JPS6248707B2 - - Google Patents

Info

Publication number
JPS6248707B2
JPS6248707B2 JP4835979A JP4835979A JPS6248707B2 JP S6248707 B2 JPS6248707 B2 JP S6248707B2 JP 4835979 A JP4835979 A JP 4835979A JP 4835979 A JP4835979 A JP 4835979A JP S6248707 B2 JPS6248707 B2 JP S6248707B2
Authority
JP
Japan
Prior art keywords
flame
cellulose
retardant
resin
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4835979A
Other languages
Japanese (ja)
Other versions
JPS55139437A (en
Inventor
Tsukuru Kinoshita
Shuji Masuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP4835979A priority Critical patent/JPS55139437A/en
Publication of JPS55139437A publication Critical patent/JPS55139437A/en
Publication of JPS6248707B2 publication Critical patent/JPS6248707B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は難燃性組成物に関する。さらに詳しく
は、暹脂系物質にセルロヌス系物質に瞮合リン酞
アンモニりムを化孊結合たたは固着化せしめおな
るセルロヌス系難燃化充填材を配合しおなるこず
を特城ずする難燃性組成物に関する。 埓来朚粉、パルプなどのセルロヌス系物質を充
填材ずしお、これを暹脂系物質に添加混合しお軜
量化、省資源化、吞音および断熱性胜の向䞊たた
は擬䌌朚材化された耇合材料が開発されか぀商品
化されおいる。しかしながら、これら耇合材料を
建築材料もしくは䞀般成圢材料ずしおみたばあ
い、その難燃性胜を無芖しお評䟡するこずはでき
ない。 近時、暹脂基材の難燃化たたは難燃物を充填材
ずしお䜵甚による耇合材料の難燃化に぀いおの研
究開発がさかんに行なわれおいる。 本発明者らは難燃化耇合材の開発に぀いお鋭意
研究を重ねた結果、セルロヌス系物質に瞮合リン
酞アンモニりムを化孊結合たたは固着せしめるこ
ずにより可燃性のセルロヌス系物質が難燃化され
うるずいう知芋をえ、この知芋に基づいおさらに
怜蚎を重ねた結果、この難燃化セルロヌス系物質
を充填材ずしお暹脂系物質に添加混合するこずに
より難燃性耇合組成物がえられるこずを芋出し、
本発明を完成するにいた぀た。 すなわち本発明は暹脂系物質にセルロヌス系物
質に瞮合リン酞アンモニりムを化孊結合たたは固
着化せしめおなるセルロヌス系難燃化充填材を配
合しおなるこずを特城ずする難燃性組成物であ぀
お、かかる組成物を鋳型泚圢、プレス成圢、射出
成圢、抌出成圢、真空成圢などの成圢機を䜿甚し
おえられる䜏宅蚭備機噚郚材、建材、建具材、車
茌甚郚品、電気郚品、航空機郚品、船舶甚郚品な
どに成圢しお甚いるずきは、その燃焌性を極床に
䜎䞋せしめ、耇合材料ずしおきわめお有甚なもの
である。 本発明に甚いるセルロヌス系難燃化充填材ずし
おは、前蚘のごずくセルロヌス系物質に瞮合リン
酞アンモニりムを化孊結合たたは固着ずかした
ものがぞばり぀いた圢で固たるこずを意味する
させたものであり、その補法ずしおはたずえば垞
圧、枛圧たたは枛圧−加圧䞋でセルロヌス系物質
を瞮合リン酞アンモニりム氎溶液䞭に浞挬もしく
はスプレヌしお含浞凊理を行ない、぀いで80〜
300℃、奜たしくは100〜250℃の枩床で〜30分
間、奜たしくは〜10分間也燥せしめ、さらに
130〜300℃、奜たしくは150〜250℃の枩床で〜
10分間、奜たしくは〜分間加熱キナアしお補
造される。セルロヌス系物質の加熱キナア枩床が
300℃より高いずきはセルロヌス系物質の炭化が
生じるため本発明の難燃化充填材ずしおの品質が
わるくなり、たた130℃より䜎いずきはセルロヌ
ス系物質ず瞮合系リン酞アンモニりムずの゚ステ
ル化反応が生ぜず、たた瞮合系リン酞アンモニり
ムのセルロヌスぞの固着が䞍完党ずなり、いずれ
も奜たしくない。たた加熱キナア時間が、加熱キ
ナア枩床にもよるが、10分より倧きいずきはセル
ロヌス系物質の瞮合系リン酞アンモニりムによる
゚ステル化が極床に進行しセルロヌス繊維の分解
が生じはじめ、たた分より小さいずきはセルロ
ヌス系物質の゚ステル化が少なく、そのために暹
脂系物質ぞ混合したばあい難燃剀である瞮合系リ
ン酞アンモニりムがセルロヌス物質より脱萜し、
組成物ずしおの物性が䜎䞋するこずずなり、いず
れも奜たしくない。セルロヌス系物質ぞの瞮合リ
ン酞アンモニりムの化孊結合は、たずえば のような反応により生ずる。 本発明に甚いるセルロヌス系物質ずしおは、朚
粉、朚材チツプ、パルプチツプ、コツトン繊維、
レヌペン繊維などがあげられ、その粒埄〜300
メツシナ、繊維長0.1〜10mm、奜たしくは粒埄10
〜200メツシナ、繊維長0.5〜mmの範囲のものが
採甚される。セルロヌス物質の粒埄がメツシ
ナ、繊維長が10mmより倧きいずきはずくに問題は
ないが、難燃凊理を行な぀たのち粉砕機にお粉砕
する必芁があり、たた粒埄が300メツシナ、繊維
長が0.1mmより小さいずきは含浞時においお飛散
しやすいため䜜業性がわるく、難燃凊理終了埌に
おいおも同様に飛散しやすく、いずれも奜たしく
ない。 本発明に甚いる瞮合リン酞アンモニりムずしお
は、
FIELD OF THE INVENTION This invention relates to flame retardant compositions. More specifically, the present invention relates to a flame-retardant composition comprising a resin-based material and a cellulose-based flame-retardant filler formed by chemically bonding or fixing condensed ammonium phosphate to a cellulose-based material. Traditionally, cellulose-based materials such as wood flour and pulp have been used as fillers and mixed with resin-based materials to create lightweight, resource-saving, improved sound-absorbing and heat-insulating properties, or composite materials that have been made into a pseudo-wood material. It has been commercialized. However, when these composite materials are viewed as building materials or general molding materials, their flame retardant performance cannot be ignored in their evaluation. Recently, much research and development has been carried out on flame retardant resin base materials or flame retardant composite materials by using flame retardants as fillers. As a result of intensive research into the development of flame-retardant composite materials, the present inventors discovered that combustible cellulose-based materials can be made flame-retardant by chemically bonding or fixing condensed ammonium phosphate to cellulose-based materials. As a result of further studies based on this knowledge, we discovered that a flame-retardant composite composition could be obtained by adding and mixing this flame-retardant cellulose material as a filler to a resin-based material.
We have now completed the present invention. That is, the present invention is a flame-retardant composition characterized in that a resin-based material is blended with a cellulose-based flame-retardant filler formed by chemically bonding or fixing condensed ammonium phosphate to a cellulose-based material. , housing equipment parts, building materials, fitting materials, vehicle parts, electrical parts, aircraft parts, etc., obtained by mold-casting such compositions using molding machines such as press molding, injection molding, extrusion molding, and vacuum forming. When molded into parts for ships, etc., it extremely reduces combustibility, making it extremely useful as a composite material. As mentioned above, the cellulose-based flame retardant filler used in the present invention is chemically bonded or fixed (meaning that the combed material hardens in a sticky form) to the cellulose-based material.
The manufacturing method is, for example, impregnating a cellulose material by immersing or spraying it in a condensed ammonium phosphate aqueous solution under normal pressure, reduced pressure, or reduced pressure-pressure.
Dry at a temperature of 300°C, preferably 100-250°C for 1-30 minutes, preferably 1-10 minutes, and
1 to 1 at a temperature of 130 to 300℃, preferably 150 to 250℃
It is manufactured by heating and curing for 10 minutes, preferably 1 to 5 minutes. The heating cure temperature of cellulose material is
When the temperature is higher than 300°C, carbonization of the cellulose material occurs, which deteriorates the quality of the flame retardant filler of the present invention, and when it is lower than 130°C, the esterification reaction between the cellulose material and condensed ammonium phosphate occurs. is not produced, and the adhesion of the condensed ammonium phosphate to the cellulose becomes incomplete, both of which are unfavorable. The heating cure time also depends on the heating temperature, but if it is longer than 10 minutes, esterification of the cellulose-based material with condensed ammonium phosphate will proceed to an extreme extent and cellulose fibers will begin to decompose, and if it is shorter than 1 minute. In this case, there is little esterification of cellulose-based materials, so when mixed with resin-based materials, the condensed ammonium phosphate, which is a flame retardant, falls off from the cellulose materials.
Both of these are unfavorable, since the physical properties of the composition will deteriorate. The chemical bonding of condensed ammonium phosphate to cellulosic materials is e.g. It is caused by a reaction like this. Examples of cellulosic substances used in the present invention include wood flour, wood chips, pulp chips, cotton fibers,
Examples include rayon fiber, whose particle size is 1 to 300.
mesh, fiber length 0.1-10mm, preferably particle size 10
~200 meshes and fiber lengths in the range of 0.5 to 7 mm are used. There is no particular problem when the particle size of the cellulose material is larger than 1 mesh and the fiber length is larger than 10 mm, but it is necessary to crush it in a crusher after flame retardant treatment. If it is smaller than 0.1 mm, it tends to scatter during impregnation, resulting in poor workability, and it also tends to scatter even after flame retardant treatment, both of which are unfavorable. The condensed ammonium phosphate used in the present invention includes:

【匏】 なる単䜍を䞻䜓ずし、その瞮合床が〜100、奜
たしくは〜60であり、たたその濃床ずしおは
〜50重量、以䞋同様、奜たしくは〜40
である氎溶液が採甚され、これにより前蚘セル
ロヌス系物質に瞮合リン酞アンモニりム氎溶液を
含浞せしめおセルロヌス系物質の繊維分子に瞮合
リン酞アンモニりムを接觊させ、さらに也燥凊理
しお氎分を陀去し、さらに加熱キナアにより瞮合
リン酞アンモニりムが接觊しおいるセルロヌス分
子の氎酞基が脱氎され、瞮合リン酞アンモニりム
がセルロヌスず結合しおセルロヌスのリン酞゚ス
テル化ならびに該セルロヌスぞの瞮合リン酞アン
モニりムの固着化がなされる。瞮合リン酞アンモ
ニりムの瞮合床およびその氎溶液濃床が前蚘範囲
倖のずきは瞮合リン酞アンモニりムが氎に溶解し
がたくか぀セルロヌス内郚ぞの均䞀含浞が困難ず
な぀たり、たた難燃化セルロヌス物質の難燃性胜
および物性が䜎䞋するので奜たしくない。 本発明に甚いるセルロヌス系難燃化充填材ずし
おは、セルロヌス系物質に含有する瞮合リン酞ア
ンモニりムの有効成分量がセルロヌス系物質100
郚重量郚、以䞋同様に察しお〜40郚、奜た
しくは10〜30郚の範囲で採甚され、これによりこ
れらセルロヌス系難燃化充填材を暹脂系物質に混
合せしめたばあい、その耇合組成䜓の難燃性胜お
よび物性においお良奜な性胜が発揮されうる。瞮
合リン酞アンモニりムの有効成分量が40郚より倚
いずきはその有効成分量の増加に比䟋しおさほど
難燃性が向䞊されえず䞍経枈ずなり、たた郚よ
り少ないずきは難燃性が付䞎されえず、いずれも
奜たしくない。 かくしおえられたセルロヌス系難燃化充填材
は、必芁に応じお埮粉砕しお䜿甚されるが、その
粉砕には通垞ハンマヌミル圢匏、プザミル圢
匏、デむスクレフアむナヌ圢匏、ピンミル圢匏な
どの粉砕装眮が甚いられ、100〜500メツシナ皋床
に粉砕され、暹脂系物質に配合しお所望の甚途に
䜿甚される。 本発明に甚いる暹脂系物質ずしおは汎甚の熱可
塑性暹脂、熱硬化性暹脂、これらを圢成するモノ
マヌ、オリゎマヌがあげられる。 熱可塑性暹脂などずしおはたずえばポリスチレ
ン暹脂、ポリ塩化ビニル暹脂、ポリ゚チレン暹
脂、ポリプロピレン暹脂、ポリむ゜ブチレン暹
脂、ポリアセタヌル暹脂、ポリアミド暹脂、ポリ
カヌボネヌト暹脂、メタクリル暹脂、ポリプニ
レンサルフアむド暹脂、ポリブチレンテレフタレ
ヌト暹脂、プノキシ暹脂、酢酞ビニル暹脂、塩
化ビニリデン暹脂、ABS暹脂、MBS暹脂、ASæš¹
脂、AAS暹脂たたはスチレンモノマヌ、スチレ
ン系オリゎマヌ、アクリレヌトモノマヌ、アクリ
レヌト系オリゎマヌなどが適宜甚いられる。 たた熱硬化暹脂ずしおはたずえばグアナミン暹
脂、ゞアリルフタレヌト暹脂、プノヌル暹脂、
䞍飜和ポリ゚ステル暹脂、フラン暹脂、ポリりレ
タン暹脂、メラミン暹脂、ナリア暹脂、゚ポキシ
暹脂などが適宜甚いられる。 前蚘暹脂玠物質にセルロヌス系難燃化充填材を
配合する方法ずしおは、たずえば前蚘充填材ず暹
脂系物質ずを熱ロヌル䞊で混合するか、たたは暹
脂系物質を溶かした暹脂系物質溶液に前蚘充填材
を浞挬しお含浞凊理し、溶媒を也燥陀去する方法
が採甚され、これにより充填材ず暹脂系物質ずが
䞀䜓化された難燃性組成物がえられる。 暹脂系物質成分ずしおスチレンモノマヌたたは
アクリレヌトモノマヌを甚いるばあいには、セル
ロヌス系難燃化充填材に必芁に応じ重合觊媒を添
加したモノマヌを必芁量含浞せしめ、぀いで加熱
たたは照射によりこの充填材ぞの含浞モノマヌを
重合あるいはセルロヌスずグラフト重合せしめお
充填材ず暹脂系物質ずが䞀䜓化される。たたスチ
レンオリゎマヌたたはアクリレヌトオリゎマヌを
甚いるばあいには、前蚘充填材ぞの含浞の難易に
よりオリゎマヌの粘床をオリゎマヌず同皮のモノ
マヌたたは溶媒で調節し、前蚘同様に含浞および
重合凊理しお充填材ず暹脂系物質ずが䞀䜓化され
る。 本発明の難燃性組成物においお、暹脂系物質ず
セルロヌス系難燃化充填材ずの配合割合ずしお
は、暹脂系物質100郚に察しおセルロヌス系難燃
化充填材が30〜600郚、奜たしくは50〜500郚の範
囲で採甚され、これにより耇合組成物ずしおの難
燃性胜および成圢性胜、成圢品物性などが良奜で
ある組成物がえられる。セルロヌス系難燃化充填
材が600郚より倚いずきは耇合組成物ずしおの成
圢加工が䞍可胜であり、たた30郚より少ないずき
はえられる組成物の難燃効果が䞍充分であり、い
ずれも奜たしくない。 しかしお本発明の難燃化組成物は鋳型泚圢、プ
レス成圢、射出成圢、抌出成圢、真空成圢などの
成圢機を䜿甚しおえられる䜏宅蚭備機噚郚材、建
材、建具材、車茌甚郚材、電気郚品、航空機郚
品、船舶甚郚品などに䜿甚され、難燃性耇合材料
ずしおきわめお有甚なものである。 ぀ぎに実斜䟋および参考䟋をあげお本発明の組
成物を具䜓的に説明するが、本発明はこれらの実
斜䟋のみに限定されるものではない。 参考䟋  朚粉10〜50メツシナ100Kgを含浞槜ぞ投入
し、これに瞮合系リン酞アンモニりム瞮合床10
〜40、商品名FR−30、倧塚化孊薬品(æ ª)補の10
氎溶液を泚加し、撹拌しながら30分間浞挬し
た。この含浞凊理した朚粉を脱氎噚で脱液しお含
浞率60ずした。これをキルン匏也燥噚を甚いお
200℃で分間也燥した。 ぀いで也燥凊理した朚粉をキルン匏加熱炉を甚
いお、200℃で分間加熱キナアしお難燃化朚粉
をえた。 参考䟋  パルプチツプ繊維長1.5〜2.0mm100Kgを
含浞槜ぞ投入し、これに瞮合リン酞アンモニりム
参考䟋で甚いたものず同じの20氎溶液を
泚加し、撹拌しながら10分間浞挬した。この含浞
凊理したパルプチツプを脱氎噚で脱液しお含浞率
50ずした。これをキルン匏也燥噚を甚いお200
℃で分間也燥した。 ぀いで也燥凊理したパルプチツプをキルン匏加
熱炉を甚いお、250℃で分間加熱キナアしお難
燃化パルプチツプをえた。 参考䟋  コツトンリンタヌ繊維長〜mm100Kg
を含浞槜ぞ投入し、これに瞮合リン酞アンモニり
ム参考䟋で甚いたものず同じの40氎溶液
を泚加し、垞圧䞋で静眮含浞せしめた。20分間含
浞せしめたのち、これを絞りロヌルで脱液しお含
浞率50ずした。これをキルン匏加熱噚を甚いお
200℃で分間也燥した。 ぀いで也燥凊理したコツトンリンタヌをキルン
匏加熱炉を甚いお、200℃で分間加熱キナアし
お難燃化コツトンリンタヌをえた。 参考䟋  レヌペン繊維繊維長〜mmを甚いたほ
かは参考䟋ず同様にしお難燃化レヌペン繊維を
えた。 実斜䟋  参考䟋でえた難燃化朚粉10Kgにメチルメタク
リレヌトモノマヌ重合觊媒ずしお、アゟビスむ
゜ブチロニトリルを添加したものKgã‚’åžž
圧䞋で均䞀に含浞か぀混合し、これを耐圧密閉セ
ル䞭に入れ90℃で60分間加熱重合した。重合埌こ
の難燃性組成物を粉砕機で100メツシナに粉砕
し、加熱プレスを甚いおこのパりダヌ状組成物を
50Kgcm2、130℃で分間プレス成圢しおボヌド
をえた。 えられたボヌドの物性を第衚に瀺す。 実斜䟋  参考䟋でえた難燃化朚粉200メツシナパス
に粉砕したもの10KgずポリスチレンKgずを加
熱ロヌルで均䞀に混緎りしたのち、この難燃性組
成物を50Kgcm2、130℃で分間プレス成圢しお
ボヌドをえた。 えられたボヌドの物性を第衚に瀺す。 実斜䟋  参考䟋でえた難燃化朚粉200メツシナパス
に粉砕したもの10Kgずポリ゚ステル暹脂昭和
高分子(æ ª)補、商品名リゎラツク、重合觊媒ずしお
メチル゚チルケトンパヌオキサむドずナフテ
ン酞コバルト0.5を添加したもの20Kgずを加
熱ロヌルで均䞀に混緎りしたのち、このプレミツ
クスを10Kgcm2、70℃で10分間プレス成圢しおボ
ヌドをえた。 えられたボヌドの物性を第衚に瀺す。 実斜䟋  参考䟋でえた難燃化パルプチツプ繊維長
1.5〜2.0mmを甚いたほかは実斜䟋ず同様にし
おボヌドをえた。 えられたボヌドの物性を第衚に瀺す。 実斜䟋  参考䟋でえた難燃化パルプチツプ繊維長
1.5〜2.0mmを甚いたほかは実斜䟋ず同様にし
おボヌドをえた。 えられたボヌドの物性を第衚に瀺す。 実斜䟋  参考䟋でえた難燃化パルプチツプ繊維長
1.5〜2.0mmを甚いたほかは実斜䟋ず同様にし
おボヌドをえた。 えられたボヌドの物性を第衚に瀺す。 実斜䟋  参考䟋でえた難燃化コツトンリンタヌ繊維
長〜mmを甚いたほかは実斜䟋ず同様に
しおボヌドをえた。 えられたボヌドの物性を第衚に瀺す。 実斜䟋  参考䟋でえた難燃化コツトンリンタヌ繊維
長〜mmを甚いたほかは実斜䟋ず同様に
しおボヌドをえた。 えられたボヌドの物性を第衚に瀺す。 実斜䟋  参考䟋でえた難燃化コツトンリンタヌ繊維
長〜mmを甚いたほかは実斜䟋ず同様に
しおボヌドをえた。 えられたボヌドの物性を第衚に瀺す。 実斜䟋 10 参考䟋でえた難燃化レヌペン繊維繊維長
〜mmを甚いたほかは実斜䟋ず同様にしお
ボヌドをえた。 えられたボヌドの物性を第衚に瀺す。 実斜䟋 11 参考䟋でえた難燃化レヌペン繊維繊維長
〜mmを甚いたほかは実斜䟋ず同様にしお
ボヌドをえた。 えられたボヌドの物性を第衚に瀺す。 実斜䟋 12 参考䟋でえた難燃化レヌペン繊維繊維長
〜mmを甚いたほかは実斜䟋ず同様にしお
ボヌドをえた。 えられたボヌドの物性を第衚に瀺す。
[Formula] The degree of condensation is 1 to 100, preferably 1 to 60, and the concentration is 1.
~50% (weight%, the same applies hereinafter), preferably 5 to 40
% aqueous solution is employed, whereby the cellulosic material is impregnated with an aqueous solution of condensed ammonium phosphate to bring the condensed ammonium phosphate into contact with the fiber molecules of the cellulosic material, and further dried to remove moisture, and By heating and curing, the hydroxyl groups of the cellulose molecules in contact with the condensed ammonium phosphate are dehydrated, and the condensed ammonium phosphate bonds with the cellulose to phosphoric acid esterify the cellulose and fix the condensed ammonium phosphate to the cellulose. Ru. If the degree of condensation of condensed ammonium phosphate and the concentration of its aqueous solution are outside the above range, condensed ammonium phosphate will be difficult to dissolve in water and will be difficult to uniformly impregnate inside cellulose, and the flame retardant cellulose material will become difficult to dissolve. This is not preferable because the fuel performance and physical properties deteriorate. As the cellulose-based flame retardant filler used in the present invention, the amount of active ingredient of condensed ammonium phosphate contained in the cellulose-based material is 100% of that of the cellulose-based material.
(parts by weight, hereinafter the same) is employed in the range of 5 to 40 parts, preferably 10 to 30 parts, so that when these cellulose-based flame retardant fillers are mixed with resin-based substances, the Good performance in flame retardant performance and physical properties of the composite composition can be exhibited. When the amount of active ingredient in condensed ammonium phosphate is more than 40 parts, flame retardancy cannot be improved so much in proportion to the increase in the amount of active ingredient, making it uneconomical, and when it is less than 5 parts, flame retardancy is imparted. Both are undesirable. The cellulose-based flame retardant filler obtained in this way is used after being finely pulverized if necessary, and pulverization equipment such as a hammer mill type, feather mill type, disk refiner type, or pin mill type is usually used for pulverization. It is crushed into about 100 to 500 meshes, blended with resin-based materials, and used for desired purposes. Examples of resin-based substances used in the present invention include general-purpose thermoplastic resins, thermosetting resins, and monomers and oligomers forming these resins. Examples of thermoplastic resins include polystyrene resin, polyvinyl chloride resin, polyethylene resin, polypropylene resin, polyisobutylene resin, polyacetal resin, polyamide resin, polycarbonate resin, methacrylic resin, polyphenylene sulfide resin, polybutylene terephthalate resin, and phenoxy. Resin, vinyl acetate resin, vinylidene chloride resin, ABS resin, MBS resin, AS resin, AAS resin, or styrene monomer, styrene oligomer, acrylate monomer, acrylate oligomer, etc. are used as appropriate. Examples of thermosetting resins include guanamine resin, diallyl phthalate resin, phenol resin,
Unsaturated polyester resin, furan resin, polyurethane resin, melamine resin, urea resin, epoxy resin, etc. are used as appropriate. The method of blending the cellulose-based flame retardant filler with the resinous material includes, for example, mixing the filler and the resinous material on a heated roll, or adding the cellulose-based flame retardant filler to a solution of the resinous material in which the resinous material is dissolved. A method is adopted in which the filler is immersed for impregnation treatment and the solvent is removed by drying, thereby obtaining a flame-retardant composition in which the filler and the resinous substance are integrated. When using styrene monomer or acrylate monomer as a resin material component, the cellulose-based flame retardant filler is impregnated with the required amount of the monomer to which a polymerization catalyst is added if necessary, and then the filler is heated or irradiated. The filler and resin material are integrated by polymerizing the impregnating monomer or by graft polymerizing with cellulose. In addition, when using styrene oligomer or acrylate oligomer, the viscosity of the oligomer is adjusted with the same type of monomer or solvent as the oligomer depending on the difficulty of impregnating the filler, and the filler and resin are impregnated and polymerized in the same manner as described above. The system substances are integrated. In the flame retardant composition of the present invention, the blending ratio of the resin material and the cellulose flame retardant filler is preferably 30 to 600 parts of the cellulose flame retardant filler per 100 parts of the resin material. is employed in a range of 50 to 500 parts, thereby obtaining a composition that has good flame retardant performance, molding performance, and molded product physical properties as a composite composition. When the amount of cellulose-based flame retardant filler is more than 600 parts, it is impossible to mold it into a composite composition, and when it is less than 30 parts, the flame retardant effect of the resulting composition is insufficient. Undesirable. Therefore, the flame retardant composition of the present invention can be used for housing equipment parts, building materials, fitting materials, vehicle parts, etc., which can be obtained using molding machines such as mold casting, press molding, injection molding, extrusion molding, and vacuum forming. It is used in electrical parts, aircraft parts, ship parts, etc., and is extremely useful as a flame-retardant composite material. Next, the composition of the present invention will be specifically explained with reference to Examples and Reference Examples, but the present invention is not limited only to these Examples. Reference example 1 100 kg of wood flour (10 to 50 mesh) was put into an impregnation tank, and condensed ammonium phosphate (condensation degree 10) was added to the impregnation tank.
~40, product name FR-30, manufactured by Otsuka Chemical Co., Ltd.) 10
% aqueous solution was added and immersed for 30 minutes while stirring. This impregnated wood flour was dehydrated using a dehydrator to achieve an impregnation rate of 60%. This is done using a kiln dryer.
It was dried at 200°C for 2 minutes. The dried wood flour was then cured by heating at 200°C for 2 minutes using a kiln-type heating furnace to obtain flame-retardant wood flour. Reference Example 2 100 kg of pulp chips (fiber length: 1.5 to 2.0 mm) was put into an impregnating tank, and a 20% aqueous solution of condensed ammonium phosphate (same as that used in Reference Example 1) was poured into it, and the mixture was stirred while stirring. Soaked for 10 minutes. The impregnated pulp chips are dehydrated in a dehydrator to determine the impregnation rate.
It was set at 50%. This is dried using a kiln dryer.
It was dried at ℃ for 5 minutes. The dried pulp chips were then heat-cured at 250° C. for 1 minute using a kiln-type heating furnace to obtain flame-retardant pulp chips. Reference example 3 Cotton linter (fiber length: 3-7mm) 100Kg
was placed in an impregnating tank, and a 40% aqueous solution of condensed ammonium phosphate (same as that used in Reference Example 1) was added thereto, and left to impregnate under normal pressure. After being impregnated for 20 minutes, the liquid was removed using a squeezing roll to obtain an impregnation rate of 50%. This is done using a kiln heater.
It was dried at 200°C for 5 minutes. The dried cotton linters were then cured by heating at 200° C. for 3 minutes using a kiln heating furnace to obtain flame-retardant cotton linters. Reference Example 4 A flame-retardant rayon fiber was obtained in the same manner as Reference Example 3 except that rayon fiber (fiber length: 3 to 5 mm) was used. Example 1 10 kg of flame retardant wood flour obtained in Reference Example 1 was uniformly impregnated and mixed with 3 kg of methyl methacrylate monomer (added with 1% azobisisobutyronitrile as a polymerization catalyst) under normal pressure. The mixture was placed in a pressure-tight sealed cell and polymerized by heating at 90°C for 60 minutes. After polymerization, this flame retardant composition is ground into 100 mesh pieces using a grinder, and this powdery composition is made using a heated press.
A board was obtained by press molding at 50Kg/cm 2 and 130°C for 3 minutes. Table 1 shows the physical properties of the obtained board. Example 2 After uniformly kneading 10 kg of the flame-retardant wood powder obtained in Reference Example 1 (pulverized to 200 mesh passes) and 5 kg of polystyrene using a heated roll, the flame-retardant composition was mixed at 50 kg/cm 2 and 130 kg. A board was obtained by press molding at ℃ for 3 minutes. Table 1 shows the physical properties of the obtained board. Example 3 10 kg of flame-retardant wood powder obtained in Reference Example 1 (pulverized to 200 mesh passes), polyester resin (manufactured by Showa Kobunshi Co., Ltd., trade name Rigorak, 2% methyl ethyl ketone peroxide and cobalt naphthenate as a polymerization catalyst) After uniformly kneading 20 kg of the premix with a heated roll, this premix was press-molded at 10 kg/cm 2 at 70°C for 10 minutes to obtain a board. Table 1 shows the physical properties of the obtained board. Example 4 Flame-retardant pulp chips obtained in Reference Example 2 (fiber length:
A board was obtained in the same manner as in Example 1, except that a material (1.5 to 2.0 mm) was used. Table 1 shows the physical properties of the obtained board. Example 5 Flame-retardant pulp chips obtained in Reference Example 2 (fiber length:
A board was obtained in the same manner as in Example 2, except that a material (1.5 to 2.0 mm) was used. Table 1 shows the physical properties of the obtained board. Example 6 Flame-retardant pulp chips obtained in Reference Example 2 (fiber length:
A board was obtained in the same manner as in Example 3, except that a material (1.5 to 2.0 mm) was used. Table 1 shows the physical properties of the obtained board. Example 7 A board was obtained in the same manner as in Example 1, except that the flame-retardant cotton linter (fiber length: 3 to 7 mm) obtained in Reference Example 3 was used. Table 1 shows the physical properties of the obtained board. Example 8 A board was obtained in the same manner as in Example 2, except that the flame-retardant cotton linter (fiber length: 3 to 7 mm) obtained in Reference Example 3 was used. Table 1 shows the physical properties of the obtained board. Example 9 A board was obtained in the same manner as in Example 3, except that the flame-retardant cotton linter (fiber length: 3 to 7 mm) obtained in Reference Example 3 was used. Table 1 shows the physical properties of the obtained board. Example 10 Flame-retardant rayon fiber obtained in Reference Example 4 (fiber length:
A board was obtained in the same manner as in Example 1, except that 3 to 5 mm) was used. Table 1 shows the physical properties of the obtained board. Example 11 Flame-retardant rayon fiber obtained in Reference Example 4 (fiber length:
A board was obtained in the same manner as in Example 2, except that 3 to 5 mm) was used. Table 1 shows the physical properties of the obtained board. Example 12 Flame-retardant rayon fiber obtained in Reference Example 4 (fiber length:
A board was obtained in the same manner as in Example 3, except that 3 to 5 mm) was used. Table 1 shows the physical properties of the obtained board.

【衚】【table】

【衚】 第衚から明らかなごずく、本発明の難燃性組
成物からえられた成圢物は材料の物性面においお
いちじるしく軜量化され、たた難燃性の面におい
おも暹脂系物質成圢品が䞍燃材ずなり、さらに燃
焌により発生するガスはハロゲンなどの有害ガス
を含たず、物性匷床も繊維補匷効果により向䞊せ
られたものであり、建築材料、建具郚材、䜏宅蚭
備機噚郚材、車茌郚材、電気材料たたは船舶材料
ずしおきわめお有甚なものである。
[Table] As is clear from Table 1, the molded products obtained from the flame-retardant composition of the present invention are significantly lighter in terms of material properties, and resin-based molded products are also superior in terms of flame retardancy. It is a non-combustible material, and the gas generated by combustion does not contain harmful gases such as halogens, and its physical strength has been improved due to the fiber reinforcement effect, making it useful for building materials, fittings, housing equipment components, vehicle components, electrical It is extremely useful as a material or ship material.

Claims (1)

【特蚱請求の範囲】  暹脂系物質にセルロヌス系物質に、瞮合リン
酞アンモニりムを化孊結合たたは固着せしめおな
るセルロヌス系燃焌化充填材を配合しおなるこず
を特城ずする難燃性組成物。  セルロヌス系物質が朚粉、パルプ繊維、綿繊
維たたはレヌペン繊維である特蚱請求の範囲第
項蚘茉の組成物。  瞮合リン酞アンモニりムがその瞮合床〜60
でありか぀〜40重量氎溶液である特蚱請求の
範囲第項たたは第項蚘茉の組成物。  セルロヌス系難燃化充填材がセルロヌス系物
質100重量郚に察しお瞮合リン酞アンモニりム10
〜30重量郚を含有しおなる特蚱請求の範囲第
項、第項たたは第項蚘茉の組成物。  セルロヌス系難燃化充填材を皮たたは皮
以䞊混合しおなる特蚱請求の範囲第項、第
項、第項たたは第項蚘茉の組成物。  セルロヌス系難燃化充填材が瞮合リン酞アン
モニりムを化孊結合たたは固着せしめおなる難燃
化パルプ、難燃化レヌペン繊維、難燃化綿繊維た
たはそれらの皮以䞊の混合物100重量郚に察し
お瞮合リン酞アンモニりムを化孊結合たたは固着
せしめおなる難燃化朚粉20〜60重量郚を混合しお
なる特蚱請求の範囲第項、第項、第項、第
項たたは第項蚘茉の組成物。  暹脂系物質が熱可塑性暹脂たたは熱硬化性暹
脂である特蚱請求の範囲第項、第項、第項
たたは第項蚘茉の組成物。  セルロヌス系難燃化充填材を熱可塑性暹脂た
たは熱硬化性暹脂100重量郚に察しお50〜500重量
郚添加混合しおなる特蚱請求の範囲第項、第
項、第項、第項たたは第項蚘茉の組成物。
[Scope of Claims] 1. A flame-retardant composition characterized in that it contains a cellulose-based combustible filler made of a resin-based material and a cellulose-based material to which condensed ammonium phosphate is chemically bonded or fixed. 2 Claim 1 in which the cellulosic material is wood flour, pulp fiber, cotton fiber or rayon fiber
Compositions as described in Section. 3 Condensed ammonium phosphate has a degree of condensation of 1 to 60
The composition according to claim 1 or 2, which is a 5 to 40% by weight aqueous solution. 4 The cellulosic flame retardant filler contains 10 parts by weight of condensed ammonium phosphate per 100 parts by weight of the cellulose material.
Claim 1 comprising ~30 parts by weight
The composition according to item 1, 2 or 3. 5 Claims 1 and 2 comprising one or more types of cellulose-based flame retardant filler mixed together.
The composition according to item 3, item 3 or item 4. 6 For 100 parts by weight of flame-retardant pulp, flame-retardant rayon fiber, flame-retardant cotton fiber, or a mixture of two or more thereof, in which a cellulose-based flame-retardant filler is chemically bonded or fixed with condensed ammonium phosphate. Claims 1, 2, 3, 4, or 5 are made by mixing 20 to 60 parts by weight of flame-retardant wood powder made by chemically bonding or fixing condensed ammonium phosphate. Compositions as described in Section. 7. The composition according to claim 1, 2, 3, or 4, wherein the resin-based material is a thermoplastic resin or a thermosetting resin. 8 Claims 1 and 2 are obtained by adding and mixing 50 to 500 parts by weight of cellulose-based flame retardant filler to 100 parts by weight of thermoplastic resin or thermosetting resin.
The composition according to item 1, item 3, item 4 or item 7.
JP4835979A 1979-04-18 1979-04-18 Flame-retardant composition Granted JPS55139437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4835979A JPS55139437A (en) 1979-04-18 1979-04-18 Flame-retardant composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4835979A JPS55139437A (en) 1979-04-18 1979-04-18 Flame-retardant composition

Publications (2)

Publication Number Publication Date
JPS55139437A JPS55139437A (en) 1980-10-31
JPS6248707B2 true JPS6248707B2 (en) 1987-10-15

Family

ID=12801149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4835979A Granted JPS55139437A (en) 1979-04-18 1979-04-18 Flame-retardant composition

Country Status (1)

Country Link
JP (1) JPS55139437A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57135854A (en) * 1981-02-17 1982-08-21 Yokohama Rubber Co Ltd:The Flame-retardant resin composition
JPS5988359A (en) * 1982-11-15 1984-05-22 䞊野 桂助 Inorganic powder molded product and manufacture
JPH0290634U (en) * 1988-04-07 1990-07-18
JPH0290635U (en) * 1988-04-07 1990-07-18
JP6852870B2 (en) * 2015-10-28 2021-03-31 北川工業株匏䌚瀟 Functional additive and manufacturing method of functional additive

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532170A (en) * 1976-06-25 1978-01-10 Komine Soushingu Kougiyoushiyo Production of goban such as necklace and like

Also Published As

Publication number Publication date
JPS55139437A (en) 1980-10-31

Similar Documents

Publication Publication Date Title
Ayrilmis et al. Flat-pressed wood plastic composite as an alternative to conventional wood-based panels
US3668286A (en) Fiberboard produced from wood particles having a 5 to 25 percent moisture content prior to steaming and mechanical reduction in the formation process
US3594335A (en) Shaped bodies of bonded rigid polyurethane foam particles
Sahin et al. Mechanical and thermal properties of particleboard manufactured from waste peachnut shell with glass powder
US4479912A (en) Fiber board composition
US3649397A (en) Manufacture of products from comminuted wood
JPS6248707B2 (en)
DE10134633A1 (en) Thermoplastic resin composition with wood filler and process for its production
EP1278802B1 (en) Molding compounds on the basis of wood particles and duroplastic prepolymers
US3207819A (en) Method of making fibreboard
Reck et al. Thermally curable aqueous acrylic resins–a new class of duroplastic binders for wood and natural fibers
JPS6153378B2 (en)
US2612445A (en) Process of making hardboard and the like containing furfuryl alcohol resins
CN112739510A (en) Process for producing shaped article
JPS6221368B2 (en)
KR860000212B1 (en) Method for the manufacturing staple fiber and pulp board
SU887259A1 (en) Method of producing wood particle filled plastics
WO1986002292A1 (en) Fiber board composition
JPH0454631B2 (en)
El‐Naggar et al. Control of resin release from particleboards by gamma irradiation. I. Thermal decomposition behavior and structure morphology
KR100545058B1 (en) Waste paper composite board
US1146299A (en) Plastic molding composition and method of producing same.
JPH0562137B2 (en)
Bouzidi et al. Development of biomass‐based slurry for the manufacture of furan/cellulose composite by cast molding and 3D printing
WO1990011978A1 (en) Cellulosic product, process for the production thereof and uses thereof