JPS6248004B2 - - Google Patents

Info

Publication number
JPS6248004B2
JPS6248004B2 JP10399083A JP10399083A JPS6248004B2 JP S6248004 B2 JPS6248004 B2 JP S6248004B2 JP 10399083 A JP10399083 A JP 10399083A JP 10399083 A JP10399083 A JP 10399083A JP S6248004 B2 JPS6248004 B2 JP S6248004B2
Authority
JP
Japan
Prior art keywords
embankment body
piles
embankment
pile
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10399083A
Other languages
Japanese (ja)
Other versions
JPS59228509A (en
Inventor
Hiroshi Kida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP10399083A priority Critical patent/JPS59228509A/en
Publication of JPS59228509A publication Critical patent/JPS59228509A/en
Publication of JPS6248004B2 publication Critical patent/JPS6248004B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/06Moles; Piers; Quays; Quay walls; Groynes; Breakwaters ; Wave dissipating walls; Quay equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Revetment (AREA)

Description

【発明の詳細な説明】 この発明は水中に設置する防波構造物に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wave-break structure installed underwater.

従来の防波構造物は波力に対して一個の堤体で
対応するため、その重量、及び波力に対する基礎
地盤の安定により成立している。このために水中
に安定した基礎を築造し、その上に堤体を据付け
ることとなる。したがつて、波浪条件が一定で水
深が深くなるほど基礎が大きくなり、地盤が悪い
ところでは地盤改良域も大きくなり、かつ堤体の
沈下量も増大する。さらに基礎マウンドが形成さ
れていることにより、思いがけない波力を受ける
ことがあり、その結果堤体のずれや破壊をもたら
す恐れがある。
Conventional breakwater structures respond to wave forces with a single embankment body, which relies on its weight and the stability of the foundation ground against wave forces. For this purpose, a stable foundation will be constructed underwater and an embankment will be installed on top of it. Therefore, under constant wave conditions, the deeper the water depth, the larger the foundation becomes, and where the ground is poor, the area for ground improvement becomes larger, and the amount of settlement of the embankment body also increases. Furthermore, due to the formation of a foundation mound, it may be subject to unexpected wave forces, which may result in displacement or destruction of the embankment body.

また施工面においては、基礎マウンドの均し工
事、根固石、張石等の均し工事、根固ブロツクの
据付工事などの水中作業工程が多く、安全上の問
題が多く存在するものであつた。
In addition, in terms of construction, there are many underwater work processes such as leveling of foundation mounds, leveling of footing stones, paving stones, etc., and installation of footing blocks, which poses many safety problems. Ta.

この発明は前記従来の防波構造物の欠点を除去
し、水中作業を減じ、施工途上並びに完成後のリ
スクを減ずるべく開発したものであり、堤体を上
部と下部の二堤体とし、かつ上部堤体を下部堤体
により水平拘束した杭で支持するよう構成したも
のである。
This invention was developed to eliminate the drawbacks of the conventional breakwater structures, reduce underwater work, and reduce risks during construction and after completion. The upper embankment is supported by piles that are horizontally restrained by the lower embankment.

以下図示した実施例に基いて説明する。この発
明は例えば第1図に示すように軟弱地盤1に設置
する場合には、まず所定の地盤改良を実施し、地
盤改良部2を形成し、杭3を所要の間隔をおいて
並列し支持地盤4まで打設する。次いで地盤改良
部2の表面に捨石5を投入し、あらかじめ底部に
穴7を穿設してある下部堤体6の前記穴7に杭3
を貫通させることにより杭3をガイドとして下部
堤体6を設置する。
A description will be given below based on the illustrated embodiment. For example, when installing on soft ground 1 as shown in Fig. 1, this invention first performs a prescribed ground improvement, forms a ground improvement section 2, and supports piles 3 in parallel at required intervals. Pour to the ground level 4. Next, rubble stones 5 are placed on the surface of the ground improvement section 2, and piles 3 are inserted into the holes 7 of the lower embankment body 6, which have holes 7 drilled in the bottom in advance.
The lower embankment body 6 is installed using the piles 3 as guides by penetrating the piles.

この下部堤体6は中空状に形成され、その上面
における杭3を貫通する部分には別個コンクリー
ト蓋8を取付けるようになつている。そしてこの
下部堤体6に中詰9を充填し、前記コンクリート
蓋8により杭3を水平に拘束する。また蓋8によ
る拘束に代えて中詰9を下部堤体6の上面まで入
れるようにしてもよい。コンクリート蓋8はその
表面に拘束すべき杭3の外径よりやや大きめの穴
10を穿設したもので、例えば第2図に示すよう
に杭3の嵌込みが可能な最小径の鋼管11を輪切
にしてコンクリート板に取付けたものが考えられ
る。
This lower embankment body 6 is formed in a hollow shape, and a separate concrete cover 8 is attached to the portion of its upper surface that penetrates the pile 3. This lower embankment body 6 is filled with filler 9, and the piles 3 are restrained horizontally by the concrete cover 8. Further, instead of being restrained by the lid 8, the filling 9 may be inserted up to the upper surface of the lower embankment body 6. The concrete lid 8 has a hole 10 in its surface that is slightly larger than the outer diameter of the pile 3 to be restrained.For example, as shown in FIG. One possibility is to cut it into rings and attach it to a concrete board.

下部堤体6の上面には上部堤体12を載置し、
杭3と側壁14の間隙にモルタル13等を注入固
結させて剛結する。上部堤体12は下部に開口す
る函体状に形成され、その側壁14,14には前
記杭3を挿嵌するための穴15が下端面に開口し
て垂直に穿設されている。そしてこの上部堤体1
2は一体である必要がなく、施工に応じブロツク
化してもよい(第3図)。原則として側壁14,
14における杭3、挿嵌の位置間には梁16を跨
架する。また第3図に示すように上部堤体12の
上部は通常の上部工17としてもよい。
The upper embankment body 12 is placed on the upper surface of the lower embankment body 6,
Mortar 13 or the like is injected into the gap between the pile 3 and the side wall 14 to solidify it. The upper embankment body 12 is formed in the shape of a box with an opening at the bottom, and holes 15 for inserting the piles 3 are vertically bored in the side walls 14, 14 of the upper embankment body 12, opening at the lower end surface. And this upper embankment body 1
2 does not need to be integral, and may be made into blocks depending on the construction (Fig. 3). In principle, the side wall 14,
A beam 16 is straddled between the insertion and insertion positions of the piles 3 at 14. Further, as shown in FIG. 3, the upper part of the upper embankment body 12 may be a normal superstructure 17.

さらに軟弱地盤1が厚く、地盤改良部2が厚い
場合には、下部堤体6の沈下が予想されるが沈下
対策として、杭3にはSL杭を用い、上部堤体1
2と下部堤体6との間の空間18には、第4図に
示すように下部堤体6の沈下を見込む高さのコン
クリート製枠19を載置し、中詰20を充填して
もよく、地盤が良好な場合は地盤改良を行わなく
てもよい。
Furthermore, if the soft ground 1 is thick and the ground improvement part 2 is thick, the lower embankment body 6 is expected to sink, but as a countermeasure against subsidence, SL piles are used for the piles 3, and the upper embankment body 6 is
2 and the lower embankment body 6, as shown in FIG. Often, if the ground is in good condition, there is no need to improve the ground.

以上、二個の堤体と杭群の組合せからなるこの
発明の防波構造物は、その施工途上において支持
地盤中に打こまれた杭は倒れることなく、また、
下部堤体は一種の自立潜堤であるため波力が小さ
く、据付直後に大波浪がきても倒壊することはな
い。さらに従来の堤体のようにマウンド捨石がな
いので下部堤体の沈下が殆どみられず、上部堤体
は杭支持されており沈下は皆無である。同じくマ
ウンド捨石がないためその保護のための根固ブロ
ツク、張石等がなくなり施工上の安全性が確保さ
れ、コストが少なくなる。
As described above, in the wavebreak structure of the present invention, which is composed of a combination of two embankments and a group of piles, the piles driven into the supporting ground during construction do not fall down, and
Since the lower embankment is a type of self-supporting submerged embankment, the wave force is small, and it will not collapse even if large waves occur immediately after installation. Furthermore, unlike conventional embankments, there is no mound of rubble, so there is almost no subsidence of the lower embankment, and the upper embankment is supported by piles, so there is no subsidence at all. Similarly, since there is no mound rubble, there is no need for foundation blocks, paving stones, etc. to protect it, ensuring construction safety and reducing costs.

さらに具体的に構造上の効果を述べれば、第1
図に示すように作用波力面が水底まで直立である
ため合田の波圧算定式によると、最大波圧算定式
p1=(α+α)W0H0において、α≒0とな
る。また堤体下端での波圧算定式p3=α3p1にお
いて、αも若干小さくなる。以上より同じ波が
堤体を襲つた場合、本発明の如く水底付近迄、直
立にするだけで波圧が約一割低減する。
To describe the structural effects more specifically, the first
As shown in the figure, the acting wave force surface is upright to the bottom of the water, so according to Goda's wave pressure calculation formula, the maximum wave pressure calculation formula is
At p 1 = (α 1 + α 2 )W 0 H 0 , α≈0. In addition, in the wave pressure calculation formula p 33 p 1 at the lower end of the embankment body, α 3 is also slightly smaller. From the above, when the same waves attack the embankment body, the wave pressure will be reduced by about 10% just by standing upright to near the bottom of the water as in the present invention.

波圧分布は最大波圧を生じる点から海底波圧
迄、直線的に変化するが、この波圧pを波高と水
深を考慮することにより上、下両堤体に配分する
と第5図に示す波圧合力P上,P下が上下堤体の
各々にかかることになる。すなわち、上部堤体1
2への波圧合力P上が杭3を介して下部堤体6頂
部への水平力Hとして働く。上部堤体12へのモ
ーメントM上(上部堤体への波圧合力P上による
モーメント)は堤体剛性が杭3にくらべ大きいの
で杭3への軸力として働き、杭の利用形態として
最良の効果を発揮する。また下部堤体6へのモー
メントM下(下部堤体への波圧合力P下と揚圧合
力P揚下と水平力Hによるモーメント)は同規模
の堤体を従来技術と同様に捨石マウンドに設置し
た場合と同程度にし得るので基礎巾は増加せず地
盤が悪い場合では地盤改良が少なくてすむ。さら
に下部堤体6から支持地盤迄の距離が短かくなる
ので円弧すべりを考える必要がなくなる場合が多
い。
The wave pressure distribution changes linearly from the point where the maximum wave pressure occurs to the bottom wave pressure, but this wave pressure p is distributed to both the upper and lower embankment bodies by considering wave height and water depth, as shown in Figure 5. The wave pressure resultant forces P upper and P lower are applied to each of the upper and lower embankment bodies. That is, the upper embankment body 1
2 acts as a horizontal force H to the top of the lower embankment body 6 via the pile 3. The moment M on the upper embankment body 12 (the moment due to the wave pressure resultant P on the upper embankment body) acts as an axial force on the pile 3 because the embankment body rigidity is greater than the pile 3, and this is the best form of use for piles. be effective. In addition, the moment M on the lower embankment body 6 (the moment due to the wave pressure resultant force P on the lower embankment body, the uplift resultant force P and the horizontal force H) is calculated by using the same size embankment as a rubble mound as in the conventional technology. Since it can be made to the same extent as if it were installed, the width of the foundation does not increase, and if the ground is poor, less ground improvement is required. Furthermore, since the distance from the lower embankment body 6 to the supporting ground is shortened, there is often no need to consider arcuate sliding.

なお、本構造の特徴である下部堤体6による杭
3の水平拘束効果を、第6図により示す。
The horizontal restraint effect of the piles 3 by the lower embankment body 6, which is a feature of this structure, is shown in FIG.

第6図は、荷重Pを海底面からの高さhに載荷
した場合の水平耐力Pnaxを有する中詰充填の底
なしケーソン模型に対し、第7図に示すように同
一載荷高さhで同じケーソン模型に、杭を貫通さ
せた場合の荷重Pと杭ひずみMの分布の関係を示
すもので、杭ひずみMは、ケーソンの水平耐力を
超えてのち発現していることを示している。すな
わち、第1図において、下部堤体6と杭3を剛結
すれば、杭3は下部堤体6の全重量を支持し、か
つ外力作用開始より、抵抗せざるを得ない。しか
し、本発明の如く、下部堤体6と杭3を剛結せず
に単に貫通させることにより、杭3は、下部堤体
6の水平耐力をこす外力に対し、はじめて抵抗
し、かつ、下部堤体6の全重量を支持せずにす
み、施工面、経済面で有利となることを示す。
Figure 6 shows a model of a bottomless caisson filled with a filling material having a horizontal strength P nax when a load P is loaded at a height h from the seabed surface. It shows the relationship between the load P and the distribution of pile strain M when a pile is penetrated through a caisson model, and shows that pile strain M occurs after exceeding the horizontal bearing capacity of the caisson. That is, in FIG. 1, if the lower embankment body 6 and the piles 3 are rigidly connected, the piles 3 will support the entire weight of the lower embankment body 6, and will have no choice but to resist from the start of external force action. However, as in the present invention, by simply penetrating the lower embankment body 6 and the pile 3 without rigidly connecting them, the pile 3 can resist for the first time the external force that rubs the horizontal strength of the lower embankment body 6, and This shows that there is no need to support the entire weight of the embankment body 6, which is advantageous in terms of construction and economy.

本発明における水平拘束の意味は、第6図に示
す結果の得られる拘束状態である。
The meaning of horizontal restraint in the present invention is a restraint state that results in the results shown in FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の実施例を示すもので、第1図
は縦断面図、第2図はコンクリート蓋の斜視図、
第3図は上部堤体の第2実施例を示す一部縦断面
図、第4図は上部堤体の第3実施例を示す一部縦
断面図、第5図は説明図であり、第5図aは波
圧、および揚圧力の分布を示し、bは上部堤体部
分の外力を示し、cは下部堤体部分の外力を示
す。第6図は、本発明の水平拘束に関する、模型
実験結果を示すグラフ、第7図はその模型の縦断
面図である。 1……軟弱地盤、2……地盤改良部、3……
杭、4……支持地盤、5……捨石、6……下部堤
体、7……穴、8……コンクリート蓋、9……中
詰、10……穴、11……鋼管、12……上部堤
体、13……モルタル、14……側壁、15……
穴、16……梁、17……上部工、18……空
間、19……コンクリート製枠、20……中詰。
The drawings show an embodiment of the invention, with Figure 1 being a longitudinal sectional view, Figure 2 being a perspective view of a concrete lid,
FIG. 3 is a partial vertical sectional view showing a second embodiment of the upper embankment body, FIG. 4 is a partial longitudinal sectional view showing a third embodiment of the upper embankment body, and FIG. 5 is an explanatory diagram. Figure 5a shows the distribution of wave pressure and uplift pressure, b shows the external force on the upper embankment body part, and c shows the external force on the lower embankment body part. FIG. 6 is a graph showing the results of a model experiment regarding the horizontal restraint of the present invention, and FIG. 7 is a longitudinal sectional view of the model. 1... Soft ground, 2... Ground improvement department, 3...
Pile, 4... supporting ground, 5... rubble, 6... lower embankment body, 7... hole, 8... concrete cover, 9... filling, 10... hole, 11... steel pipe, 12... Upper embankment body, 13... mortar, 14... side wall, 15...
Hole, 16... Beam, 17... Superstructure, 18... Space, 19... Concrete frame, 20... Filling.

Claims (1)

【特許請求の範囲】[Claims] 1 海底の支持地盤まで杭を並列に打込み、この
杭の位置に対応する部分に穴を穿設した下部堤体
を前記杭をガイドとして設置し、この下部堤体に
より杭を水平方向に拘束し、さらに下部堤体の上
部に上部堤体を載置し、この上部堤体は前記杭を
挿嵌し杭頭部付近を剛結するようになした防波構
造物。
1. Drive piles in parallel to the supporting ground on the seabed, install a lower embankment body with holes drilled in areas corresponding to the positions of the piles, using the piles as guides, and restrain the piles horizontally with this lower embankment body. Further, an upper embankment body is placed on the upper part of the lower embankment body, and the above-mentioned pile is inserted into the upper embankment body, and the vicinity of the pile head is rigidly connected to the wavebreak structure.
JP10399083A 1983-06-10 1983-06-10 Structure of breakwater Granted JPS59228509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10399083A JPS59228509A (en) 1983-06-10 1983-06-10 Structure of breakwater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10399083A JPS59228509A (en) 1983-06-10 1983-06-10 Structure of breakwater

Publications (2)

Publication Number Publication Date
JPS59228509A JPS59228509A (en) 1984-12-21
JPS6248004B2 true JPS6248004B2 (en) 1987-10-12

Family

ID=14368736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10399083A Granted JPS59228509A (en) 1983-06-10 1983-06-10 Structure of breakwater

Country Status (1)

Country Link
JP (1) JPS59228509A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5648656B2 (en) * 2012-06-19 2015-01-07 Jfeエンジニアリング株式会社 Embankment

Also Published As

Publication number Publication date
JPS59228509A (en) 1984-12-21

Similar Documents

Publication Publication Date Title
US4728225A (en) Method of rehabilitating a waterfront bulkhead
CA1043581A (en) Quay structure
JPH0756140B2 (en) Retaining wall structure construction method and retaining wall structure
US3243963A (en) Method of reinforcing deep excavations
JP7149919B2 (en) Improvement structure and improvement method of existing wharf
JPH11193648A (en) Base-isolated and settlement-countermeasured structure utilizing buoyancy
JP4958064B2 (en) Seismic reinforcement structure of quay
JPH06146305A (en) Underwater foundation and installation method thereof
KR19990078994A (en) Method to construct a structure on soft soil and the structure thereof
JP3440169B2 (en) Artificial island ground and its construction method
JPS6248004B2 (en)
JPS62215727A (en) Foundation work for structure
JP2006342666A (en) Method for antiseismic reinforcement of structure
AU2008201576A1 (en) A Retaining Wall for Erosion Protection
JP2003119750A (en) Drag structural body of structure
JP4502442B2 (en) Seismic foundation, seismic building, and pile reinforcement method
JPH04228714A (en) Water area construction using member to be driven into water bottom ground
JPH09296427A (en) Structure in water area and construction method thereof
JP2876471B2 (en) Lateral flow countermeasure structure
JPH1046619A (en) Foundation structure of construction in sand-layer ground
JPH01226921A (en) Earthquake-proof reinforced revetment construction
JP7396331B2 (en) Improvement structure of existing quay wall and construction method of the improvement structure
JPH10102458A (en) Water area structure using underwater ground driving member
JP2001288758A (en) Footing earthquake resistant construction and footing earthquake resistance reinforcing method
JP3360061B2 (en) Preceding plate-shaped beam of mountain retaining frame