JPS6248099B2 - - Google Patents

Info

Publication number
JPS6248099B2
JPS6248099B2 JP55120488A JP12048880A JPS6248099B2 JP S6248099 B2 JPS6248099 B2 JP S6248099B2 JP 55120488 A JP55120488 A JP 55120488A JP 12048880 A JP12048880 A JP 12048880A JP S6248099 B2 JPS6248099 B2 JP S6248099B2
Authority
JP
Japan
Prior art keywords
pressure
clutch
pressure regulating
hydraulic
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55120488A
Other languages
Japanese (ja)
Other versions
JPS5747032A (en
Inventor
Goichi Kudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP55120488A priority Critical patent/JPS5747032A/en
Publication of JPS5747032A publication Critical patent/JPS5747032A/en
Publication of JPS6248099B2 publication Critical patent/JPS6248099B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sheets, Magazines, And Separation Thereof (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Description

【発明の詳細な説明】 本発明は、主として船舶における主機と出力軸
系との間に介設される油圧クラツチに関し、特に
クラツチ作動油圧を制御できるようにした油圧ク
ラツチに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates primarily to a hydraulic clutch interposed between a main engine and an output shaft system in a ship, and more particularly to a hydraulic clutch capable of controlling clutch operating oil pressure.

第1図は本発明の油圧式船用減速逆転クラツチ
(以下、単に油圧クラツチと称す)の油圧回路を
示しているが、従来の油圧クラツチの油圧回路
は、第1図に示す油圧回路のクラツチ作動油圧調
整弁(以下、クラツチ調圧弁と称す)22の代わ
りに、第4図のクラツチ調圧弁22′(弁体2
8′は第5図参照)を使用したものである。
Fig. 1 shows the hydraulic circuit of the hydraulic speed reduction/reversing clutch for ships of the present invention (hereinafter simply referred to as the hydraulic clutch), but the hydraulic circuit of the conventional hydraulic clutch is different from the clutch operation of the hydraulic circuit shown in Fig. 1. Instead of the hydraulic pressure regulating valve (hereinafter referred to as clutch pressure regulating valve) 22, a clutch pressure regulating valve 22' (valve body 2
8' (see FIG. 5) is used.

セレクター21を正転(または逆転)に切換え
ると、クラツチ作動油圧と機関回転数との関係
は、第8図の曲線P1P1cPcのごとくなる。但し、
油ポンプはギヤポンプ等の容積型で、機関にて一
定の回転比で駆動されるものとする。
When the selector 21 is switched to normal rotation (or reverse rotation), the relationship between the clutch operating oil pressure and the engine speed becomes as shown by the curve P 1 P 1 cPc in FIG. 8. however,
The oil pump is a displacement type such as a gear pump, and is driven by the engine at a constant rotation ratio.

なお、Pc(Pc=P0c=P1c=P2c=P3c=P4c)は
クラツチ調圧弁22′の設定圧である。
Note that Pc (Pc= P0c = P1c = P2c = P3c = P4c ) is the set pressure of the clutch pressure regulating valve 22'.

機関回転数が極めて低いところでは、油ポンプ
の吐出量が少ないので、各部からのリークにより
油圧は設定圧Pcまで至らず、P1曲線となる。各
部からのリークが全くない場合には、油圧は回転
数に関係なく設定圧(Pc=P0c=P1c=P2c=P3c
=P4c)で一定となる。
When the engine speed is extremely low, the discharge amount of the oil pump is small, so the oil pressure does not reach the set pressure Pc due to leakage from various parts, resulting in a P1 curve. If there is no leakage from any part, the hydraulic pressure will be the set pressure (Pc = P 0 c = P 1 c = P 2 c = P 3 c
= P 4 c) and becomes constant.

第8図にてHs曲線は航走時の機関回転数と機
関出力との関係を示し、Ps曲線はその時のクラ
ツチ必要作動油圧を示す。HB曲線はボラード時
(係留運転時)の機関回転数と機関出力との関係
を示し、PB曲線はその時のクラツチ必要作動油
圧を示す。
In Fig. 8, the Hs curve shows the relationship between the engine speed and the engine output during cruising, and the Ps curve shows the required hydraulic pressure for the clutch at that time. The H B curve shows the relationship between engine speed and engine output during bollard operation (mooring operation), and the P B curve shows the required hydraulic pressure for the clutch at that time.

したがつて、本例の船用機関の出力範囲は、曲
線HBB1HS1以下であり、その時のクラツチ必
要作動油圧は曲線PBB1PS1である。しかるにク
ラツチの作動油圧は曲線P1P1cPcであるので、中
速以下では油圧が必要以上に高過ぎ、特に低速で
は著しい。
Therefore, the output range of the marine engine of this example is below the curve H B H B1 H S1 , and the required clutch hydraulic pressure at that time is the curve P B P B1 P S1 . However, since the hydraulic pressure of the clutch is on the curve P 1 P 1 cPc, the hydraulic pressure is much higher than necessary at medium speeds or lower, especially at low speeds.

これは、中速以下では無駄な動力を油ポンプが
消費するだけでなく、クラツチ油圧が高いのでク
ラツチ部の結合トルクが大となつて捩り剛性が高
くなり、次の如き重大な支障を起こす。
This is because the oil pump not only wastes power at medium speeds or lower, but also because the clutch oil pressure is high, the coupling torque of the clutch becomes large and torsional rigidity increases, causing the following serious problems.

すなわち、デイーゼル機関等は低速時のトルク
変動が大で、それに伴い回転速度変動も大きいの
で、クラツチ部の捩り剛性が高いと、機関の回転
変動が油圧クラツチに伝達され、激しいギヤ音が
発生する。このギヤ音は船内環境を著しく悪化さ
せるだけでなく、歯車の歯面同志の打ち合いによ
り歯面を損傷させたり、トルク変動に伴つて発生
する振動により、機関および船体各部のボルト等
がゆるんだり、配管の亀裂や電気配線の切断等、
重大な事故を併発させる。
In other words, diesel engines have large torque fluctuations at low speeds and correspondingly large rotational speed fluctuations, so if the torsional rigidity of the clutch is high, the engine rotational fluctuations will be transmitted to the hydraulic clutch, causing intense gear noise. . This gear noise not only significantly worsens the ship's environment, but also damages the tooth surfaces of the gears due to their collision, and the vibrations generated by torque fluctuations may loosen bolts, etc. in the engine and various parts of the ship's hull. Cracks in piping, cuts in electrical wiring, etc.
causing serious accidents.

この対策として従来は、非常に過大なフライホ
イールを装着して低速時の速度変動を小さくした
り、機関との結合に流体継手や特殊な継手を使用
していたが、重量およびコストが著しく高くなつ
ていた。
Conventional countermeasures have been to install a very oversized flywheel to reduce speed fluctuations at low speeds, or to use fluid couplings or special couplings to connect to the engine, but these have been extremely heavy and costly. I was getting used to it.

本発明は、上述の諸問題の解決をはかろうとす
るもので、低速回転時にも適切な作動が得られる
ようにした油圧制御式油圧クラツチを提供するこ
とを目的とする。
The present invention attempts to solve the above-mentioned problems, and aims to provide a hydraulically controlled hydraulic clutch that can provide appropriate operation even during low speed rotation.

このため本発明は、機関と出力軸系との間に介
設された油圧クラツチにおいて、油ポンプからク
ラツチ作動油圧調整弁を経由してクラツチ作動機
構へ至るクラツチ作動油圧路に、機関出力を伝達
するのに必要な油圧を残して減圧しうる調圧絞り
穴と、上記機関の最低使用回転数のときの必要油
圧以上で開弁して上記調圧絞り穴を連通させる絞
り調圧弁と、上記の調圧絞り穴と絞り調圧弁とを
通じ流出した圧油を少なくともクラツチ軸受潤滑
油系へ開放する圧油開放路とをそなえ、上記の調
圧絞り穴と絞り調圧弁とが上記クラツチ作動油圧
調整弁の弁体に設けられたことを特徴としてい
る。
Therefore, in the hydraulic clutch interposed between the engine and the output shaft system, the engine output is transmitted from the oil pump to the clutch operating hydraulic path leading to the clutch operating mechanism via the clutch operating hydraulic pressure regulating valve. a pressure regulating throttle hole that can reduce the pressure while leaving the necessary hydraulic pressure for A pressure oil release path is provided for releasing the pressure oil flowing out through the pressure regulating throttle hole and the throttle pressure regulating valve into at least the clutch bearing lubricating oil system, and the pressure regulating throttle hole and the throttle pressure regulating valve adjust the clutch operating hydraulic pressure. It is characterized by being provided on the valve body of the valve.

すなわち、本発明では、まず機関回転数と機関
出力との関係により、回転数とクラツチの必要油
圧との関係が求められ、次に回転数と油ポンプの
吐出量との関係よりクラツチの必要油圧を確保す
るための絞り穴径が求められる。
That is, in the present invention, first, the relationship between the engine speed and the required oil pressure of the clutch is determined from the relationship between the engine speed and the engine output, and then the required oil pressure of the clutch is determined from the relationship between the engine speed and the discharge amount of the oil pump. The aperture hole diameter is required to ensure the following.

そして、クラツチ作動油圧路に上記の計算にて
求めた径の絞り穴(調圧絞り穴)と、必要油圧で
開く絞り調圧弁を設けて、低速時にはクラツチ油
圧を必要十分な油圧まで低下させて、クラツチの
スリツプトルクを小さくし、機関のピークトルク
時にはクラツチをスリツプさせて、クラツチの速
度変動を小さくすることにより、ギヤ音の発生が
防止されるのである。
Then, a throttle hole (pressure regulating throttle hole) with the diameter determined by the above calculation is installed in the clutch operating hydraulic path, and a throttle pressure regulating valve that opens at the required hydraulic pressure is installed to reduce the clutch hydraulic pressure to the necessary and sufficient hydraulic pressure at low speeds. By reducing the slip torque of the clutch and causing the clutch to slip when the engine is at peak torque, the generation of gear noise can be prevented by reducing clutch speed fluctuations.

中速以下の回転数では、クラツチ作動圧力が必
要十分な油圧となり、油ポンプの無駄な動力を節
減できるので、機関の燃費が節約できる。
At medium speeds and lower rotation speeds, the clutch operating pressure becomes the necessary and sufficient hydraulic pressure, and the wasted power of the oil pump can be saved, so the fuel consumption of the engine can be saved.

これらの対策が殆どコストアツプなしででき、
既存の油圧クラツチにも容易に適用できる利点が
ある。
These measures can be taken with almost no cost increase,
It has the advantage that it can be easily applied to existing hydraulic clutches.

以下、図面により本発明を油圧式船用減速逆転
クラツチに用いた場合の実施例について説明する
と、第1図は本発明の油圧式船用減速逆転クラツ
チ(以下、油圧クラツチと称す)の油圧回路を示
すもので、図示していないデイーゼル機関等の出
力軸1より、継手2を経てクラツチ軸3が駆動さ
れる。クラツチ軸3にはクラツチ箱4および逆転
中間駆動歯車5が焼ばめ等により固定されてお
り、正転駆動歯車6が回転自在に支持されてい
る。
Hereinafter, an embodiment in which the present invention is applied to a hydraulic speed reduction/reversing clutch for ships will be explained with reference to the drawings. FIG. A clutch shaft 3 is driven from an output shaft 1 of a diesel engine (not shown) through a joint 2. A clutch box 4 and a reverse intermediate drive gear 5 are fixed to the clutch shaft 3 by shrink fit or the like, and a normal rotation drive gear 6 is rotatably supported.

逆転軸7にはクラツチ箱8、逆転中間被動歯車
9が焼ばめ等により固定されており、逆転駆動歯
車10が回転自在に支持されている。なお逆転中
間駆動歯車5と同被動歯車9とは互いに噛み合つ
ている。
A clutch box 8 and a reverse intermediate driven gear 9 are fixed to the reverse rotation shaft 7 by shrink fit or the like, and a reverse rotation driving gear 10 is rotatably supported. Note that the reverse intermediate drive gear 5 and the driven gear 9 are meshed with each other.

減速歯車11は正転および逆転駆動歯車6,1
0に噛み合つており、減速軸12に焼ばめ等によ
り固定されている。またプロペラ軸14は継手1
3により減速軸12に連結されている。
The reduction gear 11 is the forward rotation and reverse rotation drive gear 6,1
0, and is fixed to the reduction shaft 12 by shrink fit or the like. In addition, the propeller shaft 14 is connected to the joint 1
3 to the deceleration shaft 12.

なお、図中の符号15は油ポンプ、16は油溜
り(ドレンタンク)、17はストレーナー、18
は油圧計、19はオイルクーラー、20は切換
弁、21はセレクター、22はクラツチ調圧弁
(クラツチ作動油圧調整弁)、25,26はそれぞ
れクラツチ調圧弁の弁体28に設けた調圧絞り穴
および絞り調圧弁、23は潤滑油圧調整弁(以
下、潤滑調圧弁と称す)、24は緩衝絞り弁を示
す。
In addition, the reference numeral 15 in the figure is an oil pump, 16 is an oil reservoir (drain tank), 17 is a strainer, and 18
19 is an oil pressure gauge, 19 is an oil cooler, 20 is a switching valve, 21 is a selector, 22 is a clutch pressure regulating valve (clutch operating oil pressure regulating valve), and 25 and 26 are pressure regulating orifice holes provided in the valve body 28 of the clutch pressure regulating valve, respectively. and a throttle pressure regulating valve, 23 a lubrication oil pressure regulating valve (hereinafter referred to as a lubrication pressure regulating valve), and 24 a buffer throttle valve.

第2図は第1図の切換弁20の詳細を示すもの
で、切換弁本体27にはセレクター21、クラツ
チ調圧弁の弁体28、緩衝ピストン41、外ばね
42、内ばね43、潤滑調圧弁の弁体44、同ば
ね45、緩衝絞り弁の弁体46、同ばね47、絞
り弁座48、セレクター抑え蓋49、調圧弁抑え
蓋50が取付けられている。
FIG. 2 shows the details of the switching valve 20 shown in FIG. A valve body 44, a spring 45, a buffer throttle valve valve body 46, a spring 47, a throttle valve seat 48, a selector restraining lid 49, and a pressure regulating valve restraining lid 50 are attached.

なお、第1図のクラツチ調圧弁22は、第2図
の各部材28,41,42,43より成り、第1
図の潤滑調圧弁23は、第2図の各部材44,4
5より成り、第1図の緩衝絞り弁24は、第2図
の各部材46,47,48より成る。
Note that the clutch pressure regulating valve 22 shown in FIG.
The lubricant pressure regulating valve 23 shown in the figure is different from each member 44, 4 shown in FIG.
5, and the buffer throttle valve 24 shown in FIG. 1 is made up of each member 46, 47, 48 shown in FIG.

油ポンプ15より吐出された油は、流入口38
より切換弁本体27の中に入り、クラツチ調圧弁
22にて調圧されてセレクター21により分配さ
れる。弁体28を有するクラツチ調圧弁22によ
り調圧された余分の油は、圧油開放路Bへ流出
し、さらに潤滑調圧弁23により調圧され、クラ
ツチ軸受潤滑油系Aに送られる。潤滑調圧弁23
により調圧された余分の油は排出口40より油溜
り(ドレンタンク)へ排出される。
The oil discharged from the oil pump 15 flows through the inlet port 38.
The pressure enters the switching valve main body 27, the pressure is regulated by the clutch pressure regulating valve 22, and the pressure is distributed by the selector 21. Excess oil whose pressure is regulated by the clutch pressure regulating valve 22 having the valve body 28 flows out to the pressure oil release path B, and is further pressure regulated by the lubrication pressure regulating valve 23 and sent to the clutch bearing lubricating oil system A. Lubrication pressure regulating valve 23
The excess oil whose pressure has been regulated is discharged from the discharge port 40 to an oil reservoir (drain tank).

第3図は第2図におけるクラツチ調圧弁の弁体
28の詳細を示している。弁体28は、胴部2
9、つば部30および内ばね案内部31が一体に
形成されたもので、同弁体28の内部には中空部
32および排出口33が設けられ、さらに中空部
32の一端の開口部に圧入等により嵌め込まれて
固定されたケーシング34には、絞り穴25が形
成されている。
FIG. 3 shows details of the valve body 28 of the clutch pressure regulating valve in FIG. The valve body 28 is connected to the body 2
9. The flange portion 30 and the inner spring guide portion 31 are integrally formed, and the inside of the valve body 28 is provided with a hollow portion 32 and a discharge port 33, and is further press-fitted into the opening at one end of the hollow portion 32. A throttle hole 25 is formed in the casing 34 that is fitted and fixed by a screw or the like.

そして、絞り穴25の内端に連通する円錐状凹
所に絞り調圧弁26の弁体36が配設されて、同
弁体36を押圧する調圧絞り弁ばね37が、中空
部32内に装填されている。
A valve element 36 of the throttle pressure regulating valve 26 is disposed in a conical recess communicating with the inner end of the throttle hole 25, and a pressure regulating throttle valve spring 37 that presses the valve element 36 is inserted into the hollow portion 32. Loaded.

このようにして、絞り穴25および絞り調圧弁
26を通じ流出した圧油は、圧油開放路Bへ入
り、少なくともクラツチ軸受潤滑油系Aへ向けて
開放されるようになつている。なお、本例では絞
り調圧弁26の弁体36として鋼球が使用されて
いる。
In this way, the pressure oil flowing out through the throttle hole 25 and the throttle pressure regulating valve 26 enters the pressure oil release path B and is released toward at least the clutch bearing lubricating oil system A. In this example, a steel ball is used as the valve body 36 of the throttle pressure regulating valve 26.

第8図は船用機関の機関回転数と機関出力およ
びクラツチ作動油圧との関係を示す。
FIG. 8 shows the relationship between the engine speed, engine output, and clutch operating oil pressure of a marine engine.

航走時の機関回転数と機関出力との関係は、曲
線Hsとなり、このときのクラツチの必要油圧は
曲線Psとなる。また、ボラード時の機関回転数
と機関出力およびクラツチの必要油圧はそれぞ
れ、曲線HBおよびPBとなる。
The relationship between engine speed and engine output during cruising is curve Hs, and the required oil pressure for the clutch at this time is curve Ps. Furthermore, the engine speed, engine output, and required oil pressure for the clutch at the time of bollarding are represented by curves H B and P B , respectively.

したがつて、本例の船用機関の出力範囲は曲線
BB1Hs1以下であり、クラツチの必要油圧は
曲線PBB1Ps1以下である。実際のクラツチ油圧
は曲線PBB1Ps1に若干の余裕率をとればよい。
Therefore, the output range of the marine engine in this example is below the curve H B H B1 Hs 1 , and the required oil pressure of the clutch is below the curve P B P B1 Ps 1 . For the actual clutch oil pressure, it is sufficient to add some margin to the curve P B P B1 Ps 1 .

しかるに従来のクラツチ調圧弁(第4,5図の
もの)を使用した場合には、機関回転数とクラツ
チ油圧との関係は曲線P1P1cPc(P1c,Pcはクラ
ツチ調圧弁による設定圧力)のごとくなり、特に
中速以下では油圧が過大である。
However, when a conventional clutch pressure regulating valve (as shown in Figs. 4 and 5) is used, the relationship between engine speed and clutch oil pressure is expressed by the curve P 1 P 1 cPc (P 1 c, Pc are the settings by the clutch pressure regulating valve). (pressure), and the oil pressure is excessive, especially at medium speeds or lower.

それゆえ、中速以下では必要以上の過大な油圧
を発生しているため、機関は無駄な動力を発生
し、そのため無駄な燃料を消費しているのみなら
ず、クラツチ部の捩り剛性が高いので、機関のト
ルク変動に起因してクラツチの歯車同志の歯面の
打合い等による激しいギヤ音が発生する。
Therefore, at medium speeds or lower, the engine generates more hydraulic pressure than necessary, which not only causes the engine to generate wasted power and therefore wastes fuel, but also because the torsional rigidity of the clutch is high. Due to engine torque fluctuations, intense gear noise is generated due to the contact between the tooth surfaces of the clutch gears.

このギヤ音は船内環境を著しく悪化させるだけ
でなく、歯車の歯面を損傷させたり、トルク変動
に伴つて発生する振動により、機関および船体各
部のボルト等がゆるんだり、配管の亀裂や電線の
切断、また漁探等の電子機器の故障を誘発し、さ
らに騒音により魚群が散逸するため漁獲が激減す
る等の重大な事故や問題をひき起こしていた。
This gear noise not only significantly deteriorates the ship's environment, but also damages the tooth surfaces of the gears, and the vibrations generated by torque fluctuations can loosen bolts, etc. in the engine and various parts of the ship, crack pipes, and damage electrical wires. This caused severe accidents and problems, such as cutting off equipment, causing damage to electronic equipment such as fishing probes, and causing schools of fish to scatter due to the noise, resulting in a sharp drop in catches.

この不具合を改良するために、従来のクラツチ
調圧弁22′(第4,5図)の代わりに第6,7
図に示す絞り穴25″つき調圧弁22″を使用する
ことが考えられる。なお、符号28″は弁体、3
3″は排出口を示す。
In order to improve this problem, in place of the conventional clutch pressure regulating valve 22' (Figs. 4 and 5),
It is conceivable to use a pressure regulating valve 22'' with a throttle hole 25'' shown in the figure. In addition, the code 28'' is a valve body, 3
3'' indicates the outlet.

しかし、この調圧弁22″における絞り穴2
5″の面積は、他のリーク個所のリーク面積のば
らつき、個々の油ポンプの流量特性、油の粘度等
によつて相当影響されるので、設計段階で最終決
定することは容易でない。
However, the throttle hole 2 in this pressure regulating valve 22''
It is not easy to finalize the area of 5'' at the design stage because it is considerably influenced by variations in leak area at other leak points, flow characteristics of individual oil pumps, viscosity of oil, etc.

例えば第8図において、絞り穴25″が同一径
の弁体28″(第7図)を使用した場合、油圧特
性は、同一機種で、ある機関では曲線P2となる
が、他の機関では曲線P3となり、さらに他の機関
では曲線P4となることがある。
For example, in Fig. 8, if a valve body 28'' (Fig. 7) whose throttle hole 25'' has the same diameter is used, the hydraulic characteristics will be curve P 2 in some engines of the same model, but in other engines. Curve P 3 , and in other institutions may be curve P 4 .

いま、第8図にて曲線P2をギヤ音発生の限界
(中速以下にて、曲線P2よりも油圧が高い区域は
ギヤ音が発生し使用不可の場合)、曲線PBがクラ
ツチスリツプの限界(曲線PBよりも油圧が低い
区域はクラツチがスリツプするため使用不可の場
合)とすれば、弁体28″(第7図参照)の使用
範囲は曲線P2とPBの間の区域である。この場
合、曲線P4は低回転域で曲線PBとなるので、低
回転域ではクラツチがスリツプするため使用でき
ない。同様に中速以下で曲線P2を超えたものはギ
ヤ音発生のため使用できない。
Now, in Figure 8, curve P 2 is the limit of gear noise generation (at medium speed or lower, areas where the oil pressure is higher than curve P 2 generate gear noise and cannot be used), and curve P B is the clutch slip. (in the area where the oil pressure is lower than the curve P B , the clutch slips and cannot be used), then the usable range of the valve body 28'' (see Figure 7) is between the curves P 2 and P B. In this case, curve P 4 becomes curve P B in the low rotation range, so it cannot be used because the clutch slips in the low rotation range. Similarly, anything that exceeds curve P 2 at medium speed or lower will cause gear noise. Unable to use due to outbreak.

このような場合には、絞り穴25″の径の寸法
を変更して、油圧特性が曲線P2とPBの範囲内に
なるようにしなければならない。そのために同一
形式の船用機関でも弁体28″の絞り穴25″の寸
法を変えなければならないので、特に大量生産の
場合は、生産、管理およびアフターサービスの面
からも極めて不便である。
In such a case, the diameter of the throttle hole 25'' must be changed so that the hydraulic characteristics fall within the range of curves P 2 and P B. For this reason, even if the same type of marine engine is used, the valve body Since the dimensions of the 28" orifice 25" must be changed, it is extremely inconvenient from the viewpoint of production, management, and after-sales service, especially in the case of mass production.

そこで本発明の油圧クラツチでは、これを解決
するために、第1図のごとくクラツチ調圧弁22
の弁体28に調圧絞り穴25および絞り調圧弁2
6が設けられている。クラツチ調圧弁22の詳細
は第3図に示すようになつている。
Therefore, in order to solve this problem, the hydraulic clutch of the present invention has a clutch pressure regulating valve 22 as shown in FIG.
A pressure regulating throttle hole 25 and a throttle pressure regulating valve 2 are provided in the valve body 28 of
6 is provided. The details of the clutch pressure regulating valve 22 are shown in FIG.

第9図は、第8図の曲線PB,P2,P3,P4のみ
を取出して拡大して示すもので、第9図において
第8図の曲線PB,P2,P3,P4はそれぞれPB
0PB1,P20P2c,P30P3cP40P4cである。
FIG. 9 shows only the curves P B , P 2 , P 3 , and P 4 in FIG. 8 in an enlarged manner . P 4 are each P B
0 P B1 , P 20 P 2 c, P 30 P 3 c P 40 P 4 c.

絞り穴25″の径が同一の弁体28″(第7図参
照)を同一機種で異なる機関に使用した場合、例
えば#1、#2、#3機関の油圧特性はそれぞれ
P20P2c(P2曲線)、P30P3c(P3曲線)、P40P4c(P4
曲線)になることがある。この場合、絞り穴2
5″付き弁体28″は、#1、#2機関には使用で
きるが、#3機関には、低速域でクラツチスリツ
プするため使用できない。
When valve bodies 28'' (see Fig. 7) with the same throttle hole 25'' diameter are used in different engines of the same model, for example, the hydraulic characteristics of #1, #2, and #3 engines will be different from each other.
P 20 P 2 c (P 2 curve), P 30 P 3 c (P 3 curve), P 40 P 4 c (P 4
curve). In this case, the aperture hole 2
The valve body 28'' with 5'' can be used for engines #1 and #2, but cannot be used for engine #3 because it causes clutch slip in the low speed range.

ここで、上記の弁体28″を第3図に示す弁体
28に変更すると次のようになる。但し、弁体2
8における絞り穴25の面積は、弁体28″の絞
り穴25″と同じとする。
Here, if the above-mentioned valve body 28'' is changed to the valve body 28 shown in FIG. 3, the result will be as follows.However, the valve body 28''
The area of the throttle hole 25 in 8 is the same as the throttle hole 25'' of the valve body 28''.

弁体28はその絞り穴25について、絞り調圧
弁26の弁体36およびそのばね37により、開
弁圧をPB0にセツトされているので、最低調整
圧力は機関回転数(油ポンプ回転数)に関係なく
B0以上である。
The valve opening pressure of the valve body 28 is set to P B0 with respect to its throttle hole 25 by the valve body 36 of the throttle pressure regulating valve 26 and its spring 37, so the minimum adjustment pressure is equal to the engine rotation speed (oil pump rotation speed). P is greater than or equal to P B0 regardless of.

回転数が特に低いところでは吐出量が少ないの
で、絞り調圧弁26において、弁体36のリフト
が小さく、弁体36とケーシング34との間の油
の通過面積は、絞り穴25の面積よりも小さい。
回転数の上昇とともに油ポンプの吐出量が増すの
で、弁体36のリフトが増加し、弁体36とケー
シング34との間の通過面積が、絞り穴25の面
積とほぼ等しくなるまで増加する。
Since the discharge amount is small where the rotational speed is particularly low, the lift of the valve body 36 in the throttle pressure regulating valve 26 is small, and the oil passage area between the valve body 36 and the casing 34 is larger than the area of the throttle hole 25. small.
Since the discharge amount of the oil pump increases as the rotational speed increases, the lift of the valve body 36 increases, and the passage area between the valve body 36 and the casing 34 increases until it becomes approximately equal to the area of the throttle hole 25.

今、第9図を参照して絞り穴25″を有する弁
体28″を使用し、油圧特性がP40P4c(P4曲線)
であつた場合に、絞り穴25の面積が同じで開弁
圧がPB0にセツトされた第3図の弁体28に変
更した場合には、上述の理由により、最低回転数
のときの調整圧力は、絞り調圧弁26における弁
体36とケーシング34の弁座面との間の通過面
積が、絞り穴25のそれよりも小さいので、PB
よりも高くP′40となる。この圧力は回転数の上
昇とともに上昇するが、同時に調圧ばね37を圧
縮して弁体36のリフトが上昇し、弁体36とケ
ーシング34の弁座面との間の通過面積が増加す
るので、圧力上昇はゆるやかになる。弁体36と
ケーシング34との間の通過面積が増加して、絞
り穴25の面積とほぼ同じになつたところで、調
整圧力は弁体28″のそれとほぼ一致し、それ以
降は弁体28″の圧力特性と同様となる。すなわ
ち、弁体28″の油圧特性はP40P4cであるのに対
し、弁体28のそれはP′40P4cとなる。
Now, referring to Fig. 9, a valve body 28'' with a throttle hole 25'' is used, and the hydraulic characteristic is P 40 P 4 c (P 4 curve).
If the valve body 28 is changed to the one shown in Fig. 3 in which the area of the throttle hole 25 is the same and the valve opening pressure is set to P B0 , due to the above-mentioned reasons, the adjustment at the lowest rotation speed The pressure is P
It is higher than 0 and becomes P′ 40 . This pressure increases as the rotation speed increases, but at the same time, the pressure regulating spring 37 is compressed, the lift of the valve body 36 increases, and the passage area between the valve body 36 and the valve seat surface of the casing 34 increases. , the pressure rises slowly. When the passage area between the valve body 36 and the casing 34 increases and becomes almost the same as the area of the throttle hole 25, the regulated pressure almost matches that of the valve body 28''; The pressure characteristics are similar to those of . That is, the hydraulic characteristic of the valve body 28'' is P 40 P 4 c, while that of the valve body 28 is P' 40 P 4 c.

同様に弁体28″の油圧特性がP30P3c,P20P2c
であつたものに、弁体28を使用すると、それぞ
れP′30P′20P2cとなる。なお、ここでP20>P30
P40とした場合、P′40−P40>P′30−P30>P′20−P20
となる。
Similarly, the hydraulic characteristics of the valve body 28'' are P 30 P 3 c, P 20 P 2 c
When the valve body 28 is used in the case where the valve body 28 is used, the values become P' 30 P' 20 P 2 c, respectively. In addition, here P 20 > P 30 >
When P 40 , P′ 40 −P 40 >P′ 30 −P 30 >P′ 20 −P 20
becomes.

この理由は絞り調圧弁26の開弁圧力がPB0
とすると、最低回転数の時の調整圧力がP40の場
合には、開弁(リフト0)までにPB0−P40の圧
力が必要で、さらに弁体36を同ばね37を圧縮
して開口させるために、P′40−PB0の圧力を要
する。
The reason for this is that the opening pressure of the throttle pressure regulating valve 26 is P B0
If the adjustment pressure at the minimum rotational speed is P 40 , a pressure of P B0 - P 40 is required before the valve opens (lift 0), and the valve body 36 is compressed by compressing the spring 37. A pressure of P′ 40 −P B0 is required for opening.

同様にP30およびP20の場合には、P30>PB0
P20>PB0なので、弁体36は同ばね37が圧縮
されてすでに開口しているので、開口面積(弁体
36のリフトに比例)、ばね37の押圧力(弁体
36のリフトの関数)、油ポンプの吐出量等によ
つて圧力が決定され、それぞれP′30,P′20とな
る。
Similarly, in the case of P 30 and P 20 , P 30 > P B0 ,
Since P 20 > P B0 , the valve body 36 has already opened due to the compression of the spring 37, so the opening area (proportional to the lift of the valve body 36) and the pressing force of the spring 37 (a function of the lift of the valve body 36) ), the pressure is determined by the discharge amount of the oil pump, etc., and becomes P' 30 and P' 20 , respectively.

なお、P20>P30>PB0であるから、各圧力で
の弁体36のリフトをそれぞれL20,L30,LB0
とすれば、同様にL20>L30>LB0となる。但
し、LB=0とする。
In addition, since P 20 > P 30 > P B0 , the lift of the valve body 36 at each pressure is L 20 , L 30 , L B0 , respectively.
Similarly, L 20 >L 30 >L B0 . However, it is assumed that L B =0.

また、すでに述べたように弁体36のリフト最
大値は同調圧弁26の開口面積が絞り穴25の面
積とほぼ同じになる量であり、これをLmaxとす
る。次に、P′20,P′30,P′40での弁体36のリフ
トをそれぞれL′20,L′30,L′40とすれば、L′20
L′30>L′40となるが、これらの値はLmaxに接近
し、また各々の差異も少ない。すなわち、一般に
次のような関係がある。
Furthermore, as already mentioned, the maximum lift value of the valve body 36 is the amount by which the opening area of the synchronized pressure valve 26 is approximately the same as the area of the throttle hole 25, and this is defined as Lmax. Next, if the lifts of the valve body 36 at P' 20 , P' 30 , and P' 40 are respectively L' 20 , L' 30 , and L' 40 , then L' 20 >
Although L′ 30 >L′ 40 , these values are close to Lmax, and there is little difference between them. That is, generally there is the following relationship.

L20−L30>L′20−L′30 L30−L40>L′30−L′40(L40=LB0=0) したがつて、 L′20−L20<L′30−L30<L′40−LB0 ゆえに P′20−P20<P′30−P30<P′40−PB0 当然のことながら P′40−PB0<P′40−P40 これは最低回転数の時の調整圧力が低いほど、
弁体28の低回転域での圧力上昇効果が大であ
り、調整圧力が高いほど、圧力上昇が小さいこと
を示す。特に最低回転数の時の調整圧力がPB
り低い場合にはその効果が大きい。
L 20 −L 30 >L′ 20 −L′ 30 L 30 −L 40 >L′ 30 −L′ 40 (L 40 =L B0 =0) Therefore, L′ 20 −L 20 <L′ 30 − L 30 <L' 40 -L B0 Therefore, P' 20 -P 20 <P' 30 -P 30 <P' 40 -P B0Of course, P' 40 -P B0 <P' 40 -P 40This is the lowest The lower the adjustment pressure at the rotation speed,
The pressure increase effect is large in the low rotation range of the valve body 28, and the higher the adjusted pressure, the smaller the pressure increase. This effect is particularly great when the adjustment pressure at the lowest rotational speed is lower than P B.

第9図にて本クラツチの使用域が曲線PB
0PB1Ps1とP20P2cPcとの範囲内とすると、弁体2
8″を使用した場合には、曲線P40P4cは低速域に
てクラツチがスリツプするので使用できない。し
かし、弁体28を使用すると、最低回転数のとき
P′40−P40の圧力上昇が得られるが、この値は大
きいほど、スリツプに対して有利である。
In Figure 9, the usage range of this clutch is curve P B
If it is within the range of 0 P B1 Ps 1 and P 20 P 2 cPc, the valve body 2
8", the curve P 40 P 4 c cannot be used because the clutch slips in the low speed range. However, if the valve body 28 is used, the curve P 40 P 4 c cannot be used at the lowest speed.
A pressure increase of P′ 40 −P 40 is obtained, and the larger this value is, the more advantageous it is against slip.

次に、弁体28″を使用した場合には、曲線
P20P2cとなつた場合には、油圧がこれ以上高くな
ると、低速域でギヤ音が発生するので不可であ
る。この場合には、弁体28を使用した場合の圧
力上昇は小さい方が好ましい。したがつて、上述
のP20>P30>P40のとき、P′40−P40>P′40−PB0
>P′30−P30>P′20−P20の関係は、本発明クラツ
チの望ましい条件に合致するので、極めて好まし
いことである。
Next, when using the valve body 28'', the curve
When P 20 P 2 c, it is impossible to increase the oil pressure any higher because gear noise will occur in the low speed range. In this case, it is preferable that the pressure increase when using the valve body 28 be small. Therefore, when P 20 > P 30 > P 40 above, P′ 40 −P 40 >P′ 40 −P B0
The relationship >P' 30 -P 30 >P' 20 -P 20 is extremely preferable since it meets the desirable conditions of the clutch of the present invention.

以上詳述したように、本発明の油圧制御式油圧
クラツチによれば、クラツチ作動油圧の制御が的
確に行なわれるようになつて、従来問題とされて
いた低速域でのギヤ音の発生や、その振動に伴う
他の部材への悪影響が適切に防止されるほか、構
造がコンパクトにまとめられる利点もある。
As described in detail above, according to the hydraulically controlled hydraulic clutch of the present invention, the clutch operating hydraulic pressure can be controlled accurately, and the generation of gear noise in the low speed range, which has been a problem in the past, can be avoided. In addition to appropriately preventing the adverse effects of the vibration on other members, there is also the advantage that the structure can be made compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例としての油圧制御式
油圧クラツチを船用減速逆転クラツチに適用した
場合を示す油圧回路図、第2図は上記本発明の油
圧クラツチにおけるクラツチ作動油圧調整弁を含
んだ切換弁を示す縦断面図、第3図は第2図の調
整弁の弁体の詳細構造を示す縦断面図であり、第
4図は従来のクラツチ作動油圧調整弁を示す模式
図、第5図は上記従来の調整弁の弁体を示す説明
図であり、第6図は参考例としてのクラツチ作動
油圧調整弁を示す模式図、第7図は上記参考例に
おける調整弁の弁体を示す説明図であり、第8図
は船用機関の機関回転数と機関出力およびクラツ
チ作動油圧との関係を示すグラフ、第9図は第8
図のグラフの要部を拡大して示すグラフである。 1…デイーゼル機関等の出力軸、2…継手、3
…クラツチ軸、4…クラツチ箱、5…逆転中間駆
動歯車、6…正転駆動歯車、7…逆転軸、8…ク
ラツチ箱、9…逆転中間被動歯車、10…逆転駆
動歯車、11…減速歯車、12…減速軸、13…
継手、14…プロペラ軸、15…油ポンプ、16
…油溜り(ドレンタンク)、17…ストレーナ
ー、18…油圧計、19…オイルクーラー、20
…切換弁、21…セレクター、22…クラツチ調
圧弁(クラツチ作動油圧調整弁)、23…潤滑調
圧弁(潤滑油圧調整弁)、24…緩衝絞り弁、2
5…調圧絞り穴、26…絞り調圧弁、27…切換
弁本体、28…クラツチ調圧弁の弁体、29…胴
部、30…つば部、31…内ばね案内部、32…
中空部、33…排出口、34…ケーシング、36
…絞り調圧弁の弁体、37…調圧絞り弁ばね、3
8…流入口、40…排出口、41…緩衝ピスト
ン、42…外ばね、43…内ばね、44…潤滑調
圧弁の弁体、45…ばね、46…緩衝絞り弁の弁
体、47…ばね、48…絞り弁座、49…セレク
ター抑え蓋、50…調圧弁抑え蓋、A…クラツチ
軸受潤滑油系、B…圧油開放路。
FIG. 1 is a hydraulic circuit diagram showing a case in which a hydraulically controlled hydraulic clutch as an embodiment of the present invention is applied to a speed reduction/reversing clutch for ships, and FIG. 2 is a hydraulic circuit diagram showing a hydraulic clutch according to the present invention including a clutch operation hydraulic pressure regulating valve. 3 is a vertical sectional view showing the detailed structure of the valve body of the regulating valve shown in FIG. 2, and FIG. 4 is a schematic diagram showing a conventional clutch operating hydraulic pressure regulating valve. FIG. 5 is an explanatory view showing the valve body of the conventional regulating valve, FIG. 6 is a schematic diagram showing a clutch actuation hydraulic pressure regulating valve as a reference example, and FIG. 7 is a diagram showing the valve body of the regulating valve in the above reference example. FIG. 8 is a graph showing the relationship between engine speed, engine output, and clutch operating oil pressure of a marine engine, and FIG.
This is a graph showing an enlarged main part of the graph shown in the figure. 1...Output shaft of diesel engine, etc., 2...Joint, 3
...clutch shaft, 4...clutch box, 5...reverse rotation intermediate drive gear, 6...normal rotation drive gear, 7...reverse rotation shaft, 8...clutch box, 9...reverse rotation intermediate driven gear, 10...reverse rotation drive gear, 11...reduction gear , 12... deceleration shaft, 13...
Coupling, 14...Propeller shaft, 15...Oil pump, 16
...Oil sump (drain tank), 17...Strainer, 18...Oil pressure gauge, 19...Oil cooler, 20
...Switching valve, 21...Selector, 22...Clutch pressure regulating valve (clutch operating hydraulic pressure regulating valve), 23...Lubrication pressure regulating valve (lubrication hydraulic pressure regulating valve), 24...Buffer throttle valve, 2
5... Pressure regulating throttle hole, 26... Throttle pressure regulating valve, 27... Switching valve body, 28... Valve body of clutch pressure regulating valve, 29... Body, 30... Flange, 31... Inner spring guide part, 32...
Hollow part, 33...Discharge port, 34...Casing, 36
... Valve body of throttle pressure regulating valve, 37... Pressure regulating throttle valve spring, 3
8...Inflow port, 40...Outlet port, 41...Buffer piston, 42...Outer spring, 43...Inner spring, 44...Valve element of lubrication pressure regulating valve, 45...Spring, 46...Valve element of buffer throttle valve, 47...Spring , 48... Throttle valve seat, 49... Selector holding lid, 50... Pressure regulating valve holding lid, A... Clutch bearing lubricating oil system, B... Pressure oil release path.

Claims (1)

【特許請求の範囲】[Claims] 1 機関と出力軸系との間に介設された油圧クラ
ツチにおいて、油ポンプからクラツチ作動油圧調
整弁を経由してクラツチ作動機構へ至るクラツチ
作動油圧路に、機関出力を伝達するのに必要な油
圧を残して減圧しうる調圧絞り穴と、上記機関の
最低使用回転数のときの必要油圧以上で開弁して
上記調圧絞り穴を連通させる絞り調圧弁と、上記
の調圧絞り穴と絞り調圧弁とを通じ流出した圧油
を少なくともクラツチ軸受潤滑油系へ開放する圧
油開放路とをそなえ、上記の調圧絞り穴と絞り調
圧弁とが上記クラツチ作動油圧調整弁の弁体に設
けられたことを特徴とする、油圧制御式油圧クラ
ツチ。
1. In a hydraulic clutch interposed between the engine and the output shaft system, the hydraulic power necessary to transmit the engine output to the clutch operating hydraulic path from the oil pump to the clutch operating mechanism via the clutch operating hydraulic pressure regulating valve. A pressure regulating throttle hole that can reduce the pressure while leaving the oil pressure, a throttle pressure regulating valve that opens at or above the required hydraulic pressure at the minimum operating speed of the engine and communicates with the pressure regulating throttle hole, and the pressure regulating throttle hole. and a pressure oil release passage for releasing the pressure oil flowing out through the throttle pressure regulating valve to at least the clutch bearing lubricating oil system, and the pressure regulating throttle hole and the throttle pressure regulating valve are connected to the valve body of the clutch operating hydraulic pressure regulating valve. A hydraulically controlled hydraulic clutch.
JP55120488A 1980-08-29 1980-08-29 Hydraulically controlled hydraulic clutch Granted JPS5747032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55120488A JPS5747032A (en) 1980-08-29 1980-08-29 Hydraulically controlled hydraulic clutch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55120488A JPS5747032A (en) 1980-08-29 1980-08-29 Hydraulically controlled hydraulic clutch

Publications (2)

Publication Number Publication Date
JPS5747032A JPS5747032A (en) 1982-03-17
JPS6248099B2 true JPS6248099B2 (en) 1987-10-12

Family

ID=14787419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55120488A Granted JPS5747032A (en) 1980-08-29 1980-08-29 Hydraulically controlled hydraulic clutch

Country Status (1)

Country Link
JP (1) JPS5747032A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53113323A (en) * 1977-03-14 1978-10-03 Kubota Ltd Pressure controlling device
JPS5419475U (en) * 1977-07-11 1979-02-07

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53113323A (en) * 1977-03-14 1978-10-03 Kubota Ltd Pressure controlling device
JPS5419475U (en) * 1977-07-11 1979-02-07

Also Published As

Publication number Publication date
JPS5747032A (en) 1982-03-17

Similar Documents

Publication Publication Date Title
US4680928A (en) Warm-up promotion device for automatic transmission
US7828128B2 (en) Control of fluid pressure in a torque converter of an automatic transmission
JP2916856B2 (en) Lubricating oil supply device for hydraulically operated transmission for vehicles
US2736412A (en) Fluid clutches with multiple pumps
US20110065544A1 (en) Electrohydraulic torque transfer device with integrated clutch and actuator unit
EP1586785B1 (en) Arrangement and method of coupling an air compressor to the drive shaft of a combustion engine
EP2097618A1 (en) System and method for lubricating power transmitting elements
JP2000088078A (en) Device provided with joggling seal part and bearing cylinder
JPS6248099B2 (en)
US4603604A (en) Creep-inhibiting device for an automotive vehicle equipped with an automatic transmission
JPS6230333B2 (en)
US4623053A (en) Control device for a direct-coupling hydraulic clutch in a hydraulic torque converter
US4696383A (en) Hydraulic clutch for motor vehicles, having creep-inhibiting feature
GB2153932A (en) Creep inhibiting device
JPH08121567A (en) Oil pump structure
JP3468364B2 (en) Transmission lubrication mechanism
JP2604945Y2 (en) Power transmission device lubrication mechanism
JPH0524852Y2 (en)
US2380680A (en) Clutch and control
JPS597872B2 (en) pressure control device
JP2505458Y2 (en) Marine reversing machine
JP2900760B2 (en) Cooling structure of marine hydraulic clutch unit
JPH07243527A (en) Working fluid cooling device of automatic transmission
JPS59503Y2 (en) Automatic trolling device for marine engines
JPS5888250A (en) Preventing device for creep-in-car