JPS6248723B2 - - Google Patents

Info

Publication number
JPS6248723B2
JPS6248723B2 JP13088884A JP13088884A JPS6248723B2 JP S6248723 B2 JPS6248723 B2 JP S6248723B2 JP 13088884 A JP13088884 A JP 13088884A JP 13088884 A JP13088884 A JP 13088884A JP S6248723 B2 JPS6248723 B2 JP S6248723B2
Authority
JP
Japan
Prior art keywords
molten steel
steel
cao
estimated
relationship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13088884A
Other languages
Japanese (ja)
Other versions
JPS6112811A (en
Inventor
Osamu Terada
Yoichi Nimura
Tsutomu Usui
Toshio Edane
Teruyuki Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP13088884A priority Critical patent/JPS6112811A/en
Publication of JPS6112811A publication Critical patent/JPS6112811A/en
Publication of JPS6248723B2 publication Critical patent/JPS6248723B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4673Measuring and sampling devices

Description

【発明の詳細な説明】 <産業上の利用分野> この発明は転炉製鋼法に関し、吹錬終了後の吹
止め成分を正確に推定することにより無倒炉出鋼
を実現したものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a converter steel manufacturing method, and achieves steel tapping without overturning by accurately estimating the blowstop component after completion of blowing.

<従来の技術> 従来の転炉操業においては、出鋼前に一度倒炉
してサンプルを採取し、このサンプルを分析し
て、この分析結果に基づいて出鋼の判断を行つて
いた。
<Conventional Technology> In conventional converter operation, before steel tapping, the furnace is inverted once, a sample is taken, this sample is analyzed, and the decision to tap steel is made based on the results of this analysis.

この方法の場合溶鋼成分の正確な測定が可能で
あるが、倒炉を伴うため操業時間が長くなる欠点
がある。
Although this method allows accurate measurement of molten steel components, it has the disadvantage that it requires a long operating time because it involves collapsing the furnace.

そのためサンプル採取をせずに、サブランスサ
ンプルの凝固温度から吹止め〔C〕を推定するだ
けで出鋼の判定を行う方法も採られているが、現
在の転炉操業では〔P〕の値が製品に及ぼす影響
が強く、吹止め〔C〕のみでは出鋼の判定をする
ことは困難になつている。
For this reason, some methods are used to determine whether to tap steel by simply estimating the blow stop [C] from the solidification temperature of the sublance sample without taking samples.However, in current converter operation, the value of [P] has a strong influence on the product, and it has become difficult to judge whether or not the steel should be tapped using blow-stopping [C] alone.

サンプルの分析を行なうことなく〔P〕を推定
する方法として、鋼中〔O〕の測定と溶鋼温度か
ら推定する方法があるが、第7図に示すようにこ
の鋼中〔O〕から算出される酸素活量a0と終点P
との間にはバラツキが多く、そのため推定精度は
極めて低く信頼性に乏しいのが現状である。
One way to estimate [P] without analyzing a sample is to estimate it from the measurement of [O] in steel and the temperature of molten steel, but as shown in Figure 7, it is calculated from [O] in steel. oxygen activity a 0 and end point P
There are many variations between the two, and as a result, the estimation accuracy is currently extremely low and reliability is poor.

<発明の概要> 本発明は上記した従来の技術の問題点を解決す
るためになされたもので溶鋼中P量の推定を正確
に行うことにより、高品位鋼の無倒炉出鋼を実現
したものである。
<Summary of the Invention> The present invention was made to solve the above-mentioned problems of the conventional technology. By accurately estimating the amount of P in molten steel, high-grade steel can be tapped without being overthrown. It is something.

溶鋼とスラグ間の脱P反応は、本発明者らの基
礎研究により下式で表わされることが知られてい
る。
The dephosphorization reaction between molten steel and slag is known to be expressed by the following formula based on basic research by the present inventors.

log(%P2O5)/〔%P〕(%FetO)5=11.20log{(%CaO)+0.3(%MgO) −0.05(%FetO)}+29600/T−36.25 …… ここで(%P2O5)(%FetO)(%CaO)(%
MgO)は各々スラグ中の重量%、〔%P〕は溶鋼
中のP重量%、Tは溶鋼温度で絶対温度(〓)で
ある。
log (%P 2 O 5 ) / [%P] 2 (%FetO) 5 = 11.20log {(%CaO) + 0.3 (%MgO) -0.05 (%FetO)} + 29600 / T - 36.25 ... Here (% P2O5 )(% FetO )(%CaO)(%
MgO) is the weight percent in the slag, [%P] is the weight percent of P in the molten steel, and T is the molten steel temperature, which is the absolute temperature (〓).

式からわかるように、スラグ成分と溶鋼温度
を知ることができれば、この式を用いてPの物
質収支を実施することにより溶鋼中のP濃度を推
定することが出来る。しかし、実際の転炉操業に
おいて従来は転炉吹き止め時にスラグ成分を知る
ことができなかつたため、溶鋼中P濃度の推定は
出来なかつた。
As can be seen from the equation, if the slag components and the molten steel temperature are known, the P concentration in the molten steel can be estimated by performing the P mass balance using this equation. However, in actual converter operation, it was not possible to estimate the P concentration in molten steel because it was not possible to know the slag components when the converter was shut down.

本発明においては、このスラグ成分(%
FetO)、(%CaO)を酸素プローブによる溶鋼中
の溶解酸素測定から推定し、上記式により〔%
P〕を求めようとするものである。
In the present invention, this slag component (%
FetO) and (%CaO) are estimated from the measurement of dissolved oxygen in molten steel using an oxygen probe, and the above formula is used to estimate [%CaO).
P].

溶鋼中の溶解酸素と転炉スラグ中の(%
FetO)との間に一定の関係が認められることは
従来より知られている。また特に近年普及しつつ
ある上下吹き転炉においては溶鋼と転炉スラグと
の反応が平衡に近いため相関が大きい。しかし、
この関係はバラツキが多いため、上記式を用い
て〔%P〕を推定するに十分な精度で(%
FetO)を推定することは従来不可能であつた。
Dissolved oxygen in molten steel and (%) in converter slag
It has been known for some time that there is a certain relationship between In addition, especially in the top-down blowing converter which has become popular in recent years, the reaction between molten steel and converter slag is close to equilibrium, so the correlation is large. but,
Since this relationship has many variations, the above formula can be used to estimate [%P] with sufficient accuracy (%
Previously, it was impossible to estimate FetO).

本発明者らは種々の実験研究を重ねた結果、溶
銑の〔%Si〕をパラメータとして用いることによ
り、溶鋼中溶解酸素と(%FetO)(以下Fe換算
したT・Feで表現する)との間に極めて良い相
関を得られることを見出した。第1図はその関係
を示すもので〔Si〕0.25%の領域と、〔Si〕>
0.25%の領域で酸素活量a0と実際に測定したT・
Feとの間で極めて良い直線関係が得られている
ことがわかる。
As a result of various experimental studies, the present inventors found that by using [%Si] of hot metal as a parameter, the relationship between dissolved oxygen in molten steel and (%FetO) (hereinafter expressed as T・Fe converted to Fe) was determined. We found that an extremely good correlation could be obtained between them. Figure 1 shows the relationship between the [Si] 0.25% area and the [Si]>
Oxygen activity a 0 in the 0.25% area and T・
It can be seen that an extremely good linear relationship is obtained with Fe.

本発明者らはこの知見に基づき、溶解酸素量か
ら(%T・Fe)を推定する推定式を下記のよう
に導いた。
Based on this knowledge, the present inventors derived an estimation formula for estimating (%T·Fe) from the amount of dissolved oxygen as follows.

溶銑〔%Si〕0.25、(%T・Fe)=3.89+0.0275×〔O〕ppm …… 溶銑〔%Si〕>0.25、(%T・Fe)=6.93+0.0171×〔O〕ppm …… 第2図上に上記式を用いて推定したT・
Feと、実際のT・Feの関係を示す。ここで溶鋼
中の溶解酸素量はサブランスにより酸素プローブ
を用いて得た。この第2図からわかるように、
式による推定値の精度は極めて高い。
Hot metal [%Si] 0.25, (%T Fe) = 3.89 + 0.0275 x [O] ppm ... Hot metal [% Si] > 0.25, (% T Fe) = 6.93 + 0.0171 x [O] ppm... ... T・ estimated using the above formula on Figure 2
The relationship between Fe and actual T/Fe is shown. Here, the amount of dissolved oxygen in the molten steel was obtained using an oxygen probe by Sablance. As you can see from this second figure,
The accuracy of the estimated value by the formula is extremely high.

次に(%CaO)は上記(%T・Fe)の推定値
を用いることで、精度の良い推定が可能である。
Next, (%CaO) can be estimated with high accuracy by using the above estimated value of (%T·Fe).

従来(%CaO)の推定は転炉装入CaOから推定
するしかなかつたが、この方法では十分な精度は
期待できない。本発明者らは同様に〔%Si〕をパ
ラメータとすることにより、第3図に示すように
スラグ中の(%T.Fe)と(%CaO)との間に一
定の関係がみとめられ、下記式が成り立つ
ことを見い出した。
Conventionally, the only way to estimate %CaO was to estimate it from the CaO charged in the converter, but sufficient accuracy cannot be expected with this method. Similarly, by using [%Si] as a parameter, the present inventors found a certain relationship between (%T.Fe) and (%CaO) in the slag, as shown in Figure 3. It was found that the following formula holds true.

溶銑〔%Si〕0.25:(%CaO)=89.43(%T・Fe)-0.25 …… 溶銑〔%Si〕<0.40:(%CaO)=78.18(%T・Fe)-0.21 …… 溶銑〔%Si〕>0.40:(%CaO)=62.51(%T・Fe)-0.14 …… 上記式より求めた推定(%CaO)calと
実際に分析した(%CaO)actの関係を第4図に
示す。上記式により極めて精度の高い(%
CaO)の推定が可能であることがわかる。
Hot metal [%Si] 0.25: (%CaO) = 89.43 (%T・Fe) -0 . 25 ... Hot metal [%Si] < 0.40: (%CaO) = 78.18 (%T・Fe) -0 . 21 ... ... Hot metal [%Si] > 0.40: (%CaO) = 62.51 (%T・Fe) -0.14 ... Relationship between estimated (%CaO) cal obtained from the above formula and actually analyzed (%CaO) act is shown in Figure 4. The above formula provides extremely high accuracy (%
It can be seen that estimation of CaO) is possible.

以上により求めた(%T・Fe)、(%CaO)を
用いて、上記式を用いて(%P2O5)を求める。
この時(%MgO)は投入量から一定の値を用い
る。また溶鋼温度はサブランスにより測定する。
Using (%T·Fe) and (%CaO) determined above, (%P 2 O 5 ) is determined using the above formula.
At this time (%MgO), a constant value is used based on the input amount. The temperature of molten steel is measured using a sub-lance.

更にスラグボリユームを物質バランスから求め
ることにより炉中の〔P〕を推定する。
Furthermore, [P] in the furnace is estimated by determining the slag volume from the material balance.

この推定による〔P〕値と、実績値との関係を
第5図に示す。この推定の誤差は第6図に示すよ
うに平均で0.0007%と非常に小さく、精度の良い
推定であることがわかる。
FIG. 5 shows the relationship between the estimated [P] value and the actual value. As shown in Fig. 6, the error in this estimation is very small at 0.0007% on average, indicating that the estimation is highly accurate.

更に上記式から求めた(%T・Fe)から
〔Mn〕の推定も、精度良く行える。
Furthermore, [Mn] can be estimated with high accuracy from (%T·Fe) obtained from the above formula.

<発明の効果> 以上のように〔P〕値等を推定し、これにより
出鋼の判定を行えば、倒炉してサンプリングする
ことがなく所謂無倒炉出鋼が行え、吹錬時間を大
幅に短縮できる。
<Effects of the Invention> As described above, if the [P] value etc. are estimated and steel tapping is determined based on this, so-called non-overturning furnace tapping can be performed without the need for overthrowing and sampling, and the blowing time can be reduced. It can be significantly shortened.

また倒炉サンプリングによる溶鋼温度の低下が
なく、吹き止め温度を低くすることが可能となり
省エネルギ効果が大きく、転炉耐火物の寿命延長
が図れる等の効果がある。
In addition, there is no drop in molten steel temperature due to down-furnace sampling, and it is possible to lower the blow-off temperature, resulting in a large energy-saving effect and the ability to extend the life of the converter refractories.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は酸素活量とT・Feとの関係を示すグ
ラフ、第2図は推定(T・Fe)と実測(T・
Fe)との関係を示すグラフ、第3図は(T・
Fe)と(CaO)との関係を示すグラフ、第4図
は推定(CaO)と実測(CaO)との関係を示すグ
ラフ、第5図は推定〔P〕と実測〔P〕との関係
を示すグラフ、第6図は推定〔P〕の誤差を示す
グラフ、第7図は酸素活量a0と終点〔P〕との関
係を示すグラフである。
Figure 1 is a graph showing the relationship between oxygen activity and T・Fe, and Figure 2 is a graph showing the relationship between the estimated (T・Fe) and the actually measured (T・Fe).
Figure 3 is a graph showing the relationship between (T and Fe).
Graph showing the relationship between Fe) and (CaO), Figure 4 is a graph showing the relationship between estimated (CaO) and measured (CaO), and Figure 5 shows the relationship between estimated [P] and measured [P]. 6 is a graph showing the error in estimation [P], and FIG. 7 is a graph showing the relationship between oxygen activity a 0 and end point [P].

Claims (1)

【特許請求の範囲】[Claims] 1 サブランスによりサンプルを採取してその凝
固温度から溶鋼中炭素量を推定し、また溶鋼温度
と溶鋼中酸素量を測定し、この測定値と溶銑中の
珪素量とからスラグ成分を推定し、この推定値と
前記溶鋼温度とから溶鋼中リン量の推定を行い、
これら推定値に基づいて出鋼することを特徴とす
る転炉製鋼法。
1. Collect a sample with a sublance, estimate the carbon content in the molten steel from its solidification temperature, measure the molten steel temperature and the oxygen content in the molten steel, estimate the slag component from this measurement value and the silicon content in the molten steel, Estimating the amount of phosphorus in the molten steel from the estimated value and the molten steel temperature,
A converter steel manufacturing method characterized by tapping steel based on these estimated values.
JP13088884A 1984-06-27 1984-06-27 Manufacture of steel in converter Granted JPS6112811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13088884A JPS6112811A (en) 1984-06-27 1984-06-27 Manufacture of steel in converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13088884A JPS6112811A (en) 1984-06-27 1984-06-27 Manufacture of steel in converter

Publications (2)

Publication Number Publication Date
JPS6112811A JPS6112811A (en) 1986-01-21
JPS6248723B2 true JPS6248723B2 (en) 1987-10-15

Family

ID=15045045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13088884A Granted JPS6112811A (en) 1984-06-27 1984-06-27 Manufacture of steel in converter

Country Status (1)

Country Link
JP (1) JPS6112811A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645219U (en) * 1992-11-25 1994-06-14 東光電気株式会社 Switch contact

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5483429B2 (en) * 2010-03-26 2014-05-07 日新製鋼株式会社 Method for accurately estimating phosphorus concentration in molten steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645219U (en) * 1992-11-25 1994-06-14 東光電気株式会社 Switch contact

Also Published As

Publication number Publication date
JPS6112811A (en) 1986-01-21

Similar Documents

Publication Publication Date Title
EP0238054B1 (en) Molten metal gas analysis apparatus
Michal et al. Thermodynamics of iron-silicate slags: Slags saturated with solid silica
CN104458637A (en) Method for testing ultra-low carbon and sulphur content in plain carbon steel-low alloy steel
CN107436292A (en) The method for determining sulfur content in covering slag
JPS6232248B2 (en)
JPS6248723B2 (en)
CN111485056A (en) Method for measuring thickness of converter slag layer on line
Vidacak et al. An experimental study of the viscosities of Al 2 O 3-CaO-“FeO” slags
JP4816513B2 (en) Molten steel component estimation method
JPS59136652A (en) Method for estimating molten steel constituent
KR20000045516A (en) Method and device for predicting concentration of carbon in molten metal in electric furnace work
SU840131A1 (en) Device for determining carbon content in convertor bath
JP5423614B2 (en) Hot metal desulfurization method
JPS6318015A (en) Method for estimating concentration of manganese in converter blowing
JP4018140B2 (en) Method for determining volumetric gas flow during a liquid phase process
Iwase et al. Measurements of the ferrous oxide activities in slags to reduce steelmaking slag volume
CN117741041A (en) Analysis method for determining ferromanganese content by potassium dichromate capacity method
JPS55161011A (en) End point control method of oxygen converter
Shuli The development and use of an oxygen sensor for steelmaking in China
JPH0257629A (en) Method for assuming molten steel carbon in converter
CN108342538B (en) Method for improving carbon content of TSO converter sublance probe to be measured accurately
JPH01219117A (en) Method of estimating end point component in converter blowing
JPH0442451B2 (en)
KR100399223B1 (en) Control method and control device of carbon steel concentration in molten steel in converter operation
Oguchi et al. Controlling deoxidation of ferritic stainless steel melt with aluminum by use of solid electrolyte oxygen concentration cells