JPS6248063B2 - - Google Patents

Info

Publication number
JPS6248063B2
JPS6248063B2 JP54075426A JP7542679A JPS6248063B2 JP S6248063 B2 JPS6248063 B2 JP S6248063B2 JP 54075426 A JP54075426 A JP 54075426A JP 7542679 A JP7542679 A JP 7542679A JP S6248063 B2 JPS6248063 B2 JP S6248063B2
Authority
JP
Japan
Prior art keywords
signal
knocking
terminal
ignition timing
calculated value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54075426A
Other languages
Japanese (ja)
Other versions
JPS56554A (en
Inventor
Masaharu Asano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP7542679A priority Critical patent/JPS56554A/en
Priority to DE3022307A priority patent/DE3022307C2/en
Priority to FR8013236A priority patent/FR2459377A1/en
Priority to US06/159,439 priority patent/US4409937A/en
Priority to DE3050875A priority patent/DE3050875C2/de
Priority to GB8019597A priority patent/GB2053351B/en
Publication of JPS56554A publication Critical patent/JPS56554A/en
Priority to GB08232793A priority patent/GB2125889B/en
Publication of JPS6248063B2 publication Critical patent/JPS6248063B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Description

【発明の詳細な説明】 本発明は、内燃機関のノツキングを検出しなが
ら点火時期を制御する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for controlling ignition timing while detecting knocking in an internal combustion engine.

従来より自動車等に塔載される内燃機関の設計
にあたつては、性能向上の観点から種々の配慮が
なされており、例えば点火時期を設定するにあた
つても、燃費や出力性能が最良となるように、い
わゆるM.B.T.(Minimum advance for Best
Torque)に近い点火時期特性が得られるような
負圧進角機構、及び遠心進角機構が採用されてい
る。
Conventionally, when designing internal combustion engines installed in automobiles, etc., various considerations have been made from the perspective of improving performance. The so-called MBT (Minimum advance for Best
A negative pressure advance mechanism and a centrifugal advance mechanism are used to obtain ignition timing characteristics close to those of Torque.

ところが、通常の火花点火式内燃機関の比較的
低速の回転域においては、ノツキングが発生する
限界の点火時期(機関の種類や燃料のオクタン価
等によつて異なる)が、M.B.T.よりも遅れ側に
あるため、点火時期をM.B.T.に設定するとノツ
キングが発生してしまう。
However, in the relatively low speed range of a normal spark-ignition internal combustion engine, the ignition timing limit at which knocking occurs (varies depending on the type of engine, fuel octane rating, etc.) is on the later side than MBT. Therefore, if the ignition timing is set to MBT, knocking will occur.

従つて、比較的低速の回転域において、ノツキ
ングが生じない範囲内で点火時期をなるべくM.
B.T.に近づけるためには、点火時期を前記限界
点火時期に設定するのが最も良いのであるが、実
際には機関の経時変化による影響や燃料のオクタ
ン価のバラツキ等があるため、余裕をみてさらに
前記限界点火時期よりも遅れ側に点火時期を設定
せざるを得ず、燃費や出力性能の低下を招いてい
るのが実情であつた。この点火時期を遅らせるこ
とによる燃費や出力性能の低下率は、近年、燃費
や出力性能の向上の一手段として注目されている
過給機付機関や高圧縮比機関において特に大き
く、これらの機関の大きな問題点となつている。
Therefore, in a relatively low speed range, the ignition timing should be set to M as much as possible without knocking.
In order to get closer to BT, it is best to set the ignition timing to the above-mentioned limit ignition timing, but in reality, due to the effects of changes in the engine over time and variations in the octane number of the fuel, etc. The reality is that the ignition timing has to be set later than the limit ignition timing, resulting in a decrease in fuel efficiency and output performance. The rate of decrease in fuel efficiency and output performance caused by delaying the ignition timing is particularly large in turbocharged engines and high compression ratio engines, which have recently attracted attention as a means of improving fuel efficiency and output performance. This has become a major problem.

しかも、余裕をみて点火時期を前記限界点火時
期よりも遅れ側に設定しても、自動車の走行条件
や機関の運転状態や環境条件によつてはノツキン
グを生じる可能性が有り、いかなる状態において
もノツキングを完全に回避することはできないの
が実情であつた。
Moreover, even if the ignition timing is set later than the above-mentioned limit ignition timing with a margin, knocking may occur depending on the driving conditions of the vehicle, the operating conditions of the engine, and the environmental conditions. The reality is that it is not possible to completely avoid knot kings.

また、かかる場合のノツキングまで生じないよ
うに点火時期を遅らせるのでは、機関の燃費や出
力性能の大幅な低下を招き、実用的ではない。
Further, delaying the ignition timing to prevent knocking in such a case would result in a significant decrease in the fuel efficiency and output performance of the engine, which would be impractical.

そこで、通常は従来通りの点火時期特性、もし
くは、それより若干進角させた点火時期特性を持
つ負圧進角機構及び遠心進角機構により点火時期
を制御し、ノツキングが生じた場合のみ、通常の
点火時期より点火時期を遅らせてノツキングを回
避するようにした装置が、例えば、米国特許第
4002155号明細書により従来提案されている。
Therefore, the ignition timing is usually controlled by a negative pressure advance mechanism or a centrifugal advance mechanism that has the same ignition timing characteristics as before or slightly advanced ignition timing characteristics, and only when knocking occurs, For example, a device that avoids knocking by retarding the ignition timing from the ignition timing of the
This was previously proposed in the specification of No. 4002155.

かかる米国特許明細書に開示されている点火時
期制御装置は、1定周期毎にノツキングの存否を
判定するサンプリングを行ない、サンプリング時
にノツキング有と判定する度に一定の遅角量づつ
点火時期を遅らせ、サンプリング時にノツキング
無と判定する毎に一定量づつ点火時期を通常の進
角度まで点火時期を進めるものである。しかし、
この構成では、上記一定量の遅角及び進角制御を
サンプリング時に至つて始めて行なうため、制御
の立上がりが遅く、応答性が悪い。又、遅角量が
ノツキングの程度(発生頻度)に関係なく一定で
あるため、この遅角量が必ずしも必要量に対応し
ているとは言えず、相当回数のサンプリング後で
なければノツキングがなくなるような遅角量を得
られないといつた不都合も生じ、この点でも応答
性の悪さは免れない。
The ignition timing control device disclosed in this US patent specification performs sampling to determine the presence or absence of knocking at every regular cycle, and retards the ignition timing by a fixed retard amount each time it is determined that knocking exists during sampling. Each time it is determined that there is no knocking during sampling, the ignition timing is advanced by a fixed amount to the normal advance angle. but,
In this configuration, since the fixed amount of retard and advance angle control is performed only at the time of sampling, the start-up of the control is slow and responsiveness is poor. Furthermore, since the amount of retardation is constant regardless of the degree of knocking (occurrence frequency), it cannot be said that this amount of retardation necessarily corresponds to the required amount, and knocking will disappear only after a considerable number of samplings. This also causes the inconvenience of not being able to obtain a similar amount of retardation, and in this respect as well, poor responsiveness is unavoidable.

本発明は以上の観点からこの装置に代る新しい
点火時期制御装置を開発したもので、具体的には
ノツキング判定信号の入力毎に直ちに所定のクラ
ンク角度相当分だけ演算値が遅角方向へ変化する
よう演算すると共に、ノツキング判定信号が入力
されない間は前記演算値が逆に進角方向へ、時間
に関して前記演算値の遅角方向変化よりもゆつく
りとした割合で連続的に戻されるように演算する
演算部を設け、当該演算値の大きさに応じたパル
ス幅の遅角信号を作り出し、このパルス幅の分だ
け点火時期を遅らせるよう構成した点火時期制御
装置を提供しようとするものである。
In view of the above, the present invention has developed a new ignition timing control device to replace this device. Specifically, each time a knocking judgment signal is input, the calculated value immediately changes to the retard direction by an amount equivalent to a predetermined crank angle. At the same time, while the knocking determination signal is not input, the calculated value is continuously returned in the advance direction at a rate slower than the change in the retard direction of the calculated value with respect to time. The object of the present invention is to provide an ignition timing control device which is provided with a calculation unit that performs calculations, generates a retard signal with a pulse width corresponding to the magnitude of the calculation value, and is configured to retard the ignition timing by the amount of this pulse width. .

以下、図示の実施例に基づき本発明を詳述し、
その効果を言及する。
Hereinafter, the present invention will be explained in detail based on illustrated embodiments,
Mention its effects.

第1図はノツキング検出装置と共に本発明の点
火時期制御装置を示すブロツク線図で、ノツキン
グ検出装置は振動センサ1と、センサ処理部10
0と、平滑部200と、比較部300と、ノツキ
ング強度検出部400とで構成され、このノツキ
ング検出装置からのノツキング判定信号を受けて
演算部500、周波数/電圧変換部600及び等
進角制御部700よりなる本発明点火時期制御装
置は点火コイル駆動部2を介し点火コイル3に修
正された点火時期信号を出力する。なお、4は例
えば機関駆動されるデイストリビユータのブレー
カポイントより通常進角度の点火指令信号が入力
される点火指令信号入力部である。
FIG. 1 is a block diagram showing the ignition timing control device of the present invention together with a knocking detection device.
0, a smoothing section 200, a comparison section 300, and a knocking intensity detection section 400, and upon receiving the knocking judgment signal from this knocking detection device, a calculation section 500, a frequency/voltage conversion section 600, and a uniform advance angle control are performed. The ignition timing control device of the present invention comprising section 700 outputs a corrected ignition timing signal to ignition coil 3 via ignition coil drive section 2 . Note that 4 is an ignition command signal input section to which an ignition command signal of a normal advance angle is input from a breaker point of a distributor driven by the engine, for example.

振動センサ1は火花点火式機関に取付けられ、
燃焼室内の圧力変動を電気信号に変換する圧電素
子とし、これをノツキング振動の周波数(例えば
6.5〜8.5KHz)近辺に共振点を持つものとする。
振動センサ1としてはこの圧電素子の代りに、同
様の共振点を持つ共振型センサを用いたり、或い
は機関から発せられる音を傍受し、これをノツキ
ング相当周波数成分だけ電気信号に変換するセン
サを用いたり、その他任意の同様なセンサを使用
可能である。
The vibration sensor 1 is attached to a spark ignition engine,
A piezoelectric element is used to convert pressure fluctuations in the combustion chamber into electrical signals, and this is converted into a knocking vibration frequency (e.g.
The resonance point is assumed to be near 6.5 to 8.5KHz).
As the vibration sensor 1, instead of this piezoelectric element, a resonance type sensor having a similar resonance point is used, or a sensor that intercepts the sound emitted from the engine and converts only the frequency component corresponding to knocking into an electric signal is used. or any other similar sensor can be used.

かようにして得られたノツキング相当周波数成
分の電気信号にはなお妨害信号となる低周波数成
分が含まれており、これをセンサ処理部100で
除去した後、妨害信号を除去された信号をセンサ
処理部100で増幅すると共に、整流する。な
お、この整流を以下に説明する例では半波整流と
して述べるが、全波整流でも良いことは勿論であ
る。又、振動センサ1は全ての周波数成分を電気
信号に変換するものとし、これからの信号をバン
ドパスフイルターに通して、ノツキング相当周波
数成分の電気信号を得るようにしても良いことは
言うまでもない。
The electric signal of the knocking-equivalent frequency component obtained in this way still contains a low frequency component that becomes an interfering signal, and after this is removed by the sensor processing section 100, the signal from which the interfering signal has been removed is sent to the sensor. The processing unit 100 amplifies and rectifies the signal. Although this rectification will be described as half-wave rectification in the example described below, it goes without saying that full-wave rectification may also be used. It goes without saying that the vibration sensor 1 may convert all frequency components into electrical signals, and the signals may be passed through a bandpass filter to obtain electrical signals with frequency components corresponding to knocking.

平滑部200では整流後の信号を平滑にしてそ
の平滑レベルをセンサ処理部100からの信号と
共に比較部300に入力し、この比較部で両者を
比較する。ノツキング強度検出部400では、比
較部300により求められた比較出力信号を積分
して、この積分値を所定のクランク角度幅、例え
ば1点火周期毎に基準レベルと比較する。積分値
が基準レベルを越えると、ノツキング強度検出部
400はノツキングと判定し、その信号を出力す
る。
The smoothing section 200 smoothes the rectified signal, and inputs the smoothed level together with the signal from the sensor processing section 100 to the comparison section 300, which compares the two. The knocking intensity detection section 400 integrates the comparison output signal obtained by the comparison section 300, and compares this integrated value with a reference level every predetermined crank angle width, for example, every ignition cycle. When the integral value exceeds the reference level, the knocking intensity detection section 400 determines knocking and outputs the signal.

以上の如くにしてノツキング検出装置がノツキ
ング強度検出部400からノツキング判定信号を
出力すると、この信号は演算部500をトリガす
る。かくて、この演算部はトリガ信号の入力時毎
に所定量づつ遅角させ、トリガ信号が入力されな
い間所定の関数で通常の点火時期へ向け進角する
ための信号を発生する演算を行なう。
When the knocking detection device outputs the knocking determination signal from the knocking intensity detecting section 400 as described above, this signal triggers the calculating section 500. Thus, this calculation section performs calculations to retard the ignition timing by a predetermined amount each time a trigger signal is input, and to generate a signal for advancing the ignition timing toward normal ignition timing using a predetermined function while no trigger signal is input.

一方、周波数/電圧変換部600では入力部4
からの点火指令信号を電圧に変換し、これと、演
算部500からの上記信号と、入力部4からの点
火指令信号とが等進角制御部700に入力される
ことで、この等進角制御部700は夫々の入力信
号により、通常の点火時期を遅らせ、修正された
点火時期信号を点火コイル駆動部2に出力し、こ
れを経て通常より所定角度遅らせて点火コイル3
を駆動することができる。
On the other hand, in the frequency/voltage conversion section 600, the input section 4
The ignition command signal from the input unit 500 is converted into a voltage, and this, the above-mentioned signal from the calculation unit 500, and the ignition command signal from the input unit 4 are input to the uniform advance angle control unit 700. The control unit 700 delays the normal ignition timing according to each input signal, outputs the corrected ignition timing signal to the ignition coil drive unit 2, and then delays the ignition coil 3 by a predetermined angle from the normal one.
can be driven.

次に上記各部の詳細を説明する。 Next, details of each of the above parts will be explained.

第2図はセンサ処理部100の構成例を示し、
抵抗R101,R102,R103及びコンデン
サC101よりなるフイルター回路で、振動セン
サ1からのノツキング相当周波数成分の電気信号
より雑音信号となる低周波数成分を除去する。こ
のように妨害信号を除去されたノツキング相当周
波数(例えば6.5〜8.5KHz)の電気信号は例えば
第6図に5で示す如きものであり、時間A、Bに
おいてノツキングと思われる大きな信号を発生し
ている。
FIG. 2 shows an example of the configuration of the sensor processing section 100,
A filter circuit consisting of resistors R101, R102, R103 and a capacitor C101 removes low frequency components that become noise signals from the electrical signal of knocking-equivalent frequency components from the vibration sensor 1. The electrical signal at the knocking-equivalent frequency (for example, 6.5 to 8.5 KHz) from which the interference signal has been removed is, for example, the one shown at 5 in Figure 6, which generates large signals that are considered to be knocking at times A and B. ing.

しかし、振動センサ1からの信号には、機関の
燃焼動作にともなつて定常的に発生する振動成分
も含まれており、しかもこの振動成分の振幅が機
関運転状態(機関回転数、負荷状態等)によつて
大幅に変化しているため、上記信号5を一定の基
準レベルと比較し、これを越えた振動成分をノツ
キングによるものと判定するには問題がある。基
準レベルを越えた振動成分は機関運転状態に起因
するものかも知れないからである。この意味合い
において、上記信号5を比較する基準レベルは運
転状態に応じ変化させる必要があり、従つて、こ
の目的のため、以下に説明するようにして信号5
のノツキング振動成分を検出する。
However, the signal from the vibration sensor 1 also includes a vibration component that steadily occurs as the engine burns, and the amplitude of this vibration component varies depending on the engine operating state (engine speed, load state, etc.). ), there is a problem in comparing the signal 5 with a certain reference level and determining that vibration components exceeding this level are due to knocking. This is because vibration components exceeding the reference level may be caused by engine operating conditions. In this sense, the reference level with which the signal 5 is compared needs to be varied depending on the operating state, and therefore for this purpose the signal 5 is adjusted as described below.
Detects knocking vibration components.

即ち、上記フイルター回路を通過した信号5
は、抵抗R104,R105,R106を有する
演算増幅器OP101と、抵抗R108,R10
9,R110を有する演算増幅器OP102とを
ダイオードD101及び抵抗R107を介して接
続してなる増幅回路に供給し、ここで所定通りに
増幅する。この際演算増幅器OP101,OP10
2にはそのプラス側に信号を入力するため、端子
10には第6図にこの端子と同じ符号で示すよう
に前記信号が半波整流された動作波形が出力され
る。
That is, the signal 5 that has passed through the filter circuit
is an operational amplifier OP101 having resistors R104, R105, R106 and resistors R108, R10.
9 and an operational amplifier OP102 having R110 connected through a diode D101 and a resistor R107, where it is amplified in a predetermined manner. At this time, operational amplifiers OP101 and OP10
Since a signal is input to the positive side of the terminal 2, an operating waveform obtained by half-wave rectification of the signal is outputted to the terminal 10, as shown with the same reference numerals as this terminal in FIG.

第3図は平滑部200の構成例で、端子10か
らの動作波形を抵抗R201及びコンデンサC2
01で構成される平滑回路により平滑にし、その
平滑値を、抵抗R202,R203を有する増幅
器OP201により所定レベルに増幅して、端子
20より第6図にこの端子と同一符号で示す平滑
レベルを出力する。
FIG. 3 shows an example of the configuration of the smoothing section 200, in which the operating waveform from the terminal 10 is connected to the resistor R201 and the capacitor C2.
01, and the smoothed value is amplified to a predetermined level by an amplifier OP201 having resistors R202 and R203, and a smoothed level shown by the same symbol as this terminal in FIG. 6 is output from terminal 20. do.

第4図は比較部300の構成例を示し、ここで
は端子10,20からの上記動作波形及び平滑レ
ベルを互に比較する。このため抵抗R302を有
する演算増幅器OP301を具え、そのプラス側
入力端子に抵抗R301を介して端子20からの
平滑レベルを入力し、マイナス側入力端子に端子
10からの動作波形を入力する。かくて、これら
両信号が演算増幅器OP301により比較され、
端子30から第6図にこの端子と同一符号で示し
た比較出力信号(パルス信号)が出力される。こ
のパルス信号は通常高レベルにあり、端子10か
らの信号が端子20からの平滑レベル信号を越え
ている間(この時間は端子10からの信号の大き
さを反映する)、低レベルになるものとする。な
お、端子30から出力されるパルス信号の負極性
パルスを全てノツキングと判定すると、振動セン
サ1からの信号中に点火雑音をはじめいろいろな
擬似ノツキング振動が含まれているため、誤判定
となる。そこで、図示例では、以下に説明する回
路により、所定のクランク角度幅、例えば1点火
周期毎に上記負極性パルスの積分値を規準レベル
と比較するようにする。
FIG. 4 shows an example of the configuration of the comparing section 300, in which the operating waveforms and smoothing levels from the terminals 10 and 20 are compared with each other. For this purpose, an operational amplifier OP301 having a resistor R302 is provided, the smoothing level from the terminal 20 is inputted to its positive input terminal via the resistor R301, and the operating waveform from the terminal 10 is inputted to its negative input terminal. Thus, both these signals are compared by operational amplifier OP301,
A comparison output signal (pulse signal) indicated by the same reference numeral as this terminal in FIG. 6 is output from the terminal 30. This pulse signal is normally at a high level and goes to a low level while the signal from terminal 10 exceeds the smooth level signal from terminal 20 (this time reflects the magnitude of the signal from terminal 10). shall be. Note that if all the negative pulses of the pulse signal output from the terminal 30 are determined to be knocking, it will be an erroneous determination because the signal from the vibration sensor 1 contains various pseudo-knocking vibrations including ignition noise. Therefore, in the illustrated example, the integrated value of the negative polarity pulse is compared with a reference level every predetermined crank angle width, for example, every ignition cycle, using a circuit described below.

そのためのノツキング強度検出部400を第5
図に示す構成とする。端子30に生じたパルス信
号、例えば第7図にこの端子と同一符号で示すパ
ルス信号はダイオードD401を経て積分器OP
401に入力され、この時スイツチS401が開
いていれば、上記パルス信号の負極性パルスが積
分され、その積分値が加算されて端子41より第
7図にこの端子と同一符号で示す階段状の動作波
形が出力される。一方、端子4からは第7図にこ
の端子と同一符号で示す点火指令信号が出力され
ており、この信号が微分器OP403で微分され
ることにより、端子43には第7図にこの端子と
同一符号で示す微分パルス信号、即ち点火指令信
号4の立上がりの瞬時毎に一定幅の正極性パルス
を持つ信号が出力される。この信号は正極性のパ
ルスが出る度に、即ち点火指令が発せられる度
に、スイツチS401を閉じ、この時コンデンサ
C401が短絡されて積分器OP401がリセツ
トされる。従つて、端子41に出力される信号
は、第7図にこの端子と同一符号で示される如
く、点火瞬時毎に規定の低レベルに復帰し、1点
火周期毎にパルス信号30の負極性パルスを積分
して得られる階段波形となる。この階段状信号4
1は比較器OP402のマイナス側入力端子に入
力され、端子42から比較器OP402のプラス
側入力端子に供給される信号と比較される。この
信号は分圧抵抗R401,R402により決定さ
れる一定電圧であり、例えば第7図に対応端子4
2と同一符号で示す基準信号に用いる。比較器
OP402は信号41が基準信号42を越えてい
る間(第11図の瞬時T1〜T2間)、端子40より
第7図にこの端子と同一符号で示す如く、低レベ
ルとなる信号を出力する。
For this purpose, the knocking strength detection section 400 is installed as the fifth
The configuration shown in the figure is used. A pulse signal generated at terminal 30, for example a pulse signal shown with the same reference numeral as this terminal in FIG.
401, and if the switch S401 is open at this time, the negative polarity pulse of the above pulse signal is integrated, the integrated value is added, and a step-like signal is output from the terminal 41, which is shown with the same reference numeral as this terminal in FIG. The operating waveform is output. On the other hand, an ignition command signal is outputted from terminal 4, which is shown with the same reference numeral as this terminal in FIG. A differential pulse signal indicated by the same symbol, that is, a signal having a positive polarity pulse of a constant width is output at every rising instant of the ignition command signal 4. This signal closes switch S401 every time a positive pulse is issued, that is, every time an ignition command is issued, capacitor C401 is shorted and integrator OP401 is reset. Therefore, the signal outputted to terminal 41 returns to the specified low level at every ignition instant, as indicated by the same reference numerals as this terminal in FIG. It becomes a staircase waveform obtained by integrating. This staircase signal 4
1 is input to the negative input terminal of comparator OP402 and compared with the signal supplied from terminal 42 to the positive input terminal of comparator OP402. This signal is a constant voltage determined by voltage dividing resistors R401 and R402, and for example, as shown in FIG.
It is used for the reference signal indicated by the same symbol as 2. comparator
OP402 outputs a low-level signal from terminal 40 as shown with the same reference numeral as this terminal in FIG. 7 while signal 41 exceeds reference signal 42 (between instants T 1 and T 2 in FIG. 11). do.

なお、基準信号42を上記では固定としたが、
機関運転状態に応じ抵抗R401又はR402を
可変にすれば、基準信号42を運転状態にマツチ
した値に変えることができる。
Note that although the reference signal 42 is fixed in the above,
By making the resistor R401 or R402 variable according to the engine operating condition, the reference signal 42 can be changed to a value that matches the operating condition.

かくして、信号40が低レベルになる間上記ノ
ツキング検出装置は機関がノツキング状態である
と判定するが、該ノツキング検出装置はこの判定
に当り、上記の如く前記半波整流信号10と基準
レベル20との比較により得られるパルス信号3
0を1点火周期毎に積分し、その値が基準レベル
を越えた時ノツキング検出する構成としたから、
半波整流信号10と基準レベル20との比較だけ
で、基準レベル20を越えた半波整流信号10の
部分の個数及び大きさを同時に測定でき、簡単な
構成ながら、ノイズによる誤作動もなく、確実な
ノツキング判定を行なうことができる。
Thus, while the signal 40 is at a low level, the knocking detection device determines that the engine is knocking, and in making this determination, the knocking detection device uses the half-wave rectified signal 10 and the reference level 20 as described above. Pulse signal 3 obtained by comparing
0 is integrated for each ignition cycle, and knocking is detected when the value exceeds the reference level.
By simply comparing the half-wave rectified signal 10 and the reference level 20, the number and size of the portion of the half-wave rectified signal 10 that exceeds the reference level 20 can be measured at the same time, and although the configuration is simple, there is no malfunction due to noise. It is possible to perform a reliable knocking judgment.

本発明の演算部500、周波数/電圧変換部6
00及び等進角制御部700よりなる点火時期制
御装置は、上述の如くにして得られたノツキング
判定信号40により動作されるが、以下その詳細
をブロツク毎に順次説明する。
Arithmetic unit 500 and frequency/voltage conversion unit 6 of the present invention
The ignition timing control device consisting of the ignition timing controller 700 and the equal advance angle controller 700 is operated by the knocking determination signal 40 obtained as described above, and the details thereof will be explained block by block in sequence below.

第8図は演算部500の構成例を示し、この演
算部は増幅器OP501、コンデンサC501、
抵抗R501〜R503及びダイオードD501
よりなる単安定マルチバイブレータを前段に具え
る。この単安定マルチバイブレータはノツキング
判定信号40が高レベルから低レベルになる時ト
リガされ、端子52より第12図にこれと同符号
で示す波形を出力する。単安定マルチバイブレー
タの次段には、増幅器OP502,C502及び
R504〜R507で構成される積分器を設け、
これを互に極性の異なるダイオードD502,D
503を介して端子52に接続する。かくて、積
分器は両積分方向の時定数を個別に設定でき、下
降方向の時定数は抵抗R504とコンデンサC5
02によつて、又上昇方向の時定数は抵抗R50
5とコンデンサC502とによつて夫々決まる。
なお、ダイオードD504,D505及び抵抗R
508〜R511で、積分器の動作範囲を電源電
圧+Vと0との間に制限する制御回路が構成され
る。これがため上記積分器は端子52より前記の
信号を入力されると、この信号が低レベルにある
間はゆつくり上昇し、抵抗R510,R511に
より決定される上限値で飽和し、高レベルにある
間は急速に低下するような信号を端子51に出力
することができる。この信号は第12図に対応端
子51と同一符号で示す如きものであるが、これ
から明らかなように上昇速度が下降速度より遅く
なるよう夫々の時定数を決定しておけば、信号5
2の高レベルが頻繁に発生すると、信号51は段
階的に下降し、抵抗R508,R509により決
定される下限値で飽和する。
FIG. 8 shows an example of the configuration of the calculation unit 500, which includes an amplifier OP501, a capacitor C501,
Resistors R501 to R503 and diode D501
The front stage is equipped with a monostable multivibrator consisting of: This monostable multivibrator is triggered when the knocking determination signal 40 changes from a high level to a low level, and outputs a waveform shown in FIG. 12 with the same symbol from a terminal 52. At the next stage of the monostable multivibrator, an integrator consisting of amplifiers OP502, C502 and R504 to R507 is provided,
This is connected to diodes D502 and D with different polarities.
It is connected to the terminal 52 via 503. Thus, the integrator can set the time constants for both integration directions independently, and the time constant for the down direction is determined by resistor R504 and capacitor C5.
02, and the time constant in the rising direction is the resistance R50.
5 and capacitor C502, respectively.
Note that diodes D504, D505 and resistor R
508 to R511 constitute a control circuit that limits the operating range of the integrator between the power supply voltage +V and 0. Therefore, when the integrator receives the signal from the terminal 52, it slowly rises while the signal is at a low level, saturates at the upper limit determined by resistors R510 and R511, and remains at a high level. It is possible to output a signal to the terminal 51 that rapidly decreases during the interval. This signal is shown with the same reference numeral as the corresponding terminal 51 in FIG.
If a high level of 2 occurs frequently, the signal 51 will step down and saturate at the lower limit determined by resistors R508 and R509.

なお、信号52の高レベル時間は前記した単安
定マルチバイブレータにより決められる一定時間
であり、この高レベル信号で1回に下降方向へ積
分器の積分する量は一定であり、これを例えば
0.5度遅角相当とすると良い。この時積分器出力
51は信号52の高レベル発生回数に対応するた
め、これを点火時期修正値として用いることがで
きる。
Note that the high level time of the signal 52 is a fixed time determined by the monostable multivibrator mentioned above, and the amount that the integrator integrates in the downward direction at one time with this high level signal is constant, and this can be expressed as, for example,
It is best to set it to the equivalent of 0.5 degree retard. At this time, the integrator output 51 corresponds to the number of high level occurrences of the signal 52, so it can be used as an ignition timing correction value.

積分器の次段には抵抗R512〜R519及び
演算増幅器OP503よりなる極性反転増幅回路
が設けられ、この回路は入力されてくる積分器出
力51を、等進角制御部700の信号と整合させ
るために、極性変換すると共に、レベル調整し、
端子50より第12図にこの端子と同一符号で示
す信号を出力する。
A polarity inversion amplifier circuit consisting of resistors R512 to R519 and an operational amplifier OP503 is provided at the next stage of the integrator. In addition to converting the polarity, adjust the level,
The terminal 50 outputs a signal shown in FIG. 12 with the same reference numeral as this terminal.

第9図は周波数/電圧変換部600の構成例を
示す。このブロツクはエンジン回転速度を電圧に
変換する回路部分で、例えば点火指令信号4をコ
ンデンサC601、抵抗R601〜R604、ダ
イオードD601及び演算増幅器OP601によ
り構成される単安定マルチバイブレータによつて
一定幅のパルス信号に変換し、このパルス信号を
次段の抵抗R605〜R615、コンデンサC6
02及び演算増幅器OP602,OP603により
構成される平滑回路によりアナログ電圧に変換し
て端子60より出力する。かくて、このアナログ
電圧はエンジン回転数に対応した値となる。
FIG. 9 shows an example of the configuration of the frequency/voltage converter 600. This block is a circuit part that converts the engine rotational speed into voltage. For example, the ignition command signal 4 is converted into a constant width pulse by a monostable multivibrator composed of a capacitor C601, resistors R601 to R604, a diode D601, and an operational amplifier OP601. This pulse signal is converted into a signal and sent to the next stage of resistors R605 to R615 and capacitor C6.
02 and operational amplifiers OP602 and OP603, it is converted into an analog voltage and output from the terminal 60. Thus, this analog voltage has a value corresponding to the engine speed.

第10図は等進角制御部700の構成例を示
す。このブロツクはトランジスタT701〜T7
03、抵抗R701〜R704及びコンデンサC
701よりなる微分回路を有し、この微分回路は
点火指令信号4を微分して、点火指令信号4の立
上がり毎にトランジスタT703を導通し、コン
デンサC702を短絡させてリセツトする。この
リセツト後直ちにトランジスタT703を非導通
にされることから、コンデンサC702は前記端
子60からのアナログ電圧(エンジン回転数)に
より電圧/電流変換回路78を介してエンジン回
転数に比例した電流で充電される。従つて、端子
71には第13図にこの端子と同一符号で示した
電圧が現われる。しかし、上述の如くコンデンサ
C702の充電電流がエンジン回転数に比例する
ことから、エンジン回転数が2400rpmの時と
1200rpmの時とを夫々示す第13図a及び第13
図bの比較から明らかなように、クランク角度換
算で電圧波形71はエンジン回転数に関係なく一
定で、等進角積分波形となる。
FIG. 10 shows a configuration example of the equal advance angle control section 700. This block consists of transistors T701-T7
03, resistors R701 to R704 and capacitor C
701, which differentiates the ignition command signal 4, turns on the transistor T703 every time the ignition command signal 4 rises, and short-circuits the capacitor C702 to reset it. Since the transistor T703 is made non-conductive immediately after this reset, the capacitor C702 is charged by the analog voltage (engine speed) from the terminal 60 via the voltage/current conversion circuit 78 with a current proportional to the engine speed. Ru. Therefore, a voltage appears at terminal 71, which is indicated by the same reference numeral as this terminal in FIG. However, as mentioned above, since the charging current of capacitor C702 is proportional to the engine speed, when the engine speed is 2400 rpm,
Figures 13a and 13 show the times of 1200rpm and 1200rpm, respectively.
As is clear from the comparison in FIG. b, the voltage waveform 71 in terms of crank angle is constant regardless of the engine speed, and is a constant advance integral waveform.

なお、上記電圧/電流変換回路73は第11図
に示すような構成とし、この回路において回転数
比例の前記電圧60は抵抗R752を経て差動増
幅器OP750のプラス側入力端子に供給する。
今、ここで説明の便宜上、電圧60の値をV60
端子75の出力電圧をV75、差動増幅器OP750
のプラス側入力端子の電圧をV+、マイナス側入
力端子の電圧をV-、出力端子の電圧をV2とし、
抵抗R750〜R753の抵抗値を同じとする
と、電圧V+は、差動増幅器OP751及び抵抗7
53を含む帰還回路があるため、V60+V75/2と
な り、電圧V-はV/2となる。又、差動増幅器OP75 0はその出力V2が上記帰還回路の存在下で、V60
+V75となるよう動作する。従つて、抵抗R75
4の両端間の電位差はV60+V75−V75=V60とな
り、この抵抗を通る電流、即ち端子75の出力電
流はV60/R754となつて、車速比例の入力電圧6
0に 常に比例する。よつて、端子75の出力電流は入
力電圧60により制御されながら、車速に常時比
例する値となり、この電流で充電されるコンデン
サC702の充電速度が車速によつて決まり、前
記等進角積分波形71を得ることができる。前記
端子71からの等進角積分波形は演算増幅器OP
701のプラス側入力端子に入力され、そのマイ
ナス側入力端子には前記信号50が入力される。
演算増幅器OP701はこれら両信号71,50
の比較により、第12図から明らかなように信号
71が信号50のレベル以下となる時間幅の負極
性パルスを持つ遅角信号を端子72より出力し、
この遅角信号を第12図に対応端子72と同一符
号で示す。なお、等進角積分波形71を第13図
に示すようにクランク角度30゜で飽和するように
設定しておけば、遅角信号72の負極性パルス幅
はクランク角度30゜以上になることはなく、演算
の誤作動によつても点火時期の遅角量が30゜以上
にならないようにでき、エンストの防止を図れ
る。
The voltage/current conversion circuit 73 has a configuration as shown in FIG. 11, and in this circuit, the voltage 60 proportional to the rotational speed is supplied to the positive input terminal of the differential amplifier OP750 via a resistor R752.
Now, for convenience of explanation, the value of voltage 60 is expressed as V 60 ,
The output voltage of terminal 75 is V 75 , and the differential amplifier OP750
Let the voltage at the positive input terminal be V + , the voltage at the negative input terminal V - , and the voltage at the output terminal V 2 ,
Assuming that the resistance values of resistors R750 to R753 are the same, the voltage V + is the difference between differential amplifier OP751 and resistor 7.
Since there is a feedback circuit including 53, V 60 +V 75 /2 and the voltage V - becomes V 2 /2. Also, the differential amplifier OP750 has an output V 2 of V 60 in the presence of the feedback circuit described above.
It operates so that +V 75 . Therefore, resistor R75
The potential difference between both ends of the terminal 4 becomes V 60 +V 75 -V 75 =V 60 , and the current passing through this resistor, that is, the output current at the terminal 75 becomes V 60 /R754, and the input voltage 6 is proportional to the vehicle speed.
Always proportional to 0. Therefore, the output current of the terminal 75 is controlled by the input voltage 60 and has a value that is always proportional to the vehicle speed, and the charging speed of the capacitor C702 charged with this current is determined by the vehicle speed, and the uniform advance angle integral waveform 71 is determined by the vehicle speed. can be obtained. The equiadvanced integral waveform from the terminal 71 is connected to the operational amplifier OP.
The signal 50 is input to the plus side input terminal of 701, and the signal 50 is input to the minus side input terminal thereof.
Operational amplifier OP701 receives both these signals 71, 50
As is clear from FIG. 12, a retard signal having a negative polarity pulse with a time width such that the signal 71 is lower than the level of the signal 50 is output from the terminal 72,
This retard signal is shown in FIG. 12 with the same reference numeral as the corresponding terminal 72. Note that if the equal advance angle integral waveform 71 is set to saturate at a crank angle of 30 degrees as shown in FIG. 13, the negative pulse width of the retard signal 72 will never exceed a crank angle of 30 degrees. This prevents the ignition timing from being retarded by more than 30 degrees even if there is a malfunction in the calculation, thereby preventing engine stalling.

そして、上記遅角信号72は点火指令信号4と
共にアンドゲートG701に入力され、このアン
ドゲートは両入力信号の論理積によつて端子70
より第12図にこの端子と同一符号で示す修正点
火時期信号を出力する。この修正点火時期信号は
第1図に示す点火コイル駆動部2を介し点火コイ
ル3を修正点火時期に駆動し、ノツキングの発生
を抑制することができる。
Then, the retard signal 72 is input to the AND gate G701 together with the ignition command signal 4, and this AND gate is connected to the terminal 70 by the logical product of both input signals.
Therefore, a corrected ignition timing signal shown with the same reference numeral as this terminal in FIG. 12 is output. This corrected ignition timing signal drives the ignition coil 3 to the corrected ignition timing via the ignition coil drive unit 2 shown in FIG. 1, thereby suppressing the occurrence of knocking.

かくして本発明点火時期制御装置は上述の如
く、ノツキング判定信号52の入力毎に所定のク
ランク角度相当分だけ遅角方向へ向かうよう演算
(積分)すると共に、ノツキング判定信号52が
入力されない間上記遅角方向への演算よりゆつく
りとした時間割合で絶えず連続的に進角方向へ戻
るよう演算(積分)する(第12図中50参照)
演算部500と、点火指令信号4の入力毎にリセ
ツトされ、その機関回転数に対応した速度で所定
レベルまで立上がる等進角積分波形71及び上記
演算部出力50を比較して該出力50のレベルに
応じたパルス幅の遅角信号72を得、該パルス幅
だけ点火時期を遅らせるようにした等進角制御部
700とを具備する構成にしたから、ノツキング
判定信号52の出力時直ちに遅角制御を行なうこ
とができ、又この遅角制御後、次のノツキング判
定信号が出力されない時上述の如く進角方向への
演算を遅角方向への演算よりゆつくり行なうか
ら、当該次のノツキング判定信号が入力されなく
ても直ちに点火時期が元に戻るようなことはな
く、従つて上記遅角制御によりノツキングが発生
しなくなると即座に元の点火時期に戻つて再びノ
ツキングが発生し、これを防止するため再度遅角
制御を行なうという、所謂制御のハンチングを防
止することができる。これがため本発明装置はノ
ツキング防止用の点火時期制御を応答良く行なつ
てノツキングの発生を速やか且つ確実に抑え得る
だけでなく、ノツキング判定信号52の出力頻度
が低い軽度のノツキング時と雖も点火時期制御を
ハンチングの発生なしに安定して行なえ、当該軽
度のノツキングも確実に防止することができる。
加えてノツキング防止用の遅角量(信号72のパ
ルス幅)がノツキング判定信号52の出力頻度
(ノツキングの強度)の増大につれ大きくなるか
ら、ノツキングがなくなるような遅角量を遅滞な
く確実に得られ、ノツキングを迅速且つ確実に防
止することができる。
Thus, as described above, the ignition timing control device of the present invention calculates (integrates) so as to retard the engine by a predetermined amount equivalent to the crank angle each time the knocking determination signal 52 is input, and the ignition timing control device performs the calculation (integration) so that the ignition timing retards by an amount equivalent to a predetermined crank angle every time the knocking determination signal 52 is input. Calculation (integration) is performed so that the angle constantly returns to the advance direction at a slower rate of time than the calculation in the angle direction (see 50 in Figure 12).
The arithmetic unit 500 compares the uniform advance angle integral waveform 71 that is reset each time the ignition command signal 4 is input and rises to a predetermined level at a speed corresponding to the engine speed, and the arithmetic unit output 50 to calculate the output 50. Since the configuration includes a constant advance control section 700 that obtains a retard signal 72 with a pulse width corresponding to the level and delays the ignition timing by the pulse width, the retard signal 72 is immediately retarded when the knocking determination signal 52 is output. Furthermore, after this retard angle control, when the next knocking judgment signal is not output, the calculation in the advance direction is performed more slowly than the calculation in the retard direction as described above, so that the next knocking judgment Even if no signal is input, the ignition timing will not immediately return to its original state. Therefore, if knocking no longer occurs due to the above retard control, it will immediately return to the original ignition timing and knocking will occur again. It is possible to prevent so-called control hunting, in which the retard control is performed again in order to prevent this. Therefore, the device of the present invention not only can quickly and reliably suppress the occurrence of knocking by performing ignition timing control for preventing knocking in a responsive manner, but also can suppress the occurrence of knocking even when the knocking determination signal 52 is output at a low frequency, even in the case of mild knocking. Timing control can be performed stably without occurrence of hunting, and even the slight knocking can be reliably prevented.
In addition, since the amount of retardation for preventing knocking (pulse width of the signal 72) increases as the output frequency of the knocking judgment signal 52 (strength of knocking) increases, the amount of retardation that eliminates knocking can be reliably obtained without delay. This makes it possible to quickly and reliably prevent knocking.

更に、ノツキング判定信号52が入力されない
間、演算値50を点火信号を待たずに絶えず連続
的に遅角方向へ戻すから、点火間隙が長くなる低
エンジン回転数のもとでも、ノツキング判定信号
52が入力されない時は速やかに演算値50を進
角方向へ戻すことができ、この低エンジン回転域
ではノツキングが起こりにくく、点火時期を速く
進み方向へ戻したいのに、点火時期の戻しが遅れ
てエンジンの燃費が悪くなるといつた問題をなく
すことができる。又、ノツキング判定信号52が
入力されない間における演算値50の進角方向へ
の戻しを点火信号と関係なく遅角方向への変化よ
りゆつくりした時間割合で絶えず連続的に行なう
から、点火間隔が短かくなる高エンジン回転数の
もとでも、ノツキング判定信号52が入力されな
い時は演算値50を上記の時間割合で進角方向へ
戻すことができ、かかる演算値の戻しをエンジン
回転速度との対比において相対的にゆつくり行な
うことができる。従つて、当該高エンジン回転域
ではノツキングが生じ易く、点火時期を進み方向
へゆつくり戻したいのに、点火時期の戻しが速く
なつて前記のハンチングが生ずるといつた問題を
なくすことができる。
Furthermore, while the knocking judgment signal 52 is not input, the calculated value 50 is continuously returned to the retard direction without waiting for the ignition signal, so even at low engine speeds where the ignition gap becomes long, the knocking judgment signal 52 is not input. When the ignition timing is not input, the calculated value 50 can be quickly returned to the advance direction, and knocking is unlikely to occur in this low engine speed range. This eliminates the problem of poor engine fuel efficiency. In addition, since the calculated value 50 is returned to the advance direction while the knocking judgment signal 52 is not inputted, the ignition interval is continuously changed at a slower time rate than the change in the retard direction, regardless of the ignition signal. Even under a high engine rotational speed that decreases, when the knocking judgment signal 52 is not input, the calculated value 50 can be returned to the advance direction at the above-mentioned time rate, and the return of the calculated value can be made by adjusting the engine rotational speed. Comparisons can be made relatively slowly. Therefore, it is possible to eliminate the problem that knocking is likely to occur in the high engine speed range, and that even though it is desired to slowly return the ignition timing in the forward direction, the ignition timing is returned too quickly and the above-mentioned hunting occurs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明点火時期制御装置をノツキング
検出装置と共に示すブロツク線図、第2図は同じ
くそのセンサ処理部の回路図、第3図は平滑部の
回路図、第4図は比較部の回路図、第5図はノツ
キング強度検出部の回路図、第6図は平滑部及び
比較部の動作波形説明図、第7図はノツキング強
度検出部の動作波形説明図、第8図は演算部の回
路図、第9図は周波数/電圧変換部の回路図、第
10図は等進角制御部の回路図、第11図は等進
角制御部で用いる電圧/電流変換回路の回路図、
第12図は等進角制御部の動作波形説明図、第1
3図は等進角積分波形の説明図である。 1……振動センサ、2……点火コイル駆動部、
3……点火コイル、4……点火指令信号入力端
子、10……半波整流信号出力端子、20……平
滑レベル出力端子、30……比較パルス信号出力
端子、40……ノツキング判定信号出力端子、4
1……積分波形出力端子、42……比較レベル出
力端子、43……微分パルス信号出力端子、50
……極性反転増幅信号出力端子、51………積分
器出力端子、52……単安定マルチバイブレータ
出力端子、60……アナログ電圧出力端子、70
……修正点火時期信号出力端子、71……等進角
積分波形出力端子、72……遅角信号出力端子、
73……電圧/電流変換回路、75……電流出力
端子、100……センサ処理部、200……平滑
部、300……比較部、400……ノツキング強
度検出部、500……演算部、600……周波
数/電圧変換部、700……等進角制御部。
Fig. 1 is a block diagram showing the ignition timing control device of the present invention together with a knocking detection device, Fig. 2 is a circuit diagram of the sensor processing section thereof, Fig. 3 is a circuit diagram of the smoothing section, and Fig. 4 is a circuit diagram of the comparison section. Circuit diagram, Fig. 5 is a circuit diagram of the knocking intensity detection section, Fig. 6 is an explanation diagram of operating waveforms of the smoothing section and comparison section, Fig. 7 is an explanation diagram of operating waveforms of the knocking intensity detection section, and Fig. 8 is an illustration of the operation section. 9 is a circuit diagram of the frequency/voltage conversion section, FIG. 10 is a circuit diagram of the constant advance angle control section, and FIG. 11 is a circuit diagram of the voltage/current conversion circuit used in the constant advance angle control section.
FIG. 12 is an explanatory diagram of the operation waveforms of the equal advance angle control section,
FIG. 3 is an explanatory diagram of a constant advance angle integral waveform. 1... Vibration sensor, 2... Ignition coil drive unit,
3...Ignition coil, 4...Ignition command signal input terminal, 10...Half wave rectification signal output terminal, 20...Smoothing level output terminal, 30...Comparison pulse signal output terminal, 40...Knocking judgment signal output terminal , 4
1... Integral waveform output terminal, 42... Comparison level output terminal, 43... Differential pulse signal output terminal, 50
...Polarity inversion amplified signal output terminal, 51...Integrator output terminal, 52...Monostable multivibrator output terminal, 60...Analog voltage output terminal, 70
... Corrected ignition timing signal output terminal, 71 ... Equal advance angle integral waveform output terminal, 72 ... Retard angle signal output terminal,
73...Voltage/current conversion circuit, 75...Current output terminal, 100...Sensor processing section, 200...Smoothing section, 300...Comparison section, 400...Knocking intensity detection section, 500...Calculation section, 600 . . . Frequency/voltage conversion section, 700 . . . Equal advance angle control section.

Claims (1)

【特許請求の範囲】[Claims] 1 ノツキングを判定する信号により変化される
演算値によつて点火時期を遅角方向へ変化させる
ようにした内燃機関において、前記ノツキング判
定信号の入力毎に直ちに所定のクランク角度相当
分だけ前記演算値が遅角方向へ変化するように演
算すると共に、ノツキング判定信号が入力されな
い間は前記演算値が逆に進角方向へ、時間に関し
て前記演算値の遅角方向変化よりもゆつくりとし
た割合で絶えず連続的に戻されるように演算する
演算部と、点火指令信号の入力毎にリセツトさ
れ、その後機関回転数に対応した速度で所定レベ
ルとなる等進角積分波形と前記演算値とを比較し
て該演算値の大きさに応じたパルス幅の遅角信号
を得、該パルス幅だけ点火時期を遅らせるように
した等進角制御部とを具備してなることを特徴と
する内燃機関の点火時期制御装置。
1. In an internal combustion engine in which the ignition timing is retarded by a calculated value that is changed by a signal for determining knocking, the calculated value is immediately changed by an amount equivalent to a predetermined crank angle each time the knocking determination signal is input. The calculated value changes in the retard direction, and while the knocking judgment signal is not input, the calculated value moves in the advance direction at a slower rate than the change in the retard direction of the calculated value with respect to time. The calculated value is compared with a calculation unit that calculates the values to be returned continuously and a constant advance integral waveform that is reset each time an ignition command signal is input and then reaches a predetermined level at a speed corresponding to the engine speed. ignition of an internal combustion engine, characterized in that it is equipped with a constant advance angle control section that obtains a retard signal with a pulse width corresponding to the magnitude of the calculated value, and retards the ignition timing by the pulse width. Timing control device.
JP7542679A 1979-01-01 1979-06-15 Ignition timing device for internal combustion engine Granted JPS56554A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP7542679A JPS56554A (en) 1979-06-15 1979-06-15 Ignition timing device for internal combustion engine
DE3022307A DE3022307C2 (en) 1979-06-15 1980-06-13 Ignition timing control device
FR8013236A FR2459377A1 (en) 1979-06-15 1980-06-13 IGNITION ADJUSTING DEVICE FOR INTERNAL COMBUSTION ENGINE AND DEVICE FOR DETECTING CLICKS THEREFOR
US06/159,439 US4409937A (en) 1979-01-01 1980-06-13 Spark timing control device for an internal combustion engine
DE3050875A DE3050875C2 (en) 1979-06-15 1980-06-13
GB8019597A GB2053351B (en) 1979-06-15 1980-06-16 Spark timing control device for an internal combustion engine
GB08232793A GB2125889B (en) 1979-06-15 1982-11-17 A device for sensing knocking occurring in an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7542679A JPS56554A (en) 1979-06-15 1979-06-15 Ignition timing device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS56554A JPS56554A (en) 1981-01-07
JPS6248063B2 true JPS6248063B2 (en) 1987-10-12

Family

ID=13575862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7542679A Granted JPS56554A (en) 1979-01-01 1979-06-15 Ignition timing device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS56554A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213946A (en) * 1983-05-19 1984-12-03 Sanshin Ind Co Ltd Engine knocking restraining device
DE3523230A1 (en) * 1984-06-29 1986-01-02 Nissan Motor Co., Ltd., Yokohama, Kanagawa DEVICE AND METHOD FOR REGULATING THE IGNITION TIMING IN AN INTERNAL COMBUSTION ENGINE
US4640249A (en) * 1984-06-30 1987-02-03 Nissan Motor Company, Limited System for controlling an ignition timing in an internal combustion engine and method therefor
JPS6116266A (en) * 1984-06-30 1986-01-24 Nissan Motor Co Ltd Control device of ignition timing in internal-combustion engine

Also Published As

Publication number Publication date
JPS56554A (en) 1981-01-07

Similar Documents

Publication Publication Date Title
GB2053351A (en) A Spark Timing Control Device for an Internal Combustion Engine
US4098244A (en) Control system for an internal combustion engine
JPS6314193B2 (en)
US4243007A (en) Selective ignition timing
EP0096869A2 (en) Method and apparatus of ignition timing control
GB2169959A (en) System for controlling the ignition timing of an internal combustion engine
US4385607A (en) Automobile ignition timing control system
US4440129A (en) Ignition timing control system for internal combustion engine
US4463722A (en) Engine knock sensor
JPH048628B2 (en)
US4541382A (en) Method and apparatus for ignition timing control of internal combustion engine
JPS6248063B2 (en)
US4612900A (en) Engine operating parameter control apparatus
JPS6325293B2 (en)
US4420967A (en) Knock detector
GB2169955A (en) System controlling the ignition timing of an internal combustion engine
US4612901A (en) Engine ignition timing control apparatus
US5955664A (en) Device for detecting a state of combustion in an internal combustion engine
US4530328A (en) Ignition timing controller for internal combustion engine
US4610232A (en) Ignition timing control apparatus for internal combustion engine
JPS6216365B2 (en)
JPH0432953B2 (en)
JPS6122141B2 (en)
JP2744687B2 (en) Knock detection device for internal combustion engine
JP2795976B2 (en) Knock control device for internal combustion engine