JPS624848B2 - - Google Patents
Info
- Publication number
- JPS624848B2 JPS624848B2 JP53035800A JP3580078A JPS624848B2 JP S624848 B2 JPS624848 B2 JP S624848B2 JP 53035800 A JP53035800 A JP 53035800A JP 3580078 A JP3580078 A JP 3580078A JP S624848 B2 JPS624848 B2 JP S624848B2
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- layer capacitor
- basic cell
- basic
- double layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003990 capacitor Substances 0.000 claims description 34
- 238000010030 laminating Methods 0.000 claims 1
- 238000009413 insulation Methods 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical class [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229920005549 butyl rubber Polymers 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000004438 BET method Methods 0.000 description 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 235000011118 potassium hydroxide Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- -1 salt ions Chemical class 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
Description
【発明の詳細な説明】
本発明は、二重層コンデンサの積層構造の改良
に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in the laminated structure of double layer capacitors.
一般に、二重層コンデンサの基本セルの耐圧
は、構成要素である電解質および溶媒の分解電圧
で決まり、たとえば硫酸、カセイカリ等を電解質
とする水溶液系の場合には、基本セルの耐圧は約
1.0ボルトである。 Generally, the withstand voltage of the basic cell of a double layer capacitor is determined by the decomposition voltage of the constituent electrolyte and solvent. For example, in the case of an aqueous solution system with sulfuric acid, caustic potash, etc. as the electrolyte, the withstand voltage of the basic cell is approximately
It is 1.0 volt.
又プロピレンカーボネート、N・N−ジメチル
ホルムアミド、アセトニトリル、γ(ガンマ)−
プチロラクトンなどの高誘電率有機溶媒では、使
用する塩イオンの分解電圧にもよるが耐圧は3〜
5V程である。この基本セルに溶媒の分解電圧以
上の電圧を印加すると、その機能は破壊される。 Also, propylene carbonate, N/N-dimethylformamide, acetonitrile, γ (gamma)-
With high dielectric constant organic solvents such as petyrolactone, the breakdown voltage is 3 to 3, depending on the decomposition voltage of the salt ions used.
It is about 5V. If a voltage higher than the decomposition voltage of the solvent is applied to this basic cell, its function will be destroyed.
従つて、二重層コンデンサの耐電圧として、こ
の分解電圧以上の高耐電圧が要求される場合に
は、基本セルを必要枚数だけ直列に積層し、基本
セル当りの耐電圧を、その基本セルの破壊電圧以
下におさえて使用するのが通例であつた。 Therefore, when a high withstand voltage higher than this decomposition voltage is required as the withstand voltage of a double layer capacitor, the required number of basic cells are stacked in series, and the withstand voltage per basic cell is set to It was customary to keep the voltage below the breakdown voltage.
この場合、この二重層コンデンサに直流電圧を
印加すると、各基本セルに印加される電圧は、
各々の基本セルの絶縁抵抗に比例して配分され、
各基本セルの絶縁抵抗のばらつき幅が大きい程、
各基本セルに印加される電圧のばらつきが大きく
なる。 In this case, when a DC voltage is applied to this double layer capacitor, the voltage applied to each basic cell is
distributed in proportion to the insulation resistance of each basic cell,
The larger the variation in insulation resistance of each basic cell, the more
The variation in voltage applied to each basic cell increases.
このような絶縁抵抗のばらつきに基づく各基本
セルの印加電圧のばらつきは、たとえば積層二重
層コンデンサに基本セル積層枚数分相当の電圧を
印加した場合でも、積層中のいずれかの基本セル
にはその基本セルの耐圧以上の電圧がかかり、結
果として、その基本セルが破壊されコンデンサ全
体としての機能を失うことが多かつた。 Variations in the voltage applied to each basic cell due to such variations in insulation resistance mean that, for example, even if a voltage equivalent to the number of stacked basic cells is applied to a multilayer double-layer capacitor, some of the basic cells in the stack will be affected by the voltage applied to each basic cell. A voltage higher than the withstand voltage of the basic cell was applied, and as a result, the basic cell was often destroyed and the capacitor as a whole lost its function.
この破壊の防止策としては、基本セルの絶縁抵
抗を選別し基本セル間電圧のばらつきを小さくす
ることや、積層二重層コンデンサの中で電位分布
最大の基本セルを破壊させない程度に充分余裕を
もつた多数の基本セルを積層することにより所定
の耐圧の積層二重層コンデンサを形成すること等
が考えられるが、このような方策は、二重層コン
デンサの工業化に際して、絶縁抵抗のばらつきを
約10%以内に制御する等の製造技術の改良開発、
絶縁抵抗のばらつきを絶縁抵抗の選別あるいは積
層枚数でカバーするため、製品のコストアツプ等
の欠点があり、従来製品のアルミ電解コンデンサ
等に比較して上記のコストおよび、特性の安定
性・信頼性が劣ることにより市場性がなく工業化
が成し遂げられなかつた。 Measures to prevent this destruction include selecting the insulation resistance of the basic cells to reduce variations in voltage between basic cells, and creating enough margin to prevent destruction of the basic cell with the largest potential distribution in the multilayer double layer capacitor. It is conceivable to form a laminated double-layer capacitor with a predetermined withstand voltage by stacking a large number of basic cells, but such a measure will reduce the variation in insulation resistance to within about 10% when industrializing double-layer capacitors. Improved development of manufacturing technology such as controlling
Because variations in insulation resistance are covered by selection of insulation resistance or the number of laminated layers, there are drawbacks such as increased product costs. Due to their inferiority, they lacked marketability and industrialization was not achieved.
本発明の目的は、二重層キヤパシターの構造に
関して前述の欠点を除去し、各基本セル間に印加
される電圧を均一化させ工業化を可能にさせる二
重層コンデンサを提供することにある。 It is an object of the present invention to provide a double layer capacitor which eliminates the above-mentioned drawbacks regarding the structure of the double layer capacitor, equalizes the voltage applied between each elementary cell, and enables industrialization.
本発明によれば、等抵抗値の抵抗体を積層され
た各基本セルに並列に挿入したことを特徴とする
二重層コンデンサが得られる。 According to the present invention, there is obtained a double layer capacitor characterized in that resistors having equal resistance values are inserted in parallel to each stacked basic cell.
以下、本発明にかかわる二重層コンデンサに関
し、図面を用いて、詳細に説明する。 Hereinafter, the double layer capacitor according to the present invention will be explained in detail using the drawings.
二重層コンデンサの基本セル10は、第1図の
ように、電子伝導性で、かつイオンに対して不浸
透性である円板状の導電性セパレータ1、活性炭
粉末と電解質溶液からなるペースト電極2、電極
間の導通を防止するためにもうけられたイオン透
過性で電子導電を阻止する多孔性セパレータ3、
カーボン電極を保持し外界から遮断するためにも
うけられる非導電性ガスケツト4からなる。 As shown in FIG. 1, the basic cell 10 of the double layer capacitor includes a disc-shaped conductive separator 1 that is electronically conductive and impermeable to ions, and a paste electrode 2 made of activated carbon powder and an electrolyte solution. , a porous separator 3 that is ion-permeable and blocks electron conduction and is provided to prevent conduction between electrodes;
It consists of a non-conductive gasket 4 provided to hold the carbon electrode and isolate it from the outside world.
次に第2図によりこの基本セル10を積層した
二重層コンデンサの基本構造20を説明する。先
ず、抵抗11の電極リード11aおよび11b
を、基本セル10の上下の導電性セパレータ1
に、各々接触させてはさみつける形にし、7組作
り、こられを直列に積み重ねてある。これを外装
ケースの中に入れ、上面および下面を電圧印加電
極としてケース外部へ取り出すように接続し、ケ
ースの底と上蓋との間に圧力をかけ固定する。こ
の加圧により、各基本セル相互間、基本セルと電
極リード間、あるいは各基本セル内部での接触抵
抗を下げると共に、抵抗11の電極リードの抜け
防止もでき安定な構造が得られる。 Next, the basic structure 20 of a double layer capacitor in which the basic cells 10 are stacked will be explained with reference to FIG. First, the electrode leads 11a and 11b of the resistor 11
, conductive separators 1 above and below the basic cell 10
7 sets were made, and these were stacked in series. This is placed in an exterior case, the top and bottom surfaces are connected as voltage application electrodes so as to be taken out from the case, and pressure is applied between the bottom of the case and the top cover to fix the case. This pressurization reduces the contact resistance between the basic cells, between the basic cells and the electrode leads, or within each basic cell, and also prevents the electrode leads of the resistor 11 from coming off, resulting in a stable structure.
ここで抵抗11を固定し安定保持するために
は、外装ケースの内壁へ固着させると安定であつ
た。 Here, in order to fix and stably hold the resistor 11, it was found to be stable if it was fixed to the inner wall of the outer case.
以下本発明の一実施例について詳述する。 An embodiment of the present invention will be described in detail below.
導電性セパレータとしては、直径28mm、厚さ約
0.3mmの導電性カーボン配合のブチルゴムシート
を、ペースト電極としては、表面積1100m2/g
(BET法)、粒径325メツシユ以下の活性炭微粉末
と21重量%硫酸を混合し十分撹拌したものを用い
た。又多孔性セパレータとしては、プロピレン多
孔質膜を用い、非導電性ガスケツトとしては、外
径28mm、内径22mm、厚さ約0.38mmで比抵抗1011
Ω・cmのブチルゴムガスケツトを用いた。導電性
セパレータとガスケツトを接着させた基本セルに
おいて、両導電性セパレータ間に約30Kgの圧力を
かけたところ、直流静電容量として2〜3F、絶
縁抵抗として、数KΩの特性が得られた。 The conductive separator has a diameter of 28 mm and a thickness of approx.
A 0.3 mm conductive carbon-containing butyl rubber sheet is used as a paste electrode with a surface area of 1100 m 2 /g.
(BET method), a mixture of activated carbon fine powder with a particle size of 325 mesh or less and 21% by weight sulfuric acid and thorough stirring was used. A propylene porous membrane was used as the porous separator, and the non-conductive gasket had an outer diameter of 28 mm, an inner diameter of 22 mm, a thickness of approximately 0.38 mm, and a specific resistance of 10 11.
A butyl rubber gasket of Ω cm was used. When a pressure of about 30 kg was applied between the conductive separators and the gasket in a basic cell, a DC capacitance of 2 to 3 F and an insulation resistance of several KΩ were obtained.
これらの基本セルを7個抜き取つて、第2図に
示すように約100Ω(±10%)の等抵抗11を挿
入して積層した二重層コンデンサを製作したとこ
ろ、印加電圧6Vで静電容量が約0.4Fとなり漏れ
電流として約8mAが検出された。 When seven of these basic cells were extracted and a laminated double layer capacitor was fabricated by inserting equal resistance 11 of approximately 100Ω (±10%) as shown in Figure 2, the capacitance increased at an applied voltage of 6V. was approximately 0.4F, and approximately 8mA was detected as a leakage current.
これは、従来のアルミ電解コンデンサにおける
漏れ電流規格(CV値)の0.03CV(μA)と比較
し充分小さい値である。すなわちCの単位はμF
(マイクロフアラツド)、Vの単位はV(ボルト)
であり、両者の積であるCV値の単位はμA(マ
イクロアンペア)であらわされるから、上記数値
のC=0.4F=4×105μFおよびV=6Vを代入す
ると0.03CV=0.03×(4×105μF)×6V=72000
μA=72mAとなり、本願コンデンサの上記漏れ
電流値は規格値より充分小さく、等抵抗を並列に
挿んだことにより漏れ電流が大きすぎることもな
く、実用的ならびに工業的に価値が失われること
はない。 This is a sufficiently small value compared to the leakage current standard (CV value) of 0.03CV (μA) for conventional aluminum electrolytic capacitors. In other words, the unit of C is μF
(microfarad), the unit of V is V (volt)
The unit of the CV value, which is the product of both, is expressed in μA (microampere), so by substituting the above values C=0.4F=4×10 5 μF and V=6V, we get 0.03CV=0.03×(4 ×10 5 μF) × 6V=72000
μA = 72 mA, and the above leakage current value of the capacitor of the present invention is sufficiently smaller than the standard value, and because the equal resistance is inserted in parallel, the leakage current is not too large, and there is no loss of practical or industrial value. do not have.
次に、この7層コンデンサに関して、各基本セ
ルの電位分布がどのようになつているかを説明す
る。 Next, regarding this seven-layer capacitor, the potential distribution of each basic cell will be explained.
上記の等抵抗を各基本セル間にはさんだ7層の
二重層コンデンサに関して、二重層コンデンサを
構成する各基本セルに上端より1〜7まで番号を
つけ、二重層コンデンサに約3.5V、直流電圧を
印加して各基本セルの電圧を測定し、そのばらつ
きをみたところ第3図の点線Aに示すように基本
セル間の電位差を100mV以内のばらつきに等電
位化することができた。また、二重層コンデンサ
に直流電圧を印加し、その電圧を徐々に上昇させ
て二重層コンデンサを構成する基本セルのうち電
圧値が最大となる基本セルの電圧が耐電圧1.0V
に達する時の二重層コンデンサへの印加電圧を耐
電圧とし二重層コンデンサの耐電圧を測定したと
ころ6.0V以上あることを確認することができ
た。 Regarding the 7-layer double-layer capacitor with the above-mentioned equal resistance sandwiched between each basic cell, each basic cell making up the double-layer capacitor is numbered from 1 to 7 from the top, and the double-layer capacitor has a DC voltage of approximately 3.5V. was applied, the voltage of each basic cell was measured, and the variation was observed. As shown by the dotted line A in FIG. 3, it was possible to equalize the potential difference between the basic cells to within 100 mV. In addition, by applying a DC voltage to the double layer capacitor and gradually increasing the voltage, the voltage of the basic cell with the maximum voltage value among the basic cells composing the double layer capacitor is determined to have a withstand voltage of 1.0V.
The withstand voltage of the double layer capacitor was measured using the voltage applied to the double layer capacitor when the voltage reached 6.0 V as the withstand voltage.
次に上記の等抵抗をはさんだ7層のコンデンサ
より等抵抗のみを抜き去つて、同様に数10Kgの圧
力をかけ、各単位セルの電位分布を同様に測定し
たところ、第3図の実線Bのように500mV以上
のばらつきが生じ、耐電圧は4.1V迄しかなかつ
た。従つて、等抵抗を挿入した場合と同じ6Vの
耐電圧にするには単位セルを10枚以上重ねる必要
があることが判つた。 Next, we removed only the equal resistance from the seven layers of capacitors sandwiching the above equal resistance, applied a pressure of several tens of kilograms, and measured the potential distribution of each unit cell in the same way. There was a variation of more than 500mV, and the withstand voltage was only up to 4.1V. Therefore, it was found that it was necessary to stack 10 or more unit cells to achieve the same 6V withstand voltage as when equal resistance was inserted.
次に本発明に関する効果を具体的にまとめると
次のようになる。 Next, the effects of the present invention can be specifically summarized as follows.
(イ) 各基本セルの絶縁抵抗が数100〜数10KΩの
範囲にあれば、その値の1/5〜1/10の等抵抗を
挿入することにより、10〜20%以内の等電圧化
ができる。(b) If the insulation resistance of each basic cell is in the range of several hundred to several tens of kilohms, by inserting an equal resistance of 1/5 to 1/10 of that value, voltage equalization within 10 to 20% can be achieved. can.
(ロ) 従つて、各基本セルの絶縁抵抗の選別等の作
業工数を節約でき、等抵抗の値を決めておけ
ば、高耐圧な積層型二重層コンデンサの工業化
をはかることが容易である。(b) Therefore, it is possible to save man-hours such as selecting the insulation resistance of each basic cell, and by determining the equal resistance values, it is easy to industrialize high-voltage multilayer double-layer capacitors.
(ハ) 等抵抗を挿入するだけで、基本セルの積層枚
数を大巾に減らすことができ、材料費、加工費
の大巾な節約ができるため、製作が容易であり
大量生産に適する。(c) By simply inserting equal resistance, the number of laminated basic cells can be greatly reduced, resulting in significant savings in material and processing costs, making it easy to manufacture and suitable for mass production.
(ニ) 高動作電圧の場合にも、等電位化ができてい
るために電子機器での動作の信頼性・安定性が
期待できる。(iv) Even in the case of high operating voltages, the reliability and stability of operation in electronic equipment can be expected because potential equalization is achieved.
第1図は、従来の二重層コンデンサの基本セル
の断面図。第2図は、本発明に基づく積層した二
重層コンデンサの基本構造の概略部分断面図。第
3図は、積層した二重層コンデンサの各基本セル
の電位分布を示し、実線Bは等抵抗をはさまない
でただ積層しただけのコンデンサであり、点線A
は等抵抗を入れた本発明に関するものを示す。
1……導電性セパレータ、2……ペースト電
極、3……多孔性セパレータ、4……非導電性ガ
スケツト、10……基本セル、11……抵抗、1
1a,11b……電極リード。
FIG. 1 is a sectional view of a basic cell of a conventional double layer capacitor. FIG. 2 is a schematic partial cross-sectional view of the basic structure of a laminated double layer capacitor according to the present invention. Figure 3 shows the potential distribution of each basic cell of a laminated double-layer capacitor, where the solid line B represents a capacitor simply laminated without any equal resistance in between, and the dotted line A
indicates the present invention including equal resistance. DESCRIPTION OF SYMBOLS 1... Conductive separator, 2... Paste electrode, 3... Porous separator, 4... Non-conductive gasket, 10... Basic cell, 11... Resistance, 1
1a, 11b...electrode leads.
Claims (1)
て構成される二重層コンデンサにおいて実質的に
等抵抗値の複数の抵抗体を、前記各基本セルに並
列に挿入したことを特徴とする二重層コンデン
サ。1. A double layer capacitor constructed by laminating a plurality of basic cells of a double layer capacitor, characterized in that a plurality of resistors having substantially equal resistance values are inserted in parallel to each of the basic cells. .
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3580078A JPS54127561A (en) | 1978-03-27 | 1978-03-27 | Double layer condenser |
US06/022,982 US4313084A (en) | 1978-03-27 | 1979-03-22 | Laminated structure of double-layer capacitor |
DE2912091A DE2912091C2 (en) | 1978-03-27 | 1979-03-27 | Double layer capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3580078A JPS54127561A (en) | 1978-03-27 | 1978-03-27 | Double layer condenser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54127561A JPS54127561A (en) | 1979-10-03 |
JPS624848B2 true JPS624848B2 (en) | 1987-02-02 |
Family
ID=12451986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3580078A Granted JPS54127561A (en) | 1978-03-27 | 1978-03-27 | Double layer condenser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS54127561A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19922948B9 (en) * | 1998-05-15 | 2006-01-12 | Nec Corp. | Electric double layer capacitor with short circuit function |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5948916A (en) * | 1982-09-13 | 1984-03-21 | 日本電気株式会社 | Method of producing laminated electric double layer condenser |
DE3236137A1 (en) * | 1982-09-29 | 1984-03-29 | Siemens AG, 1000 Berlin und 8000 München | IMAGE RECORDING DEVICE |
JP4904950B2 (en) * | 2006-07-04 | 2012-03-28 | ダイキン工業株式会社 | Electric double layer capacitor |
-
1978
- 1978-03-27 JP JP3580078A patent/JPS54127561A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19922948B9 (en) * | 1998-05-15 | 2006-01-12 | Nec Corp. | Electric double layer capacitor with short circuit function |
Also Published As
Publication number | Publication date |
---|---|
JPS54127561A (en) | 1979-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10014125B2 (en) | High voltage EDLC cell and method for the manufacture thereof | |
US4313084A (en) | Laminated structure of double-layer capacitor | |
US5426561A (en) | High energy density and high power density ultracapacitors and supercapacitors | |
US6804108B2 (en) | Electrochemical double layer capacitor having carbon powder electrodes | |
US7830646B2 (en) | Multi electrode series connected arrangement supercapacitor | |
US20060028787A1 (en) | Wet electrolytic capacitor | |
US20090316336A1 (en) | Bipolar membrane for electrochemical supercapacitors and other capacitors | |
JPS624848B2 (en) | ||
KR20170125229A (en) | Energy storage capacitor with composite electrode structure | |
JPH04240708A (en) | Electric dipole layer capacitor | |
JP2666848B2 (en) | Carbon paste electrode | |
US6046903A (en) | Electric double layer capacitor having a separation wall | |
CN107230557B (en) | Buckle type super capacitor | |
JPH0795504B2 (en) | Electric double layer capacitor | |
JPH0331070Y2 (en) | ||
JP2019106520A (en) | Electric double layer capacitor | |
JPH0298914A (en) | Electric double layer capacitor | |
JP3519896B2 (en) | Polarizing electrode and electric double layer capacitor using the same | |
JPH027509A (en) | Electric double-layer capacitor | |
CN109196703A (en) | Electric energy storage device | |
JPH0526733Y2 (en) | ||
JPS6175512A (en) | Electric double-layer capacitor | |
JPH01103818A (en) | Electric double-layer capacitor | |
JPH0552049B2 (en) | ||
JPS629705Y2 (en) |