JPS6248029B2 - - Google Patents

Info

Publication number
JPS6248029B2
JPS6248029B2 JP11351079A JP11351079A JPS6248029B2 JP S6248029 B2 JPS6248029 B2 JP S6248029B2 JP 11351079 A JP11351079 A JP 11351079A JP 11351079 A JP11351079 A JP 11351079A JP S6248029 B2 JPS6248029 B2 JP S6248029B2
Authority
JP
Japan
Prior art keywords
frame
heat
formwork
concrete
reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11351079A
Other languages
Japanese (ja)
Other versions
JPS5639267A (en
Inventor
Keiichi Tanimura
Yasuhiro Mizuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbide Industries Co Inc
Original Assignee
Nippon Carbide Industries Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbide Industries Co Inc filed Critical Nippon Carbide Industries Co Inc
Priority to JP11351079A priority Critical patent/JPS5639267A/en
Publication of JPS5639267A publication Critical patent/JPS5639267A/en
Publication of JPS6248029B2 publication Critical patent/JPS6248029B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Foundations (AREA)
  • Forms Removed On Construction Sites Or Auxiliary Members Thereof (AREA)

Description

【発明の詳細な説明】 本発明はコンクリートによる構造物の製法およ
び施工のための型枠に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing and a formwork for constructing concrete structures.

更に詳しくは、鉄塔の脚部固定用コンクリート
基礎、擁壁、橋台および橋脚、建築用、土木用、
その他工事等に使用されるコンクリート構造物の
製法および施工のための型枠に関するものであ
る。
For more details, see concrete foundations for fixing the legs of steel towers, retaining walls, bridge abutments and piers, for construction, for civil engineering,
This article relates to methods for manufacturing concrete structures used in other construction projects and formwork for construction.

従来より一般に用いられているコンクリート構
造物の製法としては、コンクリート用型枠として
木材パネル、鉄類あるいは合成樹脂等のユニツト
型枠を用い所望の形状に組立てたのち、該型枠中
にコンクリートを打設する方法がとられている
が、欠点として施工現場におけるこれらの型枠の
組立て、取外しには非常な手間が必要で、特に複
雑な形状の型枠の作成および組立て等には熟練者
を必要とする問題や、該型枠の作成には多量の資
材を施工現場へ輸送する必要があつて輸送費が大
きくなる問題があつた。
Conventionally, the method of manufacturing concrete structures that has been commonly used is to assemble unit forms made of wood panels, iron or synthetic resin into the desired shape, and then pour concrete into the form. However, the drawback is that it requires a lot of effort to assemble and remove these formworks at the construction site, and in particular, the creation and assembly of formworks with complex shapes requires skilled workers. In addition, there were problems in that creating the formwork required transporting a large amount of materials to the construction site, which increased transportation costs.

特に、電力を輸送する送電線用鉄塔の新設ある
いは改修等の工事では、平地よりも山岳部の施工
が多く、なかでも高圧送電線用鉄塔の工事では山
間僻地の施工が極めて多い。従つて該工事におい
ては、必要な資材を輸送するのが極めて困難で、
通常地上からの運搬が殆んど不可能なために資材
輸送はヘリコプター等の空中輸送に頼つているの
が現状である。また、これら鉄塔工事の施工は平
地のそれと同じで、資材運搬から始まり地盤の掘
削、捨てコンクリート打ち、複雑な形状の型枠組
み、コンクリート打設、型枠の取外し、埋戻し、
回収した型枠の手入れ、次の工事地区への輸送等
の多大な労力と時間も必要である。
In particular, construction work such as new construction or renovation of power transmission line towers that transport electricity is more often carried out in mountainous areas than in flat areas, and in particular, construction of high-voltage power transmission line towers is extremely often carried out in remote mountainous areas. Therefore, it is extremely difficult to transport the necessary materials for this construction.
Since it is almost impossible to transport materials from the ground, we currently rely on aerial transport such as helicopters to transport materials. In addition, the construction of these steel towers is the same as that on flat land, starting with material transportation, excavation of the ground, concrete pouring, complex-shaped formwork, concrete pouring, removal of formwork, backfilling, etc.
It also requires a great deal of labor and time to take care of the collected formwork and transport it to the next construction area.

本発明者らは上記せる欠点を解決するために種
種研究した結果、安価で且つ小量であり、更に軽
量な型枠資材で、施工が極めて簡単なコンクリー
ト構造物の製法として特願昭53−125712号に続
き、特願昭54−35435号、即ち(イ)a籠状の枠を作
り、bその枠の外周にシート又はフイルムを設け
て型枠とし、cその中にコンクリートを打設す
る、構造物の製法において、(ロ) 該型枠の外周の
一部に合成樹脂製または無機質繊維強化コンクリ
ート製の外枠を設ける、という全く新規な構造物
の製法を提出した。
The inventors of the present invention have carried out various researches to solve the above-mentioned drawbacks, and as a result, we have developed a method for manufacturing concrete structures that is inexpensive, requires a small amount, uses lightweight formwork materials, and is extremely easy to construct. Continuing from No. 125712, Japanese Patent Application No. 54-35435, namely (a) make a cage-like frame, b provide a sheet or film around the outer periphery of the frame to form a formwork, and c pour concrete into it. , in the method of manufacturing a structure, proposed a completely new method of manufacturing a structure in which (b) an outer frame made of synthetic resin or inorganic fiber-reinforced concrete is provided on a part of the outer periphery of the formwork.

しかし、特願昭54−35435号にも、籠状の枠の
外周にシート又はフイルムを設ける際に比較的に
煩雑な問題があり、施工上改良することが好まし
いことが判明した。
However, Japanese Patent Application No. 54-35435 also has a relatively complicated problem when providing a sheet or film around the outer periphery of a cage-like frame, and it has been found that it is desirable to improve the construction.

該特願においては、例えば、籠状の枠の最頂部
の上部部材の径と、地盤に接する下部部材の径が
同じで、且つ該枠の中心軸が水平な地盤に垂直な
円柱状、角柱状等の場合は、上部部材と下部部材
を連結する連結材相互を平行の位置に設置するこ
とが出来るので、例えば、広巾(例えば400m/
m巾)のシート又はフイルムの長手方向の両端線
を、該枠の上部部材または下部部材の構成する面
(略、水平)に対して略平行に、該枠の外周に巻
付けることが比較的に容易に出来る。換言する
と、籠状の枠が例えば円柱状、角柱状の場合は、
該枠にコンクリート打設によつて生ずる側圧に耐
え得る機械的強度に、且つ打設されたコンクリー
トや水分の漏洩、浸出を防止し得る状態に、重ね
合つたシート又はフイルムの間に、隙間が出来な
いように密着した気密な状態に、シート又はフイ
ルムを多重巻きすることが比較的に容易である。
しかし、籠状の枠の上部部材の径と下部部材の径
が異る、例えば、形状が截頭円錐状、截頭角錐状
の場合や、更に籠状の枠の中心軸が水平な地盤に
傾斜する、例えば、断面梯形の回転体の形状の枠
の場合は、該枠の中心軸に対して、上部部材と下
部部材を連結する連結材を互に平行の位置に設置
することが出来ない。かかる形状の枠の外周に、
広巾のシート又はフイルムの長手方向の両端線
を、該枠の上部部材または下部部材の構成する面
(略水平)に対して、略平行に巻付ける場合、下
部部材側のフイルムの長手方向の一端は該枠の外
周に密着させ得るが、上部部材側のフイルムの他
の端は、上部部材側の枠の外周長さが上部部材側
の外周長さより短いので、該枠の外周より可なり
離れ、空間が生ずる。この問題は、特に柔軟性に
乏しい広巾のシート又はフイルムに多い。このた
め、先に該枠の外周に巻かれたシート又はフイル
ムの下部部材側の一端と、引続き重ね合せするた
めに例えば、らせん状に巻かれる該シート又はフ
イルムの上部部材側の一端を密着させた状態に、
シート又はフイルムを多重巻きすることは比較的
に煩雑な問題であることが判明した。
In this patent application, for example, the diameter of the uppermost member of the cage-like frame is the same as the diameter of the lower member in contact with the ground, and the center axis of the frame is perpendicular to the horizontal ground, and is cylindrical or square. In the case of columns, etc., the connecting members connecting the upper and lower members can be installed in parallel positions.
It is relatively easy to wrap both longitudinal ends of a sheet or film (width: can be easily done. In other words, if the cage frame is cylindrical or prismatic,
There should be gaps between the stacked sheets or films so that the frame has mechanical strength that can withstand the lateral pressure caused by pouring concrete and prevents leakage and seepage of poured concrete and moisture. It is relatively easy to wind sheets or films in multiple layers so that they are tightly and airtight.
However, in cases where the diameter of the upper member and the lower member of the cage-like frame are different, for example, the shape is truncated conical or truncated pyramid-like, or when the central axis of the cage-like frame is on horizontal ground. In the case of a frame that is inclined, for example, in the shape of a rotating body with a trapezoidal cross section, the connecting members that connect the upper and lower members cannot be installed in parallel positions with respect to the central axis of the frame. . On the outer periphery of such a shaped frame,
When wrapping both longitudinal ends of a wide sheet or film approximately parallel to the surface (approximately horizontal) that constitutes the upper or lower member of the frame, one longitudinal end of the film on the lower member side The other end of the film on the upper member side can be placed in close contact with the outer periphery of the frame, but since the outer periphery of the frame on the upper member side is shorter than the outer periphery of the upper member side, the other end of the film on the upper member side is quite far away from the outer periphery of the frame. , a space is created. This problem is particularly common with wide sheets or films that have poor flexibility. For this purpose, one end of the lower member side of the sheet or film that was previously wound around the outer periphery of the frame is brought into close contact with one end of the upper member side of the sheet or film that is subsequently wound in a spiral shape for overlapping. in a state of
It has been found that multiple wrapping of sheets or films is a relatively complicated problem.

本発明者らは、上記せる如く、截頭円錐状、截
頭角錐状、断面梯形の回転体の形状等の場合にお
ける、籠状の枠の外周にシート又はフイルムを設
ける際に遭遇する比較的に煩雑な問題に関し、更
に簡便化すべく鋭意研究を続けた結果、籠状の枠
の外周の一部に熱収縮性延伸シートまたは熱収縮
性延伸フイルムを設けることで一挙に解決し得る
ことを見出した。更にまた、他の外周の一部に金
属性網で補強した合成樹脂製または金属性網で補
強した無機質繊維強化コンクリート製の外枠を設
けることで型枠資材を更に軽量化し得ることを見
出し、本発明を完成するに至つた。
As mentioned above, the present inventors have discovered the comparative problems encountered when providing a sheet or film on the outer periphery of a cage-like frame in the case of a rotating body having a truncated conical shape, a truncated pyramidal shape, a trapezoidal cross section, etc. As a result of continuing intensive research to further simplify this complicated problem, we discovered that it could be solved at once by providing a heat-shrinkable stretched sheet or heat-shrinkable stretched film on a part of the outer periphery of the cage-like frame. Ta. Furthermore, it has been discovered that the weight of the formwork material can be further reduced by providing an outer frame made of synthetic resin reinforced with a metal net or inorganic fiber reinforced concrete reinforced with a metal net on a part of the other outer periphery, The present invention has now been completed.

即ち、本発明は、(イ)a籠状の枠を作り、bその
枠の外周にシート又はフイルムを設けて型枠と
し、cその中にコンクリートを打設する、構造物
の製法において、(ロ)該型枠として、籠状の枠の外
周のうち少なくとも構造物として地上に露出する
部分に金属性網で補強した合成樹脂または金属性
網で補強した無機質繊維強化コンクリート製の外
枠を設け、且つ、少なくとも該外枠で覆われてい
ない他の篭状の枠の外周に熱収縮性延伸シートま
たは熱収縮性延伸フイルムを設ける、ことを特徴
とする構造物の製法、および、構造物用の型枠で
あつて、籠状の枠の外周のうち少なくとも構造物
として地上に露出する部分(以下、「地上露出部
分等」と略称することがある)に金属性網で補強
した合成樹脂製または金属性網で補強した無機質
繊維強化コンクリート製の外枠を設け、且つ、少
なくとも該外枠で覆われていない他の篭状の枠の
外周(以下、「他の外周」と略称することがあ
る)に熱収縮性延伸シート又は熱収縮性延伸フイ
ルムを設けてなることを特徴とする構造物用の型
枠である。
That is, the present invention provides a method for manufacturing a structure in which (a) a cage-like frame is made, b a sheet or film is provided around the outer periphery of the frame to form a formwork, and c concrete is poured into the frame. b) As the formwork, an outer frame made of synthetic resin reinforced with metal netting or inorganic fiber reinforced concrete reinforced with metal netting is provided on at least the part of the outer periphery of the cage-like frame that is exposed above the ground as a structure. , and a heat-shrinkable stretched sheet or a heat-shrinkable stretched film is provided on the outer periphery of at least another basket-shaped frame that is not covered with the outer frame, and a method for producing a structure, and a structure for use in the structure. The formwork is made of synthetic resin and is reinforced with metal netting on at least the part of the outer periphery of the cage-like frame that is exposed above the ground as a structure (hereinafter sometimes referred to as "above-ground exposed part, etc."). Or, an outer frame made of inorganic fiber-reinforced concrete reinforced with a metal net is provided, and at least the outer periphery of another basket-shaped frame that is not covered by the outer frame (hereinafter, may be abbreviated as "other outer periphery") This is a formwork for a structure, characterized in that it is provided with a heat-shrinkable stretched sheet or a heat-shrinkable stretched film.

本発明は、1籠状の枠は軽量な資材で容易に作
り得る構造のものであり、また該籠状の枠の地上
露出部分等に金属性網で補強した、従つて、従来
の外枠の厚さよりも薄く軽量な、合成樹脂製また
は無機質繊維強化コンクリート製の外枠を設け、
他の外周に熱収縮性延伸シート又は熱収縮性延伸
フイルムを簡単に設けたのち、例えば少量の熱湯
を該熱収縮性延伸シート又は該熱収縮性延伸フイ
ルムに注ぐだけで該シート又は該フイルムが相互
に密着した気密な、且つ籠状の枠の外周と密着し
た機械的強度に優れた型枠とすることができ、熟
練者らを全く必要としない。2該型枠は必要に応
じ、工事現場で作ることも、予め出来上つたもの
を輸送して使用することも出来るが、これに用い
る資材は、従来のパネル組立て型枠等の場合に比
較して著しく安価で、且つ少量であり、更に軽量
なため、資材費と輸送費を大巾に低減し得る。3
従来の方法では型枠にコンクリートを打設したの
ち該型枠の取外しや構造物の表面仕上げを必要と
するが、本発明の製法では少くとも地上部に露出
する構造物の表面は強度、耐久性、平滑性に優れ
た金属性網で補強した、合成樹脂または無機質繊
維強化コンクリート製の外枠であるので表面仕上
げが不必要である。また熱収縮性延伸シート又は
熱収縮性延伸フイルムを設けた型枠部分はそのま
ま埋没して構造物として使用出来る。という従来
では見られなかつた数多くの利点をもつ構造物の
製法および型枠を提供するものである。
The present invention has a cage-like frame that can be easily made from lightweight materials, and the exposed part of the cage-like frame above the ground is reinforced with metal netting. An outer frame made of synthetic resin or inorganic fiber-reinforced concrete that is thinner and lighter than the
After simply providing a heat-shrinkable stretched sheet or a heat-shrinkable stretched film on the other outer periphery, for example, simply pouring a small amount of hot water onto the heat-shrinkable stretched sheet or film will make the sheet or film. The formwork can be made airtight and have excellent mechanical strength because it is in close contact with the outer periphery of the cage-like frame, and no skilled workers are required. 2 The formwork can be made at the construction site or transported and used as a pre-made formwork, if necessary, but the materials used for this are different from those for conventional panel assembly formwork, etc. Since it is extremely inexpensive, requires a small amount, and is lightweight, material costs and transportation costs can be greatly reduced. 3
In the conventional method, it is necessary to remove the formwork and finish the surface of the structure after pouring concrete into the formwork, but with the manufacturing method of the present invention, at least the surface of the structure exposed above the ground has strength and durability. The outer frame is made of synthetic resin or inorganic fiber-reinforced concrete, reinforced with a metal mesh with excellent smoothness and smoothness, so surface finishing is unnecessary. Further, the mold portion provided with the heat-shrinkable stretched sheet or heat-shrinkable stretched film can be buried as is and used as a structure. The present invention provides a method for manufacturing a structure and a formwork that have many advantages that have not been seen in the past.

本発明における籠状の枠とは、板状、管状、線
状等の枠形成材料を相互に接続あるいは縛着さ
せ、必要に応じて補強させた枠組みを使用して形
成させたもので、所望する構造物としての必要な
形状を保持し得る構成を持つものである。また、
該枠は、構造物としての必要な形状に応じ任意の
形を取り得るもので、円柱状、楕円柱状、角柱
状、多角形截頭角錐状、截頭円錐状および截頭楕
円錐状等を例示することができる。
The cage-like frame in the present invention is formed using a frame in which plate-shaped, tubular, linear, etc. frame forming materials are connected or tied together and reinforced as necessary. It has a structure that can maintain the necessary shape as a structure. Also,
The frame can take any shape depending on the shape required for the structure, such as a cylindrical shape, an elliptical cylinder shape, a prismatic shape, a polygonal truncated pyramid shape, a truncated conical shape, a truncated elliptic conical shape, etc. I can give an example.

籠状の枠を形成させる材料としては、金属類、
合成樹脂類、木材類、コンクリート類等が無理な
く使用することができる。また、これら材料の二
種以上を組合せて利用することもできる。材料の
材質としては、後述する籠状の枠への熱収縮性延
伸シート又は熱収縮性延伸フイルムの巻付け等、
および型枠内部へのコンクリートの打設工程で、
籠状の枠が構造物としての所望の形状を保持し得
る強度を持ち得る材料であれば特に限定されるも
のではないが、枠を製作する際の加工性および作
業性や、耐久性から例えば、鉄、真鍮、銅、アル
ミニウム、ステンレススチール等の金属類を使用
することが好ましい。また、籠状の枠を形成させ
る材料の形状としては、板状、棒状、線状および
管状等何れでもよく、これらの材料の二種以上を
組合せて使用することも一向差支えなく、特に限
定されるものではない。
Materials for forming the cage-like frame include metals,
Synthetic resins, wood, concrete, etc. can be used without difficulty. Moreover, two or more of these materials can also be used in combination. Examples of the material include wrapping a heat-shrinkable stretched sheet or a heat-shrinkable stretched film around a cage-like frame, which will be described later.
and in the process of placing concrete inside the formwork,
The cage-like frame is not particularly limited as long as it has the strength to maintain the desired shape as a structure, but from the viewpoint of processability and workability when manufacturing the frame, and durability, for example, It is preferable to use metals such as iron, brass, copper, aluminum, and stainless steel. Further, the shape of the material forming the basket-like frame may be any shape such as plate, rod, wire, or tube, and there is no problem in using two or more of these materials in combination, and there are no particular limitations. It's not something you can do.

本発明における籠状の枠の外周に熱収縮性延伸
シート又は熱収縮性延伸フイルムを設けた型枠と
は、前述した籠状の枠の外周に熱収縮性延伸シー
ト又は熱収縮性延伸フイルムを被覆あるいは巻付
けて内側を空間としたもので、外周の一部をな
す、金属性金網で補強した、合成樹脂製または無
機質繊維強化コンクリート製の外枠と連続してお
り、該外枠の開口部から該外枠の内部及び該シー
ト又は該フイルムを設けた該型枠の内部へコンク
リートを充填することによつて、所望の構造物を
形成し得るものである。使用される該シート又は
該フイルムは任意の巾、厚さのものを任意の回数
だけ枠の外周に巻付けてもよい。
In the present invention, the formwork in which a heat-shrinkable stretched sheet or a heat-shrinkable stretched film is provided on the outer periphery of a cage-like frame refers to a formwork in which a heat-shrinkable stretched sheet or a heat-shrinkable stretched film is provided on the outer periphery of the above-mentioned cage-like frame. It is covered or wrapped to create a space on the inside, and is continuous with an outer frame made of synthetic resin or inorganic fiber reinforced concrete reinforced with a metal wire mesh, which forms part of the outer periphery, and is continuous with the outer frame made of synthetic resin or inorganic fiber reinforced concrete. A desired structure can be formed by filling the inside of the outer frame and the formwork provided with the sheet or film with concrete. The sheet or film used may have any width and thickness and may be wrapped around the outer periphery of the frame any number of times.

本発明において、枠の外周に設けて使用される
熱収縮性延伸シート又は熱収縮性延伸フイルムと
は、熱収縮後、型枠とされたときに型枠内部にコ
ンクリートを打設することによつて生ずる側圧に
十分耐え、更にコンクリートあるいは水等の漏
洩、浸出を防止して十分にコンクリートを硬化さ
せ得るものであれば、なんら限定されるものでな
い。
In the present invention, the heat-shrinkable stretched sheet or heat-shrinkable stretched film used on the outer periphery of the frame refers to the heat-shrinkable stretched sheet or heat-shrinkable stretched film that is used by placing concrete inside the formwork after heat shrinking. The material is not limited in any way as long as it can sufficiently withstand the lateral pressure that occurs, prevent leakage or seepage of concrete or water, and sufficiently harden the concrete.

これらの熱収縮性延伸シート又は熱収縮性延伸
フイルムには、機能的に加熱(例えば熱湯、熱風
等)によつて、縦または横方向の一方向を主体に
収縮する所謂一軸延伸フイルムと、縦、横両方向
に略同程度収縮する所謂二軸延伸フイルム等があ
り、塩化ビニル樹脂、塩化ビニリデン樹脂、ポリ
プロピレン樹脂、ポリエチレン樹脂、ポリエステ
ル樹脂、ポリスチレン樹脂、ポリアミド樹脂等の
熱収縮性延伸シート又は熱収縮性延伸フイルムを
例挙することができる。また本発明においては熱
収縮性延伸シート又は熱収縮性延伸フイルムとし
ては、一種類のみを使用しても、二種類以上のも
のと組合せて使用しても、いつこう差支えない
が、機能的には、所謂、縦一軸に延伸された、シ
ート又はフイルムを使用することが特に好まし
い。
These heat-shrinkable stretched sheets or heat-shrinkable stretched films include a so-called uniaxially stretched film that functionally shrinks mainly in one direction (vertical or horizontal direction) by heating (e.g., hot water, hot air, etc.); There are so-called biaxially stretched films that shrink to approximately the same extent in both horizontal directions, and heat-shrinkable stretched sheets or heat-shrinkable sheets made of vinyl chloride resin, vinylidene chloride resin, polypropylene resin, polyethylene resin, polyester resin, polystyrene resin, polyamide resin, etc. An example is a stretched film. In addition, in the present invention, the heat-shrinkable stretched sheet or heat-shrinkable stretched film may be used alone or in combination with two or more types, but it does not matter when the heat-shrinkable stretched sheet or film is functionally It is particularly preferable to use a so-called longitudinally uniaxially stretched sheet or film.

例えば、籠状の枠の形状が截頭円錐状のもので
該枠の外周に、該枠の上部部材の構成する面(略
水平)に対して略平行に、広巾の熱収縮性縦一軸
延伸シートの長手方向の両端線を位置づけながら
巻付ける場合においては、該熱収縮性縦一軸延伸
シートの下部部材側の端は、該枠の外周に密着さ
せて巻き得るが、該熱収縮性縦一軸延伸シートの
上部部材側の端では、該枠の外周距離が下部部材
側の外周より短いので、その位置で熱収縮性縦一
軸延伸シートと枠との間に隙間、空間が出来るこ
とは前記した通りである。しかし、熱収縮性縦一
軸延伸シートの上部部材側の該シート端が、截頭
円錐状の籠状枠の外周と密着せず隙間があつてて
も、加熱によつて縦一軸方向に、即ち上部部材側
の該シート端が特に収縮するので隙間、空間がな
くなり、熱収縮性縦一軸延伸フイルムがぴつたり
と外周をしめつけながら密着することになる。適
宜、縦、横両方向に収縮度合いを設定した熱収縮
性縦二軸延伸フイルムも使用し得るが、この場合
横方向の収縮も生じ、籠状の枠に巻く熱収縮性延
伸フイルムの巾が小さくなるので、概して熱収縮
性縦一軸延伸フイルムより多重巻きにせざるを得
ない不利がある。
For example, if the cage-like frame has a truncated conical shape, a wide heat-shrinkable longitudinal uniaxially stretched film is applied to the outer periphery of the frame, approximately parallel to the plane (approximately horizontal) that constitutes the upper member of the frame. In the case of winding the sheet while positioning both end lines in the longitudinal direction, the end of the heat-shrinkable longitudinally uniaxially stretched sheet can be wound tightly around the outer periphery of the frame; As mentioned above, at the end of the stretched sheet on the upper member side, the outer circumferential distance of the frame is shorter than the outer circumference on the lower member side, so a gap or space is created between the heat-shrinkable longitudinally uniaxially stretched sheet and the frame at that position. That's right. However, even if the sheet end on the upper member side of the heat-shrinkable longitudinally uniaxially stretched sheet does not come into close contact with the outer periphery of the truncated conical cage frame and there is a gap, it can be heated in the longitudinal uniaxial direction, i.e. Since the edge of the sheet on the upper member side particularly contracts, there is no gap or space, and the heat-shrinkable longitudinally uniaxially stretched film tightly adheres to the outer periphery. If appropriate, a heat-shrinkable longitudinally biaxially stretched film with shrinkage degrees set in both the vertical and horizontal directions may also be used, but in this case, shrinkage also occurs in the horizontal direction, and the width of the heat-shrinkable stretched film wound around the cage-like frame is small. Therefore, there is a disadvantage in that it generally has to be wound in multiple layers compared to a heat-shrinkable longitudinally uniaxially stretched film.

更に、熱収縮性延伸シート又は熱収縮性延伸フ
イルムは、同じ材質の非収縮性無延伸の、シート
又はフイルムと比較すると、上記せる熱収縮性以
外に、延伸によつて機械的強度が格段に向上する
ので、それだけ非収縮性無延伸の、シート又はフ
イルムより使用量を少く出来る利点もあるので、
本発明で使用に適する熱収縮性延伸シート又はフ
イルムとしては熱収縮性と機械的強度の観点か
ら、100℃で縦、横各々15%以上の熱収縮率を有
する二軸延伸の、シート又はフイルム、好ましく
は100℃で縦15%以上の熱収縮率を有する縦一軸
延伸の、シートまたはフイルムを使用することが
好ましい。
Furthermore, when compared with a non-shrinkable, unstretched sheet or film made of the same material, a heat-shrinkable stretched sheet or a heat-shrinkable stretched film has, in addition to the above-mentioned heat shrinkability, a marked increase in mechanical strength due to stretching. This has the advantage that the amount used can be reduced compared to non-shrinkable, non-stretched sheets or films.
From the viewpoint of heat shrinkability and mechanical strength, the heat-shrinkable stretched sheet or film suitable for use in the present invention is a biaxially stretched sheet or film that has a heat shrinkage rate of 15% or more in both length and width at 100°C. It is preferable to use a longitudinally uniaxially stretched sheet or film, preferably having a heat shrinkage rate of 15% or more in the longitudinal direction at 100°C.

また型枠に使用する該シート又は該フイルムの
厚みは、型枠としての必要な強度に応じ、一重巻
きから多重巻きへと適宜巻数を変え得るので特に
限定されるものではない。
The thickness of the sheet or film used in the formwork is not particularly limited, as the number of turns can be changed from single to multiple windings depending on the strength required for the formwork.

本発明における金属性網で補強した、合成樹脂
製または無機質繊維強化コンクリート製の外枠と
は、所望する構造物としての必要な任意の形状を
有し、且つ籠状の枠を覆い得る、例えば円柱状、
楕円柱状、角柱状、多角形截頭角錐状、截頭円錐
状および截頭楕円錐状等の中空の金属性網で補強
した、合成樹脂製または無機質繊維強化コンクリ
ート製の外枠で、該外枠内にコンクリートを打設
する際には該コンクリートによつて生ずる側圧に
耐え、構造物としての所望の形状を保持し得る強
度を有し、該コンクリートが硬化後は構造物の外
表面を構成すると共に合体する枠である。
In the present invention, the outer frame made of synthetic resin or inorganic fiber-reinforced concrete reinforced with a metal net has any shape necessary for a desired structure and can cover a cage-like frame, for example. cylindrical,
An outer frame made of synthetic resin or inorganic fiber-reinforced concrete reinforced with a hollow metal mesh such as an elliptical cylinder, a prism, a polygonal truncated pyramid, a truncated cone, and a truncated elliptic cone. When concrete is poured into the frame, it has the strength to withstand the lateral pressure generated by the concrete and maintain the desired shape of the structure, and after the concrete hardens, it forms the outer surface of the structure. It is a frame that merges as it moves.

本発明における合成樹脂とは、上記した如き強
度、合体等を示す性能の合成樹脂であれば特に限
定されるものではないが、例えば熱硬化性樹脂と
しては、ポリエステル樹脂、エポキシ樹脂、フエ
ノール樹脂、メラミン樹脂、キシレン樹脂、トル
エン樹脂等、およびこれらの混合または共縮合樹
脂等を挙げることができ、また熱可塑性樹脂とし
ては、塩化ビニル樹脂、醋酸ビニル樹脂、アクリ
ル樹脂、ポリエチレン樹脂、ポリプロピレン樹
脂、ポリスチレン樹脂等、およびこれらの混合ま
たは共重合樹脂等を挙げることができる。
The synthetic resin in the present invention is not particularly limited as long as it has properties such as strength and cohesion as described above, but examples of thermosetting resins include polyester resin, epoxy resin, phenol resin, Melamine resins, xylene resins, toluene resins, etc., and mixed or co-condensed resins thereof can be mentioned, and thermoplastic resins include vinyl chloride resins, vinyl acetate resins, acrylic resins, polyethylene resins, polypropylene resins, and polystyrene. Examples include resins, and mixed or copolymer resins thereof.

本発明における無機質繊維強化コンクリートと
は、無機質繊維、無機セメント及び水と必要に応
じ砂及び/又は砂利等の骨材を含んでなる組成物
の硬化物をいい、無機セメントとしては、例えば
ポルトランドセメント、アルミナセメント、膨脹
セメント、焼石膏等の自硬性セメントや、又石灰
スラグセメント、高炉セメント、高硫酸塩スラグ
セメント、キーンスセメント等の潜在水硬性セメ
ント、更には石灰ケイ酸系混合セメント等の混合
系セメントがあり、無機質繊維としては、ガラス
繊維、金属繊維、岩石繊維、スラグ繊維、アスベ
スト等の人工又は天然の無機質繊維が使用される
が、補強効果上好ましくはガラス繊維が、更に最
も好ましくは耐アルカリ性ガラス繊維が用い得
る。
The inorganic fiber-reinforced concrete in the present invention refers to a cured product of a composition comprising inorganic fibers, inorganic cement, water, and, if necessary, aggregate such as sand and/or gravel. Examples of inorganic cement include Portland cement. , self-hardening cements such as alumina cement, expanded cement, and calcined gypsum; latent hydraulic cements such as lime slag cement, blast furnace cement, high sulfate slag cement, and Keens cement; and even lime-silicate mixed cements. There are mixed cements, and as the inorganic fibers, artificial or natural inorganic fibers such as glass fibers, metal fibers, rock fibers, slag fibers, asbestos, etc. are used, but glass fibers are most preferable from the viewpoint of reinforcing effect. Alkali-resistant glass fiber can be used.

本発明における金属性網とは、メタルワイヤで
編んだもの、パンチングメタル、メタルラスボー
ト等をいい、網状構造を有する材質を鉄、真鍮、
銅、アルミニウム、ステンレススチール等とする
ものである。この金属性網の材質や網状構造の大
きさは、特に制限されるものではなく、金属性網
で補強された、合成樹脂製または無機質繊維強化
コンクリート製の外枠の形状、大きさ、用途等を
考慮し、補強すべき機械的強度に応じ、適宜、同
種の材質から成る金網または他種の金網を選んで
併用することも出来れば、1枚の金網または2枚
以上の金網をも使用することが出来るが、一般
に、材質は鉄で、金網では網目の大きさが一辺10
〜50mmの範囲のもの、メタルラスボードでは網目
の長径30〜150mm、網目の短径10〜50mmの範囲の
ものが都合よく使用し得る。これらの金属性網で
補強した、合成樹脂製または無機質繊維強化コン
クリート製の外枠は、金属性網の補強作用で従来
の外枠の厚さの約50%以下に薄くすることが出来
るので、極めて軽量であり運搬等が容易に行い得
る効果があり、これらの外枠の厚さとしては特に
10mm以下が好都合に使用し得る。
In the present invention, the metallic net refers to one knitted with metal wire, punched metal, metal lath boat, etc., and the material having the net-like structure is iron, brass,
It is made of copper, aluminum, stainless steel, etc. The material of this metal mesh and the size of the network structure are not particularly limited, and the shape, size, and purpose of the outer frame made of synthetic resin or inorganic fiber reinforced concrete reinforced with the metal mesh, etc. Depending on the mechanical strength to be reinforced, wire mesh made of the same material or other types of wire mesh may be selected and used in combination, or one wire mesh or two or more wire meshes may be used. However, in general, the material is iron, and the mesh size of wire mesh is 10 on each side.
For metal lath boards, those with a mesh length of 30 to 150 mm and a mesh width of 10 to 50 mm can be conveniently used. The outer frame made of synthetic resin or inorganic fiber-reinforced concrete reinforced with these metal nets can be made thinner to about 50% or less of the thickness of a conventional outer frame due to the reinforcing action of the metal net. It is extremely lightweight and has the advantage of being easy to transport, and the thickness of these outer frames is particularly
10 mm or less may be advantageously used.

本発明における金属性網で補強した合成樹脂製
の外枠は、通常の成形技術で前記した如き所望す
る任意の形状に成形することが出来る。例えば、
外枠としての形状を与えるに適した形状の金型中
の内壁近くに金属性網を配置しておき、次いで合
成樹脂材料を加えたのちに成形して作る方法、分
割された外枠形状の金型で複数個の金属性網を内
在させた外枠部分に成形したのち、該分割外枠部
分を組合せたり、接合させたりして外枠に構成す
る方法、金属性網を内在させた合成樹脂製の板を
所定形状に切断したのち、該切断部分を接着また
は融着して外枠に構成する方法等を挙げることが
出来る。
The synthetic resin outer frame reinforced with a metal mesh according to the present invention can be molded into any desired shape as described above using ordinary molding techniques. for example,
A metal mesh is placed near the inner wall of a mold with a shape suitable for giving the shape of the outer frame, and then a synthetic resin material is added and then molded. A method of forming an outer frame with a plurality of metallic meshes in it using a mold, and then combining or joining the divided outer frame parts to form an outer frame; Examples include a method of cutting a resin plate into a predetermined shape and then gluing or fusing the cut portions to form an outer frame.

前記せる金属性網で補強した合成樹脂製の外枠
としては、軽量で且つ強度、耐久性に優れたもの
として無機質繊維、特にガラス繊維で補強された
ポリエステル樹脂、アクリル樹脂、塩化ビニル樹
脂等の金属性網で補強したガラス繊維強化合成樹
脂製外枠の使用が好ましいが、それらの中でも
種々の形状に成形しやすく且つ耐久性に著しく優
れた金属性網で補強したガラス繊維強化ポリエス
テル(以下「FRP」と略記することあり)製の
外枠の使用が特に好ましい。
The synthetic resin outer frame reinforced with the metal mesh mentioned above may be made of inorganic fibers, especially polyester resin, acrylic resin, vinyl chloride resin, etc. reinforced with glass fiber, as it is lightweight and has excellent strength and durability. It is preferable to use an outer frame made of glass fiber-reinforced synthetic resin reinforced with a metal net, but among these, glass fiber-reinforced polyester (hereinafter referred to as " It is particularly preferable to use an outer frame made of FRP (sometimes abbreviated as "FRP").

このポリエステル樹脂の原料としては、主に不
飽和二塩基酸、飽和二塩基酸、二価アルコール、
ビニールモノマーが一般に用いられ、その種類と
量の組合せにより樹脂の性状、硬化特性、硬化物
の性質等が調節できる。不飽和二塩基酸としては
無水マレイン酸、フマール酸等が、飽和二塩基酸
としては無水フタル酸、イソフタル酸、テレフタ
ル酸、テトラヒドロ無水フタル酸、アジピン酸、
セバチン酸、3・6エンドメチレンテトラヒドロ
無水フタル酸等が、二価アルコールとしては、エ
チレングリコール、ジエチレングリコール、1・
2−プロピレングリコール、ジプロピレングリコ
ール、水素化ビスフエノールA・2・2−ビス
(4−オキシエトキシフエノール)プロパン、
2・2−ビス(4−オキシプロピオキシフエニ
ル)プロパン等が、又ビニールモノマーとして
は、スチレン、ビニルトルエン、ジアルフタレー
ト、メタクリル酸メチル、トリアシルアヌール
酸、トリアリルリン酸等が用いられる。
The raw materials for this polyester resin are mainly unsaturated dibasic acids, saturated dibasic acids, dihydric alcohols,
Vinyl monomers are generally used, and the properties of the resin, curing characteristics, properties of the cured product, etc. can be adjusted by combining the type and amount of vinyl monomers. Examples of unsaturated dibasic acids include maleic anhydride and fumaric acid; examples of saturated dibasic acids include phthalic anhydride, isophthalic acid, terephthalic acid, tetrahydrophthalic anhydride, adipic acid,
Sebacic acid, 3,6 endomethylenetetrahydrophthalic anhydride, etc., and dihydric alcohols include ethylene glycol, diethylene glycol, 1,
2-propylene glycol, dipropylene glycol, hydrogenated bisphenol A.2.2-bis(4-oxyethoxyphenol)propane,
2,2-bis(4-oxypropioxyphenyl)propane, etc. are used, and as vinyl monomers, styrene, vinyltoluene, dialphthalate, methyl methacrylate, triacyl anuric acid, triallyl phosphoric acid, etc. are used.

また、ガラス繊維としては特に限定されるもの
ではなく、一般に市販されているFRP用のもの
であれば、これらの材料を一種または二種以上組
合せて使用することが出来る。これらの材料とし
ては、一般には3〜35ミクロンの、ロービング、
ロービングクロス、チヨツプストランドマツト、
チヨツプストランド、グラスクロス、ラミマツト
等が成形法および成形品に要求される強度等の要
望に応じて使いわけられるが、繊度としては細い
ほど強度が高く、屈曲性、耐摩耗性も向上し、更
にポリエステル樹脂の含浸性も向上するので、細
いものを使用することが好ましい。
Further, the glass fiber is not particularly limited, and as long as it is generally commercially available for FRP, one type or a combination of two or more of these materials can be used. These materials typically include rovings, 3 to 35 microns,
Roving cloth, chop strand pine,
Tip strands, glass cloth, laminate, etc. can be used depending on the molding method and the strength required for the molded product, but the thinner the fineness, the higher the strength, and the better the flexibility and abrasion resistance. Moreover, it is preferable to use a thin one because it also improves the impregnating property of the polyester resin.

上記せるポリエステル樹脂の原料とガラス繊維
及び金属性網から、本発明の外枠を形成するに
は、成型法として、プリミツクス法、マツチドダ
イ法、ハンドレイアツプ法、スプレーアツプ法、
フイラメントワインデイング法、レジンインジエ
クシヨン法等の種々のものがあるが、例えばハン
ドレイアツプ法について円筒形状の外枠の成形に
ついて以下述べれば、断面半円形の樋状のステン
レス板製金型表面上にFRP用の離型剤(公進ケ
ミカル社製:商品名ボンリースH)を薄く塗布し
たのち、液状のポリエステル樹脂(日立化成(株)
製:商品名ポリセツトPS−2182APT−S)に対
して、メチルエチルケトンパーオキサイド硬化剤
(日本油脂(株)製:商品名パーメツクN)1溶量%
混合した溶液を、所定寸法を有するガラス繊維製
マツト(日東紡績(株)製、チヨツプストランドマツ
トMC450A)に450g/M2含浸させて、該金型面
上に貼つたのち、更に、この上に線径1.0mm、網
目の大きさ10×10mmの鉄製金網を1枚のせ、該金
網と一緒に該ガラス繊維製マツトをローラがけし
て脱泡する。脱泡後、更に液状のポリエステル樹
脂と硬化剤を含浸したガラス繊維製マツトを重
ね、同様のローラがけ操作で、成形後の所望する
強度に応じ例えば厚さ3mmに積層する。積層後、
常温で約2時間放置し硬化後、ステンレス金型か
ら外し外面が平滑で断面が半円形状の樋状の2分
割された外枠を作ることが出来る。このFRP製
の枠は2個組合せ中空円筒状の外枠として使用す
ることが出来る。
In order to form the outer frame of the present invention from the above-mentioned polyester resin raw materials, glass fibers, and metal mesh, molding methods include the Primix method, mated die method, hand lay-up method, spray-up method,
There are various methods such as filament winding method and resin injecting method, but for example, the hand lay-up method is used to form a cylindrical outer frame. After applying a thin layer of mold release agent for FRP (manufactured by Koshin Chemical Co., Ltd., trade name Bonlease H) on top, liquid polyester resin (manufactured by Hitachi Chemical Co., Ltd.) was applied.
Methyl ethyl ketone peroxide curing agent (manufactured by Nippon Oil & Fats Co., Ltd., trade name Permeck N) is 1% by solubility in relation to Polyset PS-2182APT-S (trade name: Polyset PS-2182APT-S).
The mixed solution was impregnated with 450 g/M 2 into a glass fiber mat having a predetermined size (Nitto Boseki Co., Ltd., Chip Strand Mat MC450A), and then applied onto the mold surface. A sheet of iron wire mesh with a wire diameter of 1.0 mm and a mesh size of 10 x 10 mm is placed on top, and the glass fiber mat is rolled together with the wire mesh to defoam. After defoaming, a glass fiber mat impregnated with a liquid polyester resin and a hardening agent is further layered, and laminated to a thickness of, for example, 3 mm, depending on the desired strength after molding, using a similar rolling operation. After lamination,
After curing by leaving it at room temperature for about 2 hours, it is removed from the stainless steel mold to create a gutter-shaped two-part outer frame with a smooth outer surface and a semicircular cross section. Two of these FRP frames can be combined and used as a hollow cylindrical outer frame.

本発明における金属性網で補強した無機質繊維
強化コンクリート製の外枠も、通常の成形技術で
前記した如き所望する任意の形状に成形すること
が出来る。該外枠の成形法としてはスプレーアツ
プ法、ハンドレイアツプ法、プリミツクス法、そ
の他の方法が用いられるが、例えばスプレーイア
ツプ法について円筒形状の外枠の成形について以
下述べれば、断面半円形の樋状のステンレス板製
金型表面上にガラス繊維強化セメント用の離型剤
(ケミツクス工業(株)製:商品名ケミツクスWS)
を薄く塗布したのち、線径1.2mm、六角形の網目
構造(長径1.5mm)の鉄製金網を1枚のせ、この
上に、セメント100重量部に砂約60重量部、およ
び水約35重量部を混合したセメントモルタルと、
耐アルカリ性のガラス繊維(旭硝子(株)製:商品名
cem−FILロービング)を25ないし40mmに切断
し、該セメントモルタルの重量に対して3〜7重
量%を、2個のスプレーガンを用いて混和しなが
ら吹付け、ローラがけ、脱泡を行い、成形後の所
望する強度に応じ同様のセメントモルタルとガラ
ス繊維の吹付け操作を繰返して例えば厚さ3mmに
積層する。所望する厚さに達したならば、常温で
約24時間放置し硬化させたのちステンレス金型か
ら外し、外面が平滑で断面が半円形状の樋状の2
分割された外枠を作ることが出来る。かくして作
られた2分割した形状を有するガラス繊維強化コ
ンクリート製の枠は2個組合せ中空円筒状の外枠
として使用することが出来る。
The outer frame made of inorganic fiber-reinforced concrete reinforced with a metal mesh according to the present invention can also be formed into any desired shape as described above using ordinary forming techniques. Spray up method, hand lay up method, primix method, and other methods are used to form the outer frame. For example, the spray up method is used to form a cylindrical outer frame. A mold release agent for glass fiber reinforced cement (manufactured by Chemiskus Kogyo Co., Ltd.: trade name: Chemiskus WS) is placed on the surface of the gutter-shaped stainless steel plate mold.
After applying a thin layer of 1.2 mm wire diameter, a sheet of iron wire mesh with a hexagonal mesh structure (long diameter 1.5 mm) is placed, and on top of this, 100 parts by weight of cement, about 60 parts by weight of sand, and about 35 parts by weight of water are placed. cement mortar mixed with
Alkali-resistant glass fiber (manufactured by Asahi Glass Co., Ltd.: product name)
cem-FIL roving) is cut into 25 to 40 mm pieces, sprayed with 3 to 7% by weight based on the weight of the cement mortar while mixing using two spray guns, rolled, and defoamed. Depending on the desired strength after molding, the same process of spraying cement mortar and glass fibers is repeated to form layers to a thickness of, for example, 3 mm. Once the desired thickness has been reached, leave it at room temperature for about 24 hours to harden, then remove it from the stainless steel mold and form a gutter-shaped 2 piece with a smooth outer surface and a semicircular cross section.
You can create divided outer frames. Two frames made of glass fiber-reinforced concrete having a two-part shape can be combined and used as a hollow cylindrical outer frame.

本発明における外枠の形状は、前記した如く構
造物として所望される形状に応じ、例えば円柱
状、楕円柱状、角柱状、多角形截頭角錐状、截頭
円錐状、截頭角錐状等の任意の形状に、上記した
如き方法等で容易に成形することが出来るが、該
外枠内にコンクリートが強固に接合合体し、離脱
等を可及的に防止するには、外枠の内壁に、軸方
向即ち外枠の底部より頂部に向つた方向にリブま
たは継手を設けることが好ましい。該リブまたは
該継手を外枠の内壁に設けることで外枠が力学的
に補強され、外枠を製造する際の資材を減少せし
め得るばかりか、該リブまたは該継手がコンクリ
ート中に喰込むことになるので該外枠がコンクリ
ートと一層強固に接合することになる。また、例
えばFRP製の外枠の場合は、外枠作成時のポリ
エステル樹脂の硬化前に砂等の無機物質の小粒や
耐アルカリ性ガラス繊維等を該外枠の内壁に吹付
けたり撤布したりして内壁を凹凸化させ、コンク
リートと強固な接合化を講ずることも好ましい。
更に、該外枠の最頂部の周縁が鋭つたエツジにな
つている場合は、何らかの外力を受けた時に損傷
しやすいので、該外枠の最頂部の周縁は内側に曲
つた曲面を有するものが強度的にも外枠の形状と
して好ましい。
The shape of the outer frame in the present invention depends on the desired shape of the structure as described above, for example, cylindrical, elliptical cylindrical, prismatic, polygonal truncated pyramid, truncated conical, truncated pyramid, etc. It can be easily formed into any shape using the method described above, but in order to firmly bond the concrete within the outer frame and prevent separation as much as possible, it is necessary to form the concrete into the inner wall of the outer frame. Preferably, the ribs or joints are provided in the axial direction, that is, in the direction from the bottom to the top of the outer frame. By providing the ribs or the joints on the inner wall of the outer frame, the outer frame is mechanically reinforced, which not only reduces the amount of materials used to manufacture the outer frame, but also prevents the ribs or the joints from digging into the concrete. As a result, the outer frame is more firmly bonded to the concrete. In addition, for example, in the case of an outer frame made of FRP, small particles of inorganic substances such as sand or alkali-resistant glass fibers may be sprayed or removed on the inner wall of the outer frame before the polyester resin hardens when creating the outer frame. It is also preferable to make the inner wall uneven to form a strong bond with the concrete.
Furthermore, if the outer frame has a sharp edge, it is likely to be damaged when it receives some external force, so it is better to have an inwardly curved edge at the top of the outer frame. This is preferable as the shape of the outer frame in terms of strength as well.

本発明における金属性金網で補強した、合成樹
脂製または無機質繊維強化コンクリート製の外枠
は、次のようにして構造物の表面の一部に構成さ
れる。
The outer frame made of synthetic resin or inorganic fiber-reinforced concrete reinforced with a metal wire mesh in the present invention is constructed as a part of the surface of the structure as follows.

構造物を施工する、例えば基礎用構造物あるい
は鉄塔の脚部固定用構造物などを現場で設置する
場合は、先づ地盤を掘削し、掘削孔を造成したの
ち、該掘削孔底部の所望の位置に籠状の枠を作
り、簡単な取付けで該枠を固定させ、次いで掘削
孔底部と籠状の枠の底部の一部にコンクリートを
打設してかためる。該コンクリートの硬化後、籠
状の枠の頂部と、金属性網で補強した、合成樹脂
製または無機質繊維強化コンクリート製の外枠の
頂部を一致させ、籠状の枠の外周の一部を該外枠
で覆つたのち、熱収縮性延伸シート又は熱収縮性
延伸フイルムを該外枠の下部部分を含め覆われて
いない他の籠状枠の外周に設け、熱収縮ののち型
枠とする。しかるのち、該外枠の頂部開口部から
該型枠及び該外枠中にコンクリートを打設し、硬
化させ、地上露出部分等を金属性網で補強した、
合成樹脂製または無機質繊維強化コンクリート製
の外枠とした構造物とすることが出来る。
When constructing a structure, for example, a foundation structure or a structure for fixing the legs of a steel tower, on-site, the ground is first excavated and a borehole is created, then the desired position at the bottom of the borehole is A cage-like frame is made at the location, the frame is fixed by simple installation, and then concrete is poured into the bottom of the excavation hole and a part of the bottom of the cage-like frame to harden it. After the concrete hardens, the top of the cage-like frame is aligned with the top of an outer frame made of synthetic resin or inorganic fiber reinforced concrete reinforced with a metal net, and a part of the outer periphery of the cage-like frame is After covering with an outer frame, a heat-shrinkable stretched sheet or a heat-shrinkable stretched film is provided around the outer periphery of the other cage-like frames that are not covered, including the lower part of the outer frame, and after heat-shrinking, a formwork is formed. After that, concrete was poured into the formwork and the outer frame from the top opening of the outer frame, hardened, and the exposed above ground portions were reinforced with metal mesh.
It can be a structure with an outer frame made of synthetic resin or inorganic fiber reinforced concrete.

なお、この際に籠状の枠の外周の一部に設けら
れる金属性網で補強した、合成樹脂製または無機
質繊維強化コンクリート製の外枠の高さは、構造
物の大きさ、掘削孔の深さ、埋戻し深さ、周囲の
環境状況等に応じ、適宜きめることが出来ること
は勿論である。また、本発明の外枠は、例えば中
空の円筒状の金属性網で補強した、合成樹脂製ま
たは無機質繊維強化コンクリート製の外枠1個で
構成されてもよく、必要に応じ2個以上の個々の
外枠を該枠の軸方向に継いで使用されてもよい。
At this time, the height of the outer frame made of synthetic resin or inorganic fiber-reinforced concrete reinforced with a metal mesh provided on a part of the outer periphery of the cage-like frame depends on the size of the structure and the size of the excavation hole. Of course, it can be determined as appropriate depending on the depth, backfill depth, surrounding environmental conditions, etc. Further, the outer frame of the present invention may be composed of one outer frame made of synthetic resin or inorganic fiber-reinforced concrete reinforced with a hollow cylindrical metal net, or two or more outer frames may be used as necessary. It may also be used by connecting individual outer frames in the axial direction of the frames.

以下、本発明を第1図に示す実施例によつて詳
細に説明するが、本発明はこの実施例に限定され
るものではない。
Hereinafter, the present invention will be explained in detail with reference to an embodiment shown in FIG. 1, but the present invention is not limited to this embodiment.

高圧送電線用鉄塔の脚部固定用構造物(10゜傾
斜位、截頭円錐状、上部径0.6mφ、下部径1.5m
φ、高さ2.5m)の製作において、先づ対象地盤
を2.2mの深さまで掘削し、掘削孔1を造成す
る。掘削孔底部にコンクリートブロツク13を設
け、その上に鋼製の鉄塔支柱材ネコ3を置き、そ
の上に鉄塔支柱2を傾角度10゜の位置とし支保工
4によつて固定する。次に枠形成上部部材5及び
枠形成下部部材6(30m/mL型鋼)を鉄塔支柱
2を中心として、上方及び下方に高さ2.5mとな
るように位置を決め固定する。枠形成上部部材5
及び枠形成下部部材6には連結材7を連結して篭
状の枠を形成させるための連結部材接着部8を一
定間隔に12個所に設け、12本の連結部材7(3.2
m/mφ鋼線)を緊張させて縛着させた。このよ
うにして作成した篭状の枠における連結部材7
は、後の工程での熱収縮性縦一軸延伸フイルム張
りによる締付に対して枠の形状および寸法精度を
維持し、また、コンクリート打ちにおける側圧に
対して十分な強度をもたせるために、枠形成上部
部材5および枠形成下部部材6の中間部分に中間
保持部材9(6m/mφ鋼棒)を3個所に設定
し、連結部材7を補強して保形する。次いで、捨
てコンクリート10を打設する。捨てコンクリー
トが硬化したのち中空截頭円錐状で該最頂部が面
取りされた周縁で、上部径0.62mφ、下部径1.02
mφ、高さ1.0mの外枠11(地上部に該当する
部分が約0.3m、地下部に該当する部分が約0.7
m)を、線径1.2mm、六角形の網目構造(長径15
mm)の鉄製金網を1枚うめ込み補強した厚さ2.5
mmのガラス繊維強化コンクリート製の枠2個を組
合せて作り、該外枠11の最頂部を篭状の枠の最
頂部の枠形成上部部材5と同じ高さに置き一致さ
せて篭状の枠を覆う。次いで、該外枠11の底部
位置から下方に向つて、該外枠11の底部も含め
連結部材7の外周を、熱収縮性縦一軸延伸塩化ビ
ニル樹脂フイルム12(厚さ0.050m/m、420
m/m巾、ロール巻;100℃における熱収縮率、
縦50%、横2%)で枠形成上部部材5の構成する
面に略平行のらせん状に、枠形成下部部材に向つ
てほぼ5層に熱収縮性縦一軸延伸塩化ビニル樹脂
フイルム12を重ね合せながら、捨てコンクリー
トの表面まで多重巻きに巻きつけた。該フイルム
12を多重巻きしただけでは、脚部固定用構造物
の断面が略梯形で、連結部7が平行がないため、
らせん状に巻きつけた該フイルム12の長手方向
で上部部材5側の端には隙間が生じるため、多重
巻きによつて雛になつたが、外枠11の底部位置
から、らせん状に巻きつけた該フイルム12に約
95℃の熱湯、約4を注いだところ、熱湯が隙
間、雛の部分を伝わり、下方の捨てコンクリート
に達するまでに熱収縮性縦一軸延伸塩化ビニル樹
脂フイルム12は籠状の枠の外周方向に緊密に収
縮し全く雛のない状態になつた。かくして製作し
た型枠に対し、鉄製金網で補強されたガラス繊維
強化コンクリート製の外枠11の頂部開口部分か
らコンクリートを型枠内に打設し、コンクリート
が硬化後、そのままで掘削孔1を掘削前の地盤の
位置まで埋戻し、構造物を完成した。
Structure for fixing the legs of high-voltage power transmission line towers (10° inclination, truncated conical shape, upper diameter 0.6 mφ, lower diameter 1.5 m
φ, height 2.5m), first excavate the target ground to a depth of 2.2m and create excavation hole 1. A concrete block 13 is provided at the bottom of the excavation hole, a steel tower support member 3 is placed on top of the concrete block 13, and a steel tower support 2 is fixed on top of it with a support 4 at an angle of inclination of 10°. Next, the frame-forming upper member 5 and the frame-forming lower member 6 (30 m/mL type steel) are positioned and fixed at a height of 2.5 m above and below the tower support 2 as the center. Frame forming upper member 5
The frame forming lower member 6 is provided with 12 connecting member adhesive parts 8 at regular intervals for connecting the connecting members 7 to form a basket-shaped frame, and the 12 connecting members 7 (3.2
m/mφ steel wire) was tied under tension. Connecting member 7 in the basket-shaped frame thus created
In order to maintain the shape and dimensional accuracy of the frame when tightening with heat-shrinkable longitudinally uniaxially stretched film in the later process, and to provide sufficient strength against the lateral pressure during concrete pouring, the frame is formed Intermediate holding members 9 (6 m/mφ steel rods) are set at three locations between the upper member 5 and the frame-forming lower member 6 to reinforce and retain the shape of the connecting member 7. Next, sacrificial concrete 10 is placed. After the concrete has hardened, it is shaped like a hollow truncated cone with a chamfered top and an upper diameter of 0.62 mφ and a lower diameter of 1.02 mm.
mφ, height 1.0m outer frame 11 (the part corresponding to the aboveground part is approximately 0.3m, the part corresponding to the underground part is approximately 0.7m)
m), wire diameter 1.2 mm, hexagonal mesh structure (major axis 15
Thickness 2.5 mm) reinforced with one iron wire mesh
The top of the outer frame 11 is placed at the same height as the top frame forming upper member 5 of the basket-shaped frame to form a basket-shaped frame. cover. Next, from the bottom position of the outer frame 11 downward, the outer periphery of the connecting member 7 including the bottom of the outer frame 11 is covered with a heat-shrinkable longitudinally uniaxially stretched vinyl chloride resin film 12 (thickness: 0.050 m/m, 420 m/m).
m/m width, roll winding; heat shrinkage rate at 100℃,
The heat-shrinkable longitudinally uniaxially stretched vinyl chloride resin film 12 is stacked in approximately five layers toward the frame-forming lower member in a spiral shape approximately parallel to the surface of the frame-forming upper member 5 (50% vertically and 2% horizontally). At the same time, I wrapped it in multiple layers up to the surface of the concrete. If the film 12 is simply wound multiple times, the cross section of the leg fixing structure will be approximately trapezoidal and the connecting portions 7 will not be parallel.
Since there is a gap at the end of the spirally wound film 12 on the side of the upper member 5 in the longitudinal direction, the chicks are formed by multiple winding. Approximately 12 times the film
When about 4 hours of boiling water at 95°C was poured, the hot water traveled through the gaps and the chicks, and by the time it reached the concrete below, the heat-shrinkable longitudinally uniaxially stretched vinyl chloride resin film 12 had moved in the direction of the outer periphery of the cage-like frame. It contracted tightly and became completely devoid of chicks. For the formwork thus produced, concrete is poured into the formwork from the top opening of the outer frame 11 made of glass fiber reinforced concrete reinforced with a steel wire mesh, and after the concrete has hardened, an excavation hole 1 is excavated as it is. The structure was completed by backfilling to the previous ground level.

以上のように施工された鉄塔脚部固定用構造物
は、使用する資材が従来の木材パネル工法や鉄類
または合成樹脂等のユニツト型枠工法に比較し
て、鋼線、機械的強度が強く、且つ熱収縮性の延
伸フイルム、鉄製金網で補強された薄いガラス繊
維強化コンクリート製外枠等の単純な形状の資材
であり、且つ少量で更に著しく軽量であるので運
搬が極めて容易であつた。
The structure for fixing the tower legs constructed as described above uses steel wire, which has stronger mechanical strength, than the conventional wood panel construction method or unit formwork construction method, such as iron or synthetic resin. Moreover, it is a material with a simple shape such as a heat-shrinkable stretched film and a thin glass fiber reinforced concrete outer frame reinforced with iron wire mesh, and it is very easy to transport because it is small and extremely lightweight.

また、篭状の枠の作成、型枠の作成、支保工作
業が極めて簡単な軽作業で、特に従来の方法では
籠状の枠の外周にシートまたはフイルムを巻きつ
ける際、丁寧に雛のない状態に巻きつけ打設され
るセメント等の漏洩、浸出防止に可なり煩雑な手
間を必要としたが、本発明では熱収縮性延伸フイ
ルムの加熱による収縮でこの手間を必要としない
ため、型枠の作成に要した労力及び時間は従来法
の1/3以下に著しく低減出来たうえに、地盤以下
の掘削孔中の脚部をそのまま埋没させて高圧送電
線用鉄塔脚部固定構造物を完成することが出来た
ので、従来法で必要な型枠の分解、取外し、回収
した型枠の手入れ、次の工事地区への運搬等に必
要な労力及び時間が全く不必要であつた。
In addition, the creation of the basket-shaped frame, the creation of the formwork, and the shoring work are extremely easy and light work, and in particular, when wrapping a sheet or film around the outer periphery of the cage-shaped frame with the conventional method, it is necessary to carefully remove the chicks. A considerable amount of time and effort was required to prevent leakage and oozing of cement, etc., which is wrapped around the mold and cast, but in the present invention, this time and effort is not required because the heat-shrinkable stretched film shrinks by heating. The labor and time required to create the tower were significantly reduced to less than 1/3 of the conventional method, and the structure for fixing the legs of a high-voltage power transmission tower was completed by burying the legs as they were in the excavated hole below the ground. As a result, the labor and time necessary for disassembling and removing the formwork, caring for the recovered formwork, transporting it to the next construction area, etc. required by conventional methods were completely unnecessary.

また、従来法で製作されたものに比較して、本
発明の構造物の強度はなんら遜色なく十分に満足
し得るものであり、特に、金属性網で補強された
ガラス繊維強化コンクリート製外枠を使用したた
め、打設されたコンクリートと強力に一体化する
とともに、優れた外観をも示した。
In addition, the strength of the structure of the present invention is comparable to that of structures manufactured by conventional methods and is fully satisfactory, especially the outer frame made of glass fiber reinforced concrete reinforced with metal mesh. Because it was used, it not only strongly integrated with the poured concrete but also had an excellent appearance.

以上述べた如く、本発明は従来の構造物の施工
法と比較して、施工に熟練者を必要とせず、短時
間で任意の形状で更に美的外観を有する構造物を
容易に施工することができ、且つ、僅少なる型枠
資材と型枠取外し不要という労力、輸送上の点か
らも多くの特徴を有し、特に山間僻地における送
電線鉄塔の脚部構造物の製法としては極めて画期
的なもので、その工業的意義は極めて大きい。
As described above, compared to conventional construction methods for structures, the present invention does not require skilled workers for construction, and it is possible to easily construct a structure with an arbitrary shape and an aesthetic appearance in a short time. It also has many features in terms of transportation, such as minimal formwork materials and no need to remove the formwork, and is extremely innovative especially as a manufacturing method for leg structures of power transmission towers in remote mountainous areas. Its industrial significance is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における構造物の製法における
実施例を示した概要断面図である。 1……掘削孔、2……鉄塔支柱、3……鉄塔支
柱材ネコ、4……支保工、5……枠形成上部部
材、6……枠形成下部部材、7……連結部材、8
……連結部材接続部、9……中間保持部材、10
……捨てコンクリート、11……金属性網で補強
したガラス繊維強化コンクリート製外枠、12…
…熱収縮性縦一軸延伸塩化ビニル樹脂フイルム、
13……コンクリートブロツク。
FIG. 1 is a schematic sectional view showing an embodiment of the method for manufacturing a structure according to the present invention. 1... Excavation hole, 2... Steel tower support, 3... Steel tower support material cat, 4... Shoring, 5... Frame forming upper member, 6... Frame forming lower member, 7... Connecting member, 8
...Connection member connecting portion, 9...Intermediate holding member, 10
...Discarded concrete, 11...Outer frame made of glass fiber reinforced concrete reinforced with metal mesh, 12...
...Heat-shrinkable longitudinally uniaxially stretched vinyl chloride resin film,
13...Concrete block.

Claims (1)

【特許請求の範囲】 1 イa 篭状の枠を作り、 b その枠の外周にシート又はフイルムを設け
て型枠とし、 c その中にコンクリートを打設する、 構造物の製法において、 ロ 該型枠として、篭状の枠の外周のうち少なく
とも構造物として地上に露出する部分に金属性
網で補強した合成樹脂製または、金属性網で補
強した無機質繊維強化コンクリート製の外枠を
設け、且つ、少なくとも該外枠で覆われていな
い他の篭状の枠の外周に熱収縮性延伸シート、
または熱収縮性延伸フイルムを設ける、 ことを特徴とする構造物の製法。 2 構造物が構築物の基礎構造物である特許請求
の範囲第1項記載の構造物の製法。 3 構造物が高圧送電線用鉄塔の脚部固定用構造
物である、特許請求の範囲第1項記載の構造物の
製法。 4 構造物用の型枠であつて、篭状の枠の外周の
うち少なくとも構造物として地上に露出する部分
に金属性網で補強した合成樹脂製または、金属性
網で補強した無機質繊維強化コンクリート製の外
枠を設け、且つ、少なくとも該外枠で覆われてい
ない他の篭状の枠の外周に熱収縮性延伸シートま
たは、熱収縮性延伸フイルムを設けてなることを
特徴とする構造物用の型枠。
[Scope of Claims] 1. A method for manufacturing a structure, which comprises: (a) making a basket-shaped frame; (b) providing a sheet or film around the outer periphery of the frame to form a formwork; and (c) pouring concrete into the frame. As a formwork, an outer frame made of synthetic resin reinforced with metal netting or inorganic fiber reinforced concrete reinforced with metal netting is provided on at least the part of the outer periphery of the basket-shaped frame that is exposed above the ground as a structure, and a heat-shrinkable stretched sheet on the outer periphery of at least another basket-shaped frame that is not covered with the outer frame;
Or a method for manufacturing a structure, characterized by providing a heat-shrinkable stretched film. 2. The method for manufacturing a structure according to claim 1, wherein the structure is a basic structure of a building. 3. The method for manufacturing a structure according to claim 1, wherein the structure is a structure for fixing the legs of a high-voltage transmission line tower. 4 Formwork for structures, made of synthetic resin reinforced with metal netting or inorganic fiber reinforced concrete reinforced with metal netting, at least on the outer periphery of the basket-shaped frame that is exposed above ground as a structure. A structure characterized in that a heat-shrinkable stretched sheet or a heat-shrinkable stretched film is provided on the outer periphery of at least another basket-shaped frame that is not covered with the outer frame. formwork for.
JP11351079A 1979-09-06 1979-09-06 Making method and form for structure Granted JPS5639267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11351079A JPS5639267A (en) 1979-09-06 1979-09-06 Making method and form for structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11351079A JPS5639267A (en) 1979-09-06 1979-09-06 Making method and form for structure

Publications (2)

Publication Number Publication Date
JPS5639267A JPS5639267A (en) 1981-04-14
JPS6248029B2 true JPS6248029B2 (en) 1987-10-12

Family

ID=14614154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11351079A Granted JPS5639267A (en) 1979-09-06 1979-09-06 Making method and form for structure

Country Status (1)

Country Link
JP (1) JPS5639267A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58179614A (en) * 1982-04-14 1983-10-20 Howa Seni Kogyo Kk Cuticle-adhering method for deep-drawn interior automotive trim
JPS5943542U (en) * 1982-09-08 1984-03-22 三和シヤツタ−工業株式会社 Foundation cover for embedding pillars in balconies, etc.
JPS63171559U (en) * 1987-04-27 1988-11-08

Also Published As

Publication number Publication date
JPS5639267A (en) 1981-04-14

Similar Documents

Publication Publication Date Title
US6295782B1 (en) Stay-in-place form
JP3546009B2 (en) Structural members that reinforce products made of hardening structural materials
US11286667B2 (en) Seismic foundation framer and method of forming a foundation using same
US5599599A (en) Fiber reinforced plastic ("FRP")-concrete composite structural members
EP0322923A2 (en) Connecting rod mechanism for an insulated wall construction
US20120200004A1 (en) Weight-reducing discs, specially designed meshes and the method that includes the aforesaid, for producing weight-reduced structure such as slabs, pre-slabs, floors, partitions and beams
US10253500B2 (en) Corrosion resistant concrete reinforcing member
US5981050A (en) Composite shape forming structure for sealing and reinforcing concrete and method for making same
JP2015518931A (en) Modular foundation that can withstand ground movement
US10808412B2 (en) Spacers for repair of columns and piles
JPS6248028B2 (en)
JPS6248029B2 (en)
US20240077165A1 (en) Lightweight strong pipe for new construction and repair of pipes
US11591810B2 (en) Reusable and adjustable-size form for repair and reinforcement of structures
JPS627342B2 (en)
CN108204076A (en) A kind of multi-cavity FRP pipe concrete coupled columns and preparation method thereof
GB2218453A (en) Fabricating structures
WO2017204720A1 (en) Construction element, bridge and method for fabricating a construction element
CN208073004U (en) A kind of muscle column protective device in assembled beam-column structure
US20220064967A1 (en) Standoff Device for Repair of Structural Elements
JPH03144014A (en) Geotextile integral with fixing part and steep slope banking using thereof
US20240286312A1 (en) Airforming constructive system
CN108331257A (en) A kind of FRP pipe concrete coupled columns and preparation method thereof with reinforcing rib
KR20010101181A (en) Improvements in or relating to pipes
JPH10219997A (en) Paper shuttering