JPS6247955B2 - - Google Patents

Info

Publication number
JPS6247955B2
JPS6247955B2 JP17219182A JP17219182A JPS6247955B2 JP S6247955 B2 JPS6247955 B2 JP S6247955B2 JP 17219182 A JP17219182 A JP 17219182A JP 17219182 A JP17219182 A JP 17219182A JP S6247955 B2 JPS6247955 B2 JP S6247955B2
Authority
JP
Japan
Prior art keywords
lead
radioactive
particles
sulfamic acid
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17219182A
Other languages
Japanese (ja)
Other versions
JPS5964791A (en
Inventor
Naoyuki Hosoda
Naoki Uchama
Shigeru Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP17219182A priority Critical patent/JPS5964791A/en
Publication of JPS5964791A publication Critical patent/JPS5964791A/en
Publication of JPS6247955B2 publication Critical patent/JPS6247955B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)
  • Die Bonding (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は各種の電子材料向けに適した放射性α
粒子カウント数の低い鉛及びその電解精製方法に
関する。 近年電子材料向けとしての鉛の用途が拡大しつ
つあり、例えばICは勿論のこと、大容量メモリ
ー素子である64KRAM等のメモリーや各種超LSI
等の半導体装置のアツセンブリーに際し、装置部
材接合用のろう材として、特にダイボンデイング
用には鉛べ―スの合金が一部使用されているのを
はじめ、サーデイーブと呼ばれるパツケージの封
止には軟化点を下げ線膨張係数を調整するために
大量のPbOを添加した低融点ガラス、主として
PbO―B2O3系ガラスが使用されている。 一方、従来市販されている鉛には放射性同位元
素、特にU、Thの含有量が多く、従つてα粒子
のカウント数が3〜100CPH/cm2と高く、この影
響によつてメモリーのソフトエラーが惹起される
ため、その用途は限定されざるを得ず、例えばセ
ラミツクパツケージIC及びLSI蓋接合用ろう材
(現在80%Au―20%Snハンダが主として使用され
ている)としてはα粒子の影響がダイボンデイン
グの場合よりも直接的かつ大であるため、信頼性
の点から鉛ベースのろう材はこれまで用いられて
いない実状にある。 また、市販されている低融点ガラスのα粒子カ
ウント数を測定してみると、低α低融点ガラスと
言われているものでも、1CPH/cm2以上であり、
必ずしも満足できるものでないことが判明した。 また、粗鉛(Pb品位97.0〜99.5%)の工業的な
電解精製としては従来電解液に珪弗化水素酸を用
いる所謂ベツツ法が採用されているに過ぎなかつ
た。 本発明者らは以上の点を考慮し、上記の電子材
料向けに適する放射性α粒子カウント数が低い鉛
を製造すべく、鋭意研究を重ねた結果、4ナイン
以上の品位を有する鉛をアノードとしてスルフア
ミン酸浴で電解精製することによつて目的を達成
できることを見出し、本発明に到達した。すなわ
ち、本発明の要旨とするところは、 (1) 品位4ナイン以上で放射性同位元素の含有量
が50ppb未満であり、かつ放射性α粒子カウン
ト数が0.5CPH/cm2以下であることを特徴とす
る放射性α粒子カウント数の低い、半導体装置
部材接合用ろう材向けの鉛、 (2) 品位4ナイン以上の鉛をアノードとし、
Pb:30〜150g/、放射性同位元素をほとん
ど含有しないスルフアミン酸液:30〜150g/
の液組成でカソード電流密度:0.5〜
2.0Amp/dm2、液温度:15〜50℃の電解条件
で電解することを特徴とする放射性α粒子カウ
ント数の低い、半導体装置部材接合用ろう材向
けの鉛の製造方法、にある。 本発明で電解液として使用するスルフアミン酸
は放射性同位元素をほとんど含有しない市販品で
よく、4ナイン以上の品位を有する鉛をアノード
とし、上記市販のスルフアミン酸を電解液として
電解精製することによつて、アノード中に含まれ
ている放射性同位元素が電解精製されて、実施例
で示すように、放射性同位元素の含有量が50ppb
未満でかつ放射性α粒子のカウント数が
0.5CPH/cm2以下である放射性α粒子カウント数
の低い、半導体装置部材接合用ろう材向けの鉛が
得られる。 本発明における電解は品位4ナイン以上の鉛を
アノードとし、液組成および電解条件は次の通り
である。 液組成 Pb:30〜150g/ スルフアミン酸:30〜150g/ 電解条件 カソード電流密度:0.5〜
2.0Amp/dm2 液温度:15〜50℃ ここで、上記の液組成及び電解条件の数値限定
の理由について述べる。 (a) 液組成 (イ) Pb:30〜150g/ Pb濃度が30g/未満ではPb以外の他の
元素も同時に析出してくるため、不純物の混
入となる。また150g/を越えると、電解
液中に存在するPb量が多いために電解工程
の仕掛りとしてのPb量が多く、経済性が悪
い。 (ロ) スルフアミン酸:30〜150g/ 電解液中のスルフアミン酸濃度が30g/
未満ではPbが電解液中にスムーズに溶け込
みにくく、また150g/を越えると、スル
フアミン酸が多く不経過であるとともにスル
フアミン酸の結晶析出が生じる。 (b) 電解条件 (イ) カソード電流密度:0.5〜2.0Amp/dm2 電流密度が0.5Amp/dm2未満では電解時
間が長くかかりすぎ、また2.0Amp/dm2
越えると、Pb以外の元素も析出し、不純物
の混入となる。 (ロ) 電解温度:15〜50℃ 電解温度が15℃未満では、電解液の電気的
抵抗が大きく、電解効率が低い。また50℃を
越えると、電解液の蒸発によるロスが大きく
なる。 本発明の1実施例の装置系統図を図に示す。 図において、電解槽1に品位4ナイン以上の鉛
アノード2及び不溶解性カソード板3を挿入し、
環流ポンプ4でスルフアミン酸電解液7を熱交換
器5を通して環流させ、直流電源装置6により通
電し電解を行うものである。本発明は以上のごと
く、電子材料向けのPbの電解精製法として極め
て有用であり、その工業的価値は高いものであ
る。 次に、本発明を実施例によつてさらに具体的に
説明する。 実施例 上記の電解条件でスルフアミン酸浴より得られ
たPbカソード中の放射性同位元素の濃度及び放
射性α粒子カウント数の測定結果を実施例1〜4
として次表に示す。 なお、比較のために通常の電解精製法である珪
弗化水素酸より得られたPbカソード中の数値を
次表に比較例1〜4として併せ示す。
The present invention is a radioactive α suitable for various electronic materials.
This invention relates to lead with a low particle count and an electrolytic refining method thereof. In recent years, the use of lead in electronic materials has been expanding, including not only ICs but also memories such as 64KRAM, which is a large capacity memory element, and various ultra-LSIs.
When assembling semiconductor devices such as these, some lead-based alloys are used as brazing materials for joining device parts, especially for die bonding. Low melting point glass with a large amount of PbO added to lower the point and adjust the coefficient of linear expansion, mainly
PbO―B 2 O 3 glass is used. On the other hand, conventionally commercially available lead has a high content of radioactive isotopes, especially U and Th, and therefore has a high alpha particle count of 3 to 100 CPH/ cm2 , which can cause memory soft errors. For example, as a brazing material for joining ceramic package ICs and LSI lids (currently 80% Au-20% Sn solder is mainly used), its use is limited due to the effects of α particles. Lead-based brazing materials have not been used to date because of their reliability, which is more direct and larger than in die bonding. In addition, when we measured the α particle count of commercially available low melting point glasses, we found that even what is said to be low α low melting point glass had a count of 1 CPH/cm 2 or more.
It turned out that this was not always satisfactory. Furthermore, for industrial electrolytic refining of crude lead (Pb grade 97.0 to 99.5%), only the so-called Betts method, which uses hydrosilicofluoric acid as an electrolytic solution, has conventionally been adopted. Taking the above points into consideration, the inventors of the present invention have conducted extensive research to produce lead with a low radioactive alpha particle count that is suitable for the above-mentioned electronic materials. It was discovered that the object could be achieved by electrolytic refining in a sulfamic acid bath, and the present invention was achieved. That is, the gist of the present invention is as follows: (1) The product is characterized by having a quality of 4 nines or more, a radioactive isotope content of less than 50 ppb, and a radioactive α particle count of 0.5 CPH/cm 2 or less. (2) Lead with a grade of 4 nines or higher as an anode, which has a low radioactive alpha particle count and is used as a brazing filler metal for bonding semiconductor device parts;
Pb: 30-150g/, sulfamic acid solution containing almost no radioactive isotopes: 30-150g/
Cathode current density with liquid composition: 0.5~
A method for producing lead for use as a brazing filler metal for bonding semiconductor device parts, which has a low count of radioactive α particles and is characterized by electrolyzing under electrolytic conditions of 2.0 Amp/dm 2 and a liquid temperature of 15 to 50°C. The sulfamic acid used as the electrolyte in the present invention may be a commercially available product containing almost no radioactive isotope, and can be electrolytically purified using lead having a grade of 4 nines or higher as an anode and the commercially available sulfamic acid used as the electrolyte. Then, the radioactive isotope contained in the anode is electrolytically refined, and as shown in the example, the radioactive isotope content is 50 ppb.
and the number of counts of radioactive alpha particles is less than
Lead for use as a brazing filler metal for bonding semiconductor device parts can be obtained with a low radioactive α particle count of 0.5 CPH/cm 2 or less. In the electrolysis in the present invention, lead of grade 4 nines or higher is used as an anode, and the liquid composition and electrolytic conditions are as follows. Liquid composition Pb: 30-150g/ Sulfamic acid: 30-150g/ Electrolytic conditions Cathode current density: 0.5-
2.0 Amp/dm 2 liquid temperature: 15 to 50°C Here, the reason for the numerical limitations on the liquid composition and electrolytic conditions described above will be described. (a) Liquid composition (a) Pb: 30 to 150 g/ If the Pb concentration is less than 30 g/, other elements other than Pb will also precipitate, resulting in contamination of impurities. Moreover, if it exceeds 150g/, the amount of Pb present in the electrolytic solution is large, resulting in a large amount of Pb as a starting material in the electrolytic process, which is uneconomical. (b) Sulfamic acid: 30 to 150g/ Sulfamic acid concentration in electrolyte is 30g/
If the amount is less than 150 g/L, it is difficult for Pb to dissolve smoothly into the electrolytic solution, and if it exceeds 150 g/L, a large amount of sulfamic acid will not pass, and sulfamic acid crystals will precipitate. (b) Electrolysis conditions (a) Cathode current density: 0.5 to 2.0 Amp/dm 2 If the current density is less than 0.5 Amp/dm 2 , the electrolysis time will be too long, and if it exceeds 2.0 Amp/dm 2 , elements other than Pb will be removed. Also precipitates, resulting in contamination of impurities. (b) Electrolysis temperature: 15 to 50°C When the electrolysis temperature is less than 15°C, the electrical resistance of the electrolytic solution is large and the electrolytic efficiency is low. Furthermore, if the temperature exceeds 50°C, loss due to evaporation of the electrolyte increases. A system diagram of an apparatus according to an embodiment of the present invention is shown in the figure. In the figure, a lead anode 2 with a quality of 4 nines or more and an insoluble cathode plate 3 are inserted into an electrolytic cell 1,
A reflux pump 4 circulates the sulfamic acid electrolyte 7 through a heat exchanger 5, and a DC power supply 6 supplies electricity to perform electrolysis. As described above, the present invention is extremely useful as a method for electrolytically refining Pb for electronic materials, and its industrial value is high. Next, the present invention will be explained in more detail with reference to Examples. Examples Examples 1 to 4 are the measurement results of the radioisotope concentration and radioactive α particle count in the Pb cathode obtained from the sulfamic acid bath under the above electrolytic conditions.
as shown in the table below. For comparison, the values in the Pb cathode obtained from hydrosilicofluoric acid, which is a common electrolytic refining method, are also shown in the following table as Comparative Examples 1 to 4.

【表】 上表から明らかであるように、実施例によつて
得られたPbカソードはアノードに比較して、放
射性同位元素の含有濃度が大幅に低下するととも
に放射性α粒子カウント数も減少しており、効果
が大であることが確認した。なお、本発明におい
ては鉛はスルフアミン酸鉛として存在する。 比較例ではアノードに比し、カソードの方が放
射性同位元素の濃度及びα粒子のカウント数とも
に上昇しているが、これは市販の珪弗化水素酸中
には放射性同位元素、特にThの含有量が高いこ
とによるものと考えられる。
[Table] As is clear from the above table, the Pb cathode obtained in the example has a significantly lower radioisotope content concentration and a lower number of radioactive α particle counts than the anode. It was confirmed that the effect was large. In the present invention, lead exists as lead sulfamate. In the comparative example, the concentration of radioactive isotopes and the count number of α particles are higher at the cathode than at the anode, but this is because commercially available hydrofluorosilicic acid contains radioisotopes, especially Th. This is thought to be due to the high amount.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の1実施例の装置系統図である。
図において、 1…電解槽、2…鉛アノード、3…不溶解性カ
ソード板、4…環流ポンプ、5…熱交換器、6…
直流電源装置、7…スルフアミン酸電解液。
The drawing is a system diagram of an apparatus according to an embodiment of the present invention.
In the figure, 1...electrolytic cell, 2...lead anode, 3...insoluble cathode plate, 4...reflux pump, 5...heat exchanger, 6...
DC power supply device, 7...Sulfamic acid electrolyte solution.

Claims (1)

【特許請求の範囲】 1 4ナイン以上の品位を有し、放射性同位元素
の含有量が50ppb未満でかつ放射性α粒子のカウ
ント数が0.5CPH/cm2以下であることを特徴とす
る放射性α粒子カウント数の低い、半導体装置部
材接合用ろう材向けの鉛。 2 品位4ナイン以上の鉛をアノードとし、
Pb:30〜150g/、放射性同位元素をほとんど
含有しないスルフアミン酸液:30〜150g/の
液組成でカソード電流密度:0.5〜2.0Amp/d
m2、液温度:15〜50℃の電解条件で電解すること
を特徴とする放射性α粒子カウント数の低い、半
導体装置部材接合用ろう材向けの鉛の電解精製方
法。
[Claims] Radioactive α particles having a quality of 1.4 nines or more, containing a radioisotope content of less than 50 ppb, and having a count number of radioactive α particles of 0.5 CPH/cm 2 or less. Lead with low count for brazing filler metal for joining semiconductor device parts. 2. Use lead of grade 4 nines or higher as an anode,
Pb: 30-150g/, sulfamic acid solution containing almost no radioisotope: 30-150g/, cathode current density: 0.5-2.0Amp/d
m 2 , liquid temperature: 15 to 50° C. A lead electrolytic refining method for use as a brazing filler metal for bonding semiconductor device parts, which has a low count of radioactive α particles.
JP17219182A 1982-09-30 1982-09-30 Lead with low count number of radioactive alpha particle and electrolytic purification thereof Granted JPS5964791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17219182A JPS5964791A (en) 1982-09-30 1982-09-30 Lead with low count number of radioactive alpha particle and electrolytic purification thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17219182A JPS5964791A (en) 1982-09-30 1982-09-30 Lead with low count number of radioactive alpha particle and electrolytic purification thereof

Publications (2)

Publication Number Publication Date
JPS5964791A JPS5964791A (en) 1984-04-12
JPS6247955B2 true JPS6247955B2 (en) 1987-10-12

Family

ID=15937258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17219182A Granted JPS5964791A (en) 1982-09-30 1982-09-30 Lead with low count number of radioactive alpha particle and electrolytic purification thereof

Country Status (1)

Country Link
JP (1) JPS5964791A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004394A1 (en) 2005-07-01 2007-01-11 Nippon Mining & Metals Co., Ltd. High-purity tin or tin alloy and process for producing high-purity tin
WO2011114824A1 (en) 2010-03-16 2011-09-22 Jx日鉱日石金属株式会社 Low α-dose tin or tin alloy and method for producing same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003272790A1 (en) 2002-10-08 2004-05-04 Honeywell International Inc. Semiconductor packages, lead-containing solders and anodes and methods of removing alpha-emitters from materials
CN103415633B (en) 2011-03-07 2015-09-09 吉坤日矿日石金属株式会社 The manufacture method of copper or copper alloy, bonding wire, the manufacture method of copper, the manufacture method of copper alloy and bonding wire
US8993978B2 (en) 2012-05-04 2015-03-31 Honeywell International Inc. Method for assessing an alpha particle emission potential of A metallic material
EP2987892A1 (en) 2014-02-20 2016-02-24 JX Nippon Mining & Metals Corporation Method for producing low -emitting bismuth and low -emitting bismuth
JP6453743B2 (en) * 2014-12-03 2019-01-16 Jx金属株式会社 Method for electrolytic purification of lead using sulfamic acid bath
US10106904B2 (en) 2014-12-03 2018-10-23 Jx Nippon Mining & Metals Corporation Method for electrolytically refining lead in sulfamate bath

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004394A1 (en) 2005-07-01 2007-01-11 Nippon Mining & Metals Co., Ltd. High-purity tin or tin alloy and process for producing high-purity tin
US9340850B2 (en) 2005-07-01 2016-05-17 Jx Nippon Mining & Metals Corporation Process for producing high-purity tin
WO2011114824A1 (en) 2010-03-16 2011-09-22 Jx日鉱日石金属株式会社 Low α-dose tin or tin alloy and method for producing same

Also Published As

Publication number Publication date
JPS5964791A (en) 1984-04-12

Similar Documents

Publication Publication Date Title
KR101444568B1 (en) Low a-dose tin or tin alloy and method for producing same
JP5690917B2 (en) Copper or copper alloy, bonding wire, copper manufacturing method, copper alloy manufacturing method, and bonding wire manufacturing method
JP2013185214A (en) BISMUTH OR BISMUTH ALLOY HAVING SMALL AMOUNT OF α-RAY, AND METHOD FOR PRODUCING THE SAME
JP3528532B2 (en) Low alpha dose tin production method
JPS6247955B2 (en)
JPS621478B2 (en)
JPH01283398A (en) Tin and its production
JP5903497B2 (en) Method for producing low α-ray bismuth, low α-ray bismuth and bismuth alloy
JP3065193B2 (en) High purity cobalt sputtering target
JP6067855B2 (en) Low α-ray bismuth and method for producing low α-ray bismuth
TWI670233B (en) Low alpha ray 制造 manufacturing method and low alpha ray
JP2998623B2 (en) Method for producing low alpha ray lead
JP2590869B2 (en) Manufacturing method of plating solution for solder
JPH0768627B2 (en) High-purity copper manufacturing method
TWI830754B (en) TIN(II) OXIDE WITH LOW α-RAY EMISSION, AND PRODUCTION METHOD THEREOF
JP5941596B2 (en) Method for producing low α-ray bismuth and low α-ray bismuth
Baxter et al. A REVISION OF THE ATOMIC WEIGHT OF ZINC. THE ELECTROLYTIC DETERMINATION OF ZINC IN ZINC BROMIDE.
KR20210001244A (en) Method of collecting indium and enhancing purity of indium
JP2016188430A (en) LOW α-RAY BISMUTH