional bidirectional information transmission. 1.1'...quartz optical fiber, 2.2', 2"...
・Glasstic optical fiber, 3... Long conversion of both quaternary #, 3'... Central processing equipment, 401-404,
458-462... Infrared light with wave length of 1.3 μm, 405
...Infrared light with a wavelength of 1.383 μm, 4o6-w length 1.
31Im infrared light and wave F and 1.383μm infrared light, 4
07... Visible light with wavelength 0.67μm and wavelength 21.9μm
Infrared light of m, 407', 408~411,451~
455... Visible light with a wavelength of 0.67 μm, 456...
Infrared light with R = 1.3 μm and wavelength 1.383 μtn and wavelength Q, 57. am visible light, 457-v length 1.3 μm,
Infrared light with R length 1.383 μm, 51°52...Polarizer, 61...Half-wave plate for wavelength 1.3 μIn, 62
・・・Half-wave plate for v length 0.67μ+n, 71.72・
...7 Alladay element, 81.82...Arrow indicating polarization direction, 91.92...Polarizing beam splitter, 93°94...Reflector, 10.../J & length 1.383 μm
11.12... Nonlinear medium bottomed from LiNbO3, 121... Common camera, 13... Low pass filter, 11'. ]4... High-pass transmission filter, 15... Multiplexer/demultiplexer, 1
6...Three terminal devices, 171, 172...Receiver,
181, 182...signal processing section, 191, J9
2...Half-clothed body 1 nose. Rotation゛shishi (a) 2nd illustration 3 wards

Claims (1)

【特許請求の範囲】[Claims] 幹線系の信号伝送路として石英系の光ファイバを用い、
加入者系の信号伝送路としてプラスチック光ファイバを
用いた光通信システムにおいて、前記石英系光ファイバ
の出射赤外光を第1の直線偏光に変換する第1の偏光子
と、第1の半波長板と、第1の偏光面回転素子と、第1
の直線偏光と同方向の偏光面をもつ局部発振光の光源と
、特定波長の赤外光の特定偏光面をもつ前記第1の直線
偏光を透過し前記局部発振光を反射して合板する第1の
偏光ビームスプリッタと、この合板光を導入して周波数
を変換する第1の周波数変換部品と、第1の高域透過フ
ィルタと、その出力に得られた特定波長の可視光の特定
偏光方向をもつ直線偏光のみを透過し他を反射する第2
の偏光ビームスプリッタと、第2の偏光面回転素子と、
第2の半波長板と、第2の偏光子とからなり、前記プラ
スチック光ファイバに入射する第1の光波長変換経路と
、前記プラスチック光ファイバからの出射可視光が前記
第1の光波長変換経路を逆方向に前記第2の偏光子、第
2の半波長板、第2の偏光面回転素子の順に進行し、第
2の直線偏光になって前記第2の偏光ビームスプリッタ
で反射したのち、非線形媒質を含む共振器で構成される
第2の周波数変換部品と、その出力に得られた特定波長
の赤外光を通す低域透過フィルタおよび第2の高域透過
フィルタと、光方向変換手段とからなるバイパスを通っ
て、前記第1の偏光ビームスプリッタで反射し、前記第
1の光波長変換経路に戻り、更に前記第1の偏光面回転
素子、第1の半波長板、第1の偏光子の順に進行して前
記石英系光ファイバに入射する第2の光波長変換経路と
よりなり、前記石英系光ファイバ中の信号伝送波長と前
記プラスチック光ファイバ中の信号伝送波長とを相互に
変換することを特徴とする双方向光波長変換装置。
Using quartz-based optical fiber as the main signal transmission line,
In an optical communication system using a plastic optical fiber as a subscriber system signal transmission path, a first polarizer that converts infrared light emitted from the silica-based optical fiber into a first linearly polarized light, and a first half-wavelength a plate, a first polarization plane rotation element, and a first
a light source of locally oscillated light having a plane of polarization in the same direction as the linearly polarized light; and a first light source that transmits the first linearly polarized light having a specific plane of polarization of infrared light of a specific wavelength and reflects the locally oscillated light. a first polarizing beam splitter, a first frequency conversion component that introduces this plywood light and converts its frequency, a first high-pass filter, and a specific polarization direction of visible light of a specific wavelength obtained as an output thereof. The second one transmits only the linearly polarized light with , and reflects the others.
a polarization beam splitter, a second polarization plane rotation element,
A first light wavelength conversion path that includes a second half-wave plate and a second polarizer, and a first light wavelength conversion path that enters the plastic optical fiber; The light travels in the reverse direction through the second polarizer, the second half-wave plate, and the second polarization plane rotating element, becomes second linearly polarized light, and is reflected by the second polarizing beam splitter. , a second frequency conversion component composed of a resonator including a nonlinear medium, a low-pass transmission filter and a second high-pass transmission filter that pass the infrared light of a specific wavelength obtained at its output, and a light direction conversion component. means, is reflected by the first polarizing beam splitter, returns to the first optical wavelength conversion path, and further includes the first polarization plane rotating element, the first half-wave plate, and the first polarizing beam splitter. A second light wavelength conversion path is formed in which the light passes in the order of the polarizer and enters the silica-based optical fiber, and mutually converts the signal transmission wavelength in the silica-based optical fiber and the signal transmission wavelength in the plastic optical fiber. A bidirectional optical wavelength conversion device characterized by converting into.
JP60189285A 1985-08-28 1985-08-28 Two-way optical wavelength converter Pending JPS6248820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60189285A JPS6248820A (en) 1985-08-28 1985-08-28 Two-way optical wavelength converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60189285A JPS6248820A (en) 1985-08-28 1985-08-28 Two-way optical wavelength converter

Publications (1)

Publication Number Publication Date
JPS6248820A true JPS6248820A (en) 1987-03-03

Family

ID=16238762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60189285A Pending JPS6248820A (en) 1985-08-28 1985-08-28 Two-way optical wavelength converter

Country Status (1)

Country Link
JP (1) JPS6248820A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020524354A (en) * 2017-06-20 2020-08-13 フォトニカ,インコーポレイテッド Augmented reality wearable visualization

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020524354A (en) * 2017-06-20 2020-08-13 フォトニカ,インコーポレイテッド Augmented reality wearable visualization

Similar Documents

Publication Publication Date Title
JPS63502946A (en) optical communication system
US8582936B2 (en) Separating and combining single-mode and multimode optical beams
RU2204155C2 (en) Optical insulator
US6741764B2 (en) Polarization beam separator and combiner
CN112865879B (en) Spin-orbit angular momentum coupled hybrid entangled state generation system and method
CN115001593B (en) Hybrid integrated receiving chip for quantum key distribution
CN102624447B (en) Double-optical-path real-time control differential interference receiving device
JPH0311310A (en) Optical coupler of electro-optic converter module and optical guide
CN102594456B (en) Self-phase differential interference optical signal receiving device
EP0843198B1 (en) Wavelength conversion device employing Bessel beams with parallel polarization
US20020063945A1 (en) Wavelength conversion apparatus
JPS6248820A (en) Two-way optical wavelength converter
CN209198829U (en) Polarization-maintaining rare-earth doped optical fibre amplifier
CN213957807U (en) Double-entanglement photon pair generation device based on collinear BBO crystal
JPH0527136A (en) Optical multiplexer/demultiplexer
CN207924208U (en) Light transmit-receive integrated optical device is realized under co-wavelength
JPS62104328A (en) Two-way light wavelength converting device
JP3317999B2 (en) Optical isolator
Kouadou et al. Compact entanglement sources for portable quantum information platforms
EP0490439A1 (en) Transmission system for the polarisation-insensitive transmission of signals
US11456805B2 (en) Dual polarization unit for coherent transceiver or receiver
CN218728159U (en) Light splitting isolator
CN109683425B (en) Polarization-independent photon frequency conversion quantum device
JP2003270591A (en) Polarization-independent optical equipment
CN212905563U (en) Optoelectronic component