JPS6248366B2 - - Google Patents

Info

Publication number
JPS6248366B2
JPS6248366B2 JP15998581A JP15998581A JPS6248366B2 JP S6248366 B2 JPS6248366 B2 JP S6248366B2 JP 15998581 A JP15998581 A JP 15998581A JP 15998581 A JP15998581 A JP 15998581A JP S6248366 B2 JPS6248366 B2 JP S6248366B2
Authority
JP
Japan
Prior art keywords
porcelain
circumferential surface
electrode
forming
lead wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15998581A
Other languages
Japanese (ja)
Other versions
JPS5860519A (en
Inventor
Akira Shimizu
Tosha Maruyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP15998581A priority Critical patent/JPS5860519A/en
Publication of JPS5860519A publication Critical patent/JPS5860519A/en
Publication of JPS6248366B2 publication Critical patent/JPS6248366B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、薄い肉厚の円筒型磁器を使用してコ
ンデンサを製造する方法に関するものである。 第1図に示すように、中空円筒磁器1の内周面
及びこれに連続する外周面の一部に内部電極2を
設け、且つ磁器1の外周面に内部電極2と分離し
た状態に外部電極3を設け、内部電極2及び外部
電極3にリード線4,5を巻き付けた構造の磁器
コンデンサは既に知られている。ところで、電子
部品の小型化の要求に応えるために磁器1の肉厚
を0.15mm以下程度に薄くし、例えば、特公昭39−
15345号公報、特公昭42−3086号公報、特公昭45
−10465号公報等で示されている自動機によつて
約0.2mm径のリード線4,5を鉢巻状に巻き付
け、複数の素子がリード線によつて梯子状に連ら
なつたものを形成し、半田によつてリード線4,
5を固着すれば、磁器1にその軸方向の微細なク
ラツクが生じる。更に詳細には、20倍の顕微鏡で
観察すると、磁器1の強度のバラツキによつて1
万個中に54個の割合即ち0.54%の割合でクラツク
が生じていることが判る。従つて、第2図に示す
ようなコイルLとコンデンサCとから成るフイイ
ルタ回路のコンデンサCとして第1図に示すよう
な磁器コンデンサを使用すると、内部電極2と外
部電極3との間のマイグレーシヨンにより電極間
の絶縁抵抗が下がり、静電容量が抜けてしまうと
いう問題が生じる。 そこで、本発明の目的は、クラツクの発生を阻
止又は低減することが可能な円筒磁器コンデンサ
の製造方法を提供することにある。 上記目的を達成するための本発明は、薄い肉厚
の中空円筒磁器を形成する工程と、前記円筒磁器
の内周面及びこの内周面に連続する外周面の一部
に内部電極を形成し且つ前記円筒磁器の外周面に
外部電極を形成する工程と、前記内部電極の外周
面部分及び前記外部電極にリング状露出部が残存
するように前記内部電極と前記外部電極と前記磁
器との表面に絶縁樹脂被覆層を形成する工程と、
前記絶縁樹脂被覆層を形成した円筒コンデンサ素
子の前記内部電極及び前記外部電極の前記リング
状露出部に夫々のリード線を鉢巻状に1回又は複
数回巻き付ける工程と、前記夫々のリード線を前
記内部電極及び前記外部電極に夫々半田付けする
工程と、を含むことを特徴とする円筒型磁器コン
デンサの製造方法に係わるものである。 上記本発明によれば、内部電極と外部電極とに
リング状露出部が生じるように絶縁樹脂被覆層を
設けた後に、リード線をリング状露出部に巻き付
けるので、絶縁樹脂被覆層で磁器が補強及び保護
され、リード線の巻き付け工程及び半田付け工程
等で磁器にクラツクが生じることが阻止又は低減
される。従つて、マイグレーシヨンによる絶縁抵
抗の低下が殆んど生じなくなり、信頼性の高いコ
ンデンサを提供することが可能になる。 以下、第3図〜第7図を参照して本発明の実施
例について述べる。 まず、第3図に示す、チタン系誘電体磁器組成
物によつて長さ5.4mm、外径1.8mm、肉厚0.12mmの
中空円筒磁器1を形成する。 次に、銀ペーストを選択的に塗布し、乾燥し、
約700℃で約1時間焼き付けることによつて、第
1図と同様に内部電極2及び外部電極3を形成す
る。 次に、第4図に示す如く、内部電極2及び外部
電極3にリング状露出部2a,3aが磁器1の端
部近傍に生じるように、シリコン変性エポキシ樹
脂を選択的に塗布し、乾燥し、約200℃、2時間
で硬化させ、電極2,3及び磁器1の上に絶縁樹
脂被覆層6を形成する。 次に、自動機によつて第5図に示すようにリー
ド線4,5をリング状露出部分2a,3aに鉢巻
状に巻き付け、しかる後に、自動半田ごてを使用
して半田7,8でリード線4,5をリング状露出
部2a,3aに固着する。尚、リード線4,5の
巻き付けは、前述した特公昭39−15345号公報等
に記載されているようなリード線の自動巻き付け
装置を使用して、第6図に示すようになす。即
ち、複数のコンデンサ素子9を間欠的に移送しつ
つ、リング状露出部2a,3aにリード線4,5
を2回づつ巻き付け、複数のコンデンサ素子9を
梯子状に保持する。そして、リード線4,5のリ
ング状露出部2a,3aに対する巻き始めと巻き
終りとの部分に自動半田ごてを当て、各電極2,
3にリード線4,5を固着する。 次に、耐湿性を向上させるために、第6図の状
態を保つて素子9を移送し、各素子9を溶融ワツ
クス中に浸漬し、引き上げて乾燥し、リールに巻
き取る。 しかる後、リールから巻戻し、リード線4,5
を切断することによつて、第7図に示すような独
立したコンデンサとする。尚リード線4,5の切
断を製造段階で行わずに、回路基板にコンデンサ
を組み込む際に行つてもよい。このようにすれ
ば、自動組み込み時の素子の移送が容易になる。 上記製造方法の効果を調べるために、硝酸の希
釈液で第7図の素子から絶縁樹脂被覆層6及び電
極2,3を溶解除去し、裸の磁器1の状態を倍率
20倍の顕微鏡で調べたところ、1万個中4個
(0.04%)に微小なクラツクが入つていた。従来
方法では1万個中54個にクラツクが入つたので、
本実施例の方法によれば、クラツクが大幅に低減
されたことになる。 また、耐湿負荷試験を行うために、第7図に示
すコンデンサ素子1万個と従来のコンデンサ素子
1万個とを温度60℃、湿度90〜95%の雰囲気中に
電極2,3間に直流電圧12V印加した状態で放置
し、100時間、500時間、1000時間経過後に於ける
電極2,3間の絶縁抵抗を測定し、良否を判定し
たところ、次表の結果が得られた。尚初期の絶縁
抵抗は従来のコンデンサと本発明のコンデンサと
の両方とも104MΩ以上であつた。また、103
以下を不良とした。
The present invention relates to a method of manufacturing a capacitor using thin-walled cylindrical porcelain. As shown in FIG. 1, an internal electrode 2 is provided on the inner circumferential surface of the hollow cylindrical porcelain 1 and a part of the outer circumferential surface continuous thereto, and an external electrode is provided on the outer circumferential surface of the porcelain 1 in a state separated from the internal electrode 2. A ceramic capacitor having a structure in which lead wires 4 and 5 are wound around the inner electrode 2 and the outer electrode 3 is already known. By the way, in order to meet the demand for miniaturization of electronic components, the wall thickness of the porcelain 1 was reduced to about 0.15 mm or less, and for example,
Publication No. 15345, Special Publication No. 1973-3086, Special Publication No. 1973
- Lead wires 4 and 5 with a diameter of approximately 0.2 mm are wound in a headband shape using an automatic machine as shown in Publication No. 10465, etc., to form a ladder-like structure in which multiple elements are connected by the lead wires. Then, solder the lead wire 4,
If 5 is fixed, fine cracks will occur in the porcelain 1 in its axial direction. More specifically, when observed with a 20x microscope, it is found that due to variations in the strength of porcelain 1,
It can be seen that cracks occur at a rate of 54 out of 10,000, or 0.54%. Therefore, if a ceramic capacitor as shown in FIG. 1 is used as the capacitor C of a filter circuit consisting of a coil L and a capacitor C as shown in FIG. This causes a problem in that the insulation resistance between the electrodes decreases and capacitance is lost. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a cylindrical ceramic capacitor that can prevent or reduce the occurrence of cracks. To achieve the above object, the present invention includes a step of forming a thin-walled hollow cylindrical porcelain, and forming an internal electrode on an inner circumferential surface of the cylindrical porcelain and a part of an outer circumferential surface continuous with the inner circumferential surface. and a step of forming an external electrode on the outer circumferential surface of the cylindrical porcelain, and forming a surface of the inner electrode, the outer electrode, and the porcelain so that a ring-shaped exposed portion remains on the outer circumferential surface portion of the inner electrode and the outer electrode. forming an insulating resin coating layer on the
Wrapping each lead wire once or multiple times in a headband shape around the ring-shaped exposed portions of the internal electrode and the external electrode of the cylindrical capacitor element on which the insulating resin coating layer is formed; The present invention relates to a method of manufacturing a cylindrical ceramic capacitor, which includes a step of soldering to an internal electrode and the external electrode, respectively. According to the present invention, the insulating resin coating layer is provided on the internal electrode and the external electrode so that the ring-shaped exposed portion is formed, and then the lead wire is wound around the ring-shaped exposed portion, so that the porcelain is reinforced with the insulating resin coating layer. This prevents or reduces the occurrence of cracks in the porcelain during the lead wire winding process, soldering process, etc. Therefore, a decrease in insulation resistance due to migration hardly occurs, making it possible to provide a highly reliable capacitor. Embodiments of the present invention will be described below with reference to FIGS. 3 to 7. First, a hollow cylindrical ceramic 1 having a length of 5.4 mm, an outer diameter of 1.8 mm, and a wall thickness of 0.12 mm is formed using a titanium-based dielectric ceramic composition as shown in FIG. Then selectively apply silver paste, dry and
By baking at about 700° C. for about 1 hour, internal electrodes 2 and external electrodes 3 are formed in the same manner as in FIG. Next, as shown in FIG. 4, a silicon-modified epoxy resin is selectively applied to the internal electrode 2 and external electrode 3 so that ring-shaped exposed parts 2a and 3a are formed near the ends of the porcelain 1, and dried. The insulating resin coating layer 6 is formed on the electrodes 2 and 3 and the porcelain 1 by curing at about 200° C. for 2 hours. Next, as shown in FIG. 5, the lead wires 4 and 5 are wrapped around the ring-shaped exposed parts 2a and 3a in a headband shape using an automatic machine, and then soldered with solders 7 and 8 using an automatic soldering iron. The lead wires 4 and 5 are fixed to the ring-shaped exposed parts 2a and 3a. Incidentally, the lead wires 4 and 5 are wound as shown in FIG. 6 using an automatic lead wire winding device as described in Japanese Patent Publication No. 39-15345 mentioned above. That is, while intermittently transferring the plurality of capacitor elements 9, the lead wires 4, 5 are connected to the ring-shaped exposed parts 2a, 3a.
is wound twice each to hold a plurality of capacitor elements 9 in a ladder shape. Then, an automatic soldering iron is applied to the winding start and winding end of the ring-shaped exposed portions 2a, 3a of the lead wires 4, 5, and each electrode 2,
Attach lead wires 4 and 5 to 3. Next, in order to improve moisture resistance, the elements 9 are transferred while maintaining the state shown in FIG. 6, and each element 9 is immersed in molten wax, pulled up, dried, and wound onto a reel. After that, rewind from the reel and connect lead wires 4 and 5.
By cutting the capacitor, an independent capacitor as shown in FIG. 7 is obtained. Note that the lead wires 4 and 5 may not be cut at the manufacturing stage, but may be cut when the capacitor is assembled into the circuit board. In this way, the element can be easily transferred during automatic assembly. In order to investigate the effect of the above manufacturing method, the insulating resin coating layer 6 and electrodes 2 and 3 were dissolved and removed from the element shown in FIG. 7 using a diluted solution of nitric acid, and the state of the bare porcelain 1 was magnified.
When examined under a 20x microscope, 4 out of 10,000 pieces (0.04%) had tiny cracks. With the conventional method, cracks occurred in 54 out of 10,000 pieces, so
According to the method of this embodiment, cracks are significantly reduced. In addition, in order to perform a humidity load test, 10,000 capacitor elements shown in Figure 7 and 10,000 conventional capacitor elements were placed in an atmosphere with a temperature of 60°C and a humidity of 90 to 95%, and a direct current was applied between electrodes 2 and 3. The insulation resistance between electrodes 2 and 3 was measured after 100 hours, 500 hours, and 1000 hours had elapsed with a voltage of 12 V applied, and the quality was determined, and the results shown in the following table were obtained. The initial insulation resistance of both the conventional capacitor and the capacitor of the present invention was 10 4 MΩ or more. Also, 10 3
The following were considered defective.

【表】 この結果から明らかなように、本発明の方法に
よれば、1000時間の耐湿負荷試験によつても不良
が発生しない。このことは、本発明の1実施例に
よつて約0.04%の割合で発生するクラツクが、マ
イグレーシヨンによる絶縁劣化に殆んど影響しな
い小さなものであり、103MΩ以上の絶縁抵抗を
維持することを許すようなものであることを意味
する。従つてユーザ要求の0.01%の信頼性を得る
ことが出来る。これに対して、従来方法のコンデ
ンサでは、クラツクが発生しているものの約半分
が100時間で不良になり、1000時間では約8割が
不良になる。従つて、従来方法で生じるクラツク
は信頼性に影響するマイグレーシヨンが起きるよ
うなクラツクである。
[Table] As is clear from the results, according to the method of the present invention, no defects occur even after a 1000-hour humidity load test. This means that the cracks that occur at a rate of about 0.04% in one embodiment of the present invention are small and have little effect on insulation deterioration due to migration, and that the insulation resistance of 10 3 MΩ or more is maintained. It means something like forgiving something. Therefore, it is possible to obtain a reliability of 0.01% of the user's request. In contrast, with conventional capacitors, about half of the capacitors that crack become defective after 100 hours, and about 80% become defective after 1000 hours. Therefore, cracks that occur in the conventional method are cracks that cause migration that affects reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の円筒型磁器コンデンサを示す断
面図、第2図はフイルタを示す回路図、第3図〜
第7図は本発明の実施例に係わる円筒型磁器コン
デンサを示すものであり、第3図は電極形成後の
状態を示す断面図、第4図は絶縁被覆層形成後を
示す断面図、第5図はリード線を巻き付けて半田
付けした状態を示す断面図、第6図は梯子状にリ
ード線を巻き付けた状態の斜視図、第7図は個々
の素子に分離した状態を示す斜視図である。 尚図面に用いられている符号に於いて、1は磁
器、2は内部電極、3は外部電極、2a,3aは
リング状露出部、4,5はリード線、6は絶縁樹
脂被覆層、7,8は半田である。
Fig. 1 is a cross-sectional view showing a conventional cylindrical ceramic capacitor, Fig. 2 is a circuit diagram showing a filter, and Figs.
FIG. 7 shows a cylindrical ceramic capacitor according to an embodiment of the present invention, FIG. 3 is a sectional view showing the state after electrode formation, FIG. 4 is a sectional view showing the state after forming an insulating coating layer, and FIG. Figure 5 is a cross-sectional view showing the lead wires wrapped and soldered, Figure 6 is a perspective view of the lead wires wrapped in a ladder shape, and Figure 7 is a perspective view showing the elements separated into individual elements. be. In the symbols used in the drawings, 1 is porcelain, 2 is an internal electrode, 3 is an external electrode, 2a and 3a are ring-shaped exposed parts, 4 and 5 are lead wires, 6 is an insulating resin coating layer, and 7 , 8 is solder.

Claims (1)

【特許請求の範囲】 1 薄い肉厚の中空円筒磁器を形成する工程と、
前記円筒磁器の内周面及びこの内周面に連続する
外周面の一部に内部電極を形成し且つ前記円筒磁
器の外周面に外部電極を形成する工程と、 前記内部電極の外周面部分及び前記外部電極に
リング状露出部が残存するように前記内部電極と
前記外部電極と前記磁器との表面に絶縁樹脂被覆
層を形成する工程と、 前記絶縁樹脂被覆層を形成した円筒コンデンサ
素子の前記内部電極及び前記外部電極の前記リン
グ状露出部に夫々のリード線を鉢巻状に1回又は
複数回巻き付ける工程と、 前記夫々のリード線を前記内部電極及び前記外
部電極に夫々半田付けする工程と、 を含むことを特徴とする円筒型磁器コンデンサの
製造方法。
[Claims] 1. A step of forming a thin-walled hollow cylindrical porcelain;
forming an internal electrode on the inner circumferential surface of the cylindrical porcelain and a part of the outer circumferential surface continuous with the inner circumferential surface, and forming an external electrode on the outer circumferential surface of the cylindrical porcelain; forming an insulating resin coating layer on the surfaces of the internal electrode, the external electrode, and the porcelain so that a ring-shaped exposed portion remains on the external electrode; Wrapping the respective lead wires in a headband shape once or multiple times around the ring-shaped exposed portions of the internal electrodes and the external electrodes; and Soldering the respective lead wires to the internal electrodes and the external electrodes, respectively. , A method for manufacturing a cylindrical ceramic capacitor.
JP15998581A 1981-10-06 1981-10-06 Method of producing cylindrical porcelain condenser Granted JPS5860519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15998581A JPS5860519A (en) 1981-10-06 1981-10-06 Method of producing cylindrical porcelain condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15998581A JPS5860519A (en) 1981-10-06 1981-10-06 Method of producing cylindrical porcelain condenser

Publications (2)

Publication Number Publication Date
JPS5860519A JPS5860519A (en) 1983-04-11
JPS6248366B2 true JPS6248366B2 (en) 1987-10-13

Family

ID=15705474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15998581A Granted JPS5860519A (en) 1981-10-06 1981-10-06 Method of producing cylindrical porcelain condenser

Country Status (1)

Country Link
JP (1) JPS5860519A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354662U (en) * 1989-09-29 1991-05-27

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354662U (en) * 1989-09-29 1991-05-27

Also Published As

Publication number Publication date
JPS5860519A (en) 1983-04-11

Similar Documents

Publication Publication Date Title
JP5897247B2 (en) Electronic component and method for manufacturing electronic component
JPS6248366B2 (en)
US20010005167A1 (en) Electronic part and method of making same
JPH09297069A (en) Temperature detecting sensor
JPH04216603A (en) Winding component and manufacture thereof
JP3002946B2 (en) Chip type inductor and manufacturing method thereof
JPH10247611A (en) Capacitor
JP2004266047A (en) High frequency choke coil and its manufacturing process
US4364163A (en) Methods for mounting connection wires on a solid electrolyte capacitor
JP2002118019A (en) Surface-mounting winding parts
JPH02140906A (en) Connection structure of lead wire
JP3033647B2 (en) Fused solid electrolytic capacitor and method of manufacturing the same
JPH0123934B2 (en)
JPS603577Y2 (en) cylindrical chip capacitor
JPH0243708A (en) Chip type inductance element
JP4291425B2 (en) Square air-core coil
JPS6244516Y2 (en)
JPH0878278A (en) Production of electronic device
JPS5849655Y2 (en) Connecting parts for jumper circuits
JPS5834743Y2 (en) Kogata transformer
JPH05182855A (en) Manufacture of choke coil
JPH04262513A (en) Electrode for cylindrical electronic component, its manufacture
EP3444827A1 (en) Captured contact coil
JPH03141630A (en) Manufacture of solid electrolytic capacitor
JPH0160927B2 (en)