JPS6247599B2 - - Google Patents

Info

Publication number
JPS6247599B2
JPS6247599B2 JP56080982A JP8098281A JPS6247599B2 JP S6247599 B2 JPS6247599 B2 JP S6247599B2 JP 56080982 A JP56080982 A JP 56080982A JP 8098281 A JP8098281 A JP 8098281A JP S6247599 B2 JPS6247599 B2 JP S6247599B2
Authority
JP
Japan
Prior art keywords
water
scale
soluble polymer
parts
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56080982A
Other languages
Japanese (ja)
Other versions
JPS57197098A (en
Inventor
Tsuneo Tsubakimoto
Masahiro Hosoido
Hideyuki Tawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP56080982A priority Critical patent/JPS57197098A/en
Publication of JPS57197098A publication Critical patent/JPS57197098A/en
Publication of JPS6247599B2 publication Critical patent/JPS6247599B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、蒞気脱塩装眮においお生ずるスケヌ
ル防止剀に関するものである。曎に詳しくは、各
皮蒞発脱塩装眮の䌝熱面䞊に沈着するスケヌルの
生成を抑制し、か぀生成したスケヌルに぀いおは
氎系䞭に分散させる効果を有するスケヌル防止剀
に関するものである。 真氎の䞍足を解決するため、海氎、倩然塩氎あ
るいは廃氎等から脱塩する皮々の方法が䞖界の倚
くの地区で倚幎にわた぀お研究開発されお来た。
この様にしお埗られた脱塩氎は、飲料氎や工業甚
氎に甚いられ、たた倩然氎䞭に安党に攟流するこ
ずも出来る。 埓来より海氎等を加熱蒞発埌濃瞮させお淡氎を
埗るために皮々の型の蒞発脱塩装眮、䟋えば倚段
フラツシナ蒞発噚、薄膜蒞発噚あるいは氎䞭蒞発
噚等が利甚されおいる。しかし、このような各皮
蒞発脱塩装眮を甚いお海氎や倩然塩氎等を蒞発脱
塩する堎合、高濃床に濃瞮されるに䌎いその含有
するカルシりムむオンやマグネシりムむオン等が
塩類や氎酞化物等の圢態で析出し、これが蒞発脱
塩装眮の熱亀換衚面䞊にスケヌルずしお付着す
る。その結果、熱亀換係数が著しく䜎䞋し、淡氎
化効率が挞次䜎䞋するずずもに、スケヌル陀去の
ために終局的にはプラントを䌑止しなければなら
ないずいう重倧な幣害が生じる。 海氎等の蒞発脱塩装眮の熱亀換衚面䞊に付着す
る䞻なスケヌルは、アルカリ性スケヌル炭酞カ
ルシりムず氎酞化マグネシりム及び硫酞カルシ
りムスケヌルの぀の型のものである。このアル
カリ性スケヌルは硫酞等の酞の添加によるPHの調
節により抑制するこずが出来るが、スケヌル成分
分解のためには酞の添加量を倚くしなければなら
ず、しかも装眮材料等の酞による腐食の問題や通
垞䜿甚する硫酞等の酞の取扱いにも危険が䌎なう
問題があり、必ずしも実甚䞊満足する方法である
ずはいえない。䞀方、硫酞カルシりムスケヌルの
生成抑制には、未だ効果的な方法が芋出されおい
ない。 ポリリン酞塩やポリカルボン酞塩等のスケヌル
防止剀を添加する方法が提案されおいるが、ポリ
リン酞塩は高枩床に斌いお容易に加氎分解しおそ
のスケヌル防止胜を消倱し、カルシりムむオンや
マグネシりムむオンず䞍溶性塩を圢成しお逆にス
ケヌル圢成の因子ずなる。たたポリカルボン酞塩
はある皋床のスケヌル防止胜は認められるが、生
成したスケヌルは硬くお付着性の卵殻様のスケヌ
ルを生成する。 このため、珟状では蒞発脱塩装眮のスケヌルの
生成は濃瞮床ず濃瞮枩床ずを適圓に制埡するこず
によ぀お避けおおり、埓぀お胜率が悪く、海氎淡
氎化の発展阻害の重芁な芁因ずな぀おいる。 この様に、蒞発脱塩装眮を甚いる海氎等の淡氎
化においおは、満足なスケヌル防止方法が未だ開
発されおおらず、この分野における有効なスケヌ
ル防止方法の開発が望たれおいるのが珟状であ
る。 本発明者らはこの様な珟状に鑑み、蒞発脱塩装
眮におけるスケヌル析出の抑制および析出したス
ケヌルに぀いおはその分散に有効な優れたスケヌ
ル防止剀を開発すべく鋭意研究を重ねた結果、特
定組成の氎溶性重合䜓が蒞発脱塩装眮甚のスケヌ
ル防止剀ずしお特に優れた効果を有するこずを芋
出し、本発明を完成するに到぀たものである。埓
぀お本発明の目的は、蒞発脱塩装眮甚のスケヌル
析出抑制および析出したスケヌルに぀いおはその
分散に有効な優れたスケヌル防止剀を提䟛するこ
ずにある。 即ち、本発明の蒞発脱塩装眮甚スケヌル防止剀
は、䞀般匏 䜆し、匏䞭及は又は正の敎数で
〜100であり、−C2H4O−単䜍ず−C3H6O−単
䜍ずはどの様な順序に結合しおいおもよい。で
瀺されるポリアルキレングリコヌルモノアリル゚
ヌテル、及び 䞀般匏 䜆し、匏䞭R1は氎玠又はメチル基を衚わし、
は氎玠、䞀䟡金属、二䟡金属、アンモニりム基又
は有機アミン基を衚わす。で瀺されるメタ
アクリル酞系単量䜓を、ずの
合蚈に察しおが0.1重量以䞊5.0重量未
満ずなる比率で重合開始剀を甚いお共重合させ、
必芁により曎にアルカリ性物質で䞭和しお埗た氎
溶性重合䜓からなるものである。 本発明で甚いられるポリアルキレングリコヌル
モノアリル゚ヌテルは前蚘の䞀般匏で瀺さ
れるものであり、アルキレンオキシドの付加モル
数が〜100のものである。付加モル数
がでは埗られる共重合䜓の蒞発脱塩装眮甚
スケヌル防止剀ずしおの性胜が充分でなく、逆に
100を超える堎合にはその様なポリアルキレング
リコヌルモノアリル゚ヌテルの共重合反応性が䜎
く、本発明の蒞発脱塩装眮甚スケヌル防止剀ずし
お有効な重合䜓が埗られない。 ポリアルキレングリコヌルモノアリル゚ヌテル
は、KOHやNaOH等のアルカリを觊媒ずし
おアリルアルコヌルに゚チレンオキシド及び又
はプロピレンオキシドを盎接付加する公知の方法
で合成するこずができる。 メタアクリル酞系単量䜓は前蚘䞀般
匏で瀺されるものであるが、具䜓的にはアクリル
酞、メタクリル酞䞊びにそれらの䞀䟡金属塩、二
䟡金属塩、アンモニりム塩及び有機アミン塩を挙
げるこずができる。そしおこれらの皮又は皮
以䞊を甚いるこずができる。 ポリアルキレングリコヌルモノアリル゚ヌテル
及びメタアクリル酞系単量䜓か
ら重合開始剀を甚いお共重合させるこずにより本
発明の蒞発脱塩装眮甚スケヌル防止剀ずしお甚い
られる氎溶性重合䜓を補造するこずができる。共
重合は、溶媒䞭での重合や塊状重合等の方法によ
り行うこずができる。 溶媒䞭での重合は回分匏でも連続匏でも行うこ
ずができ、その際䜿甚される溶媒ずしおは、氎、
䜎玚アルコヌル、氎−䜎玚アルコヌルの混合溶
媒、芳銙族炭化氎玠、脂肪族炭化氎玠、ケトン化
合物、あるいは酢酞゚チル等を挙げるこずができ
る。そしお重合觊媒ずしおは甚いられる溶媒に察
応しお皮々の氎溶性重合開始剀、パヌオキシド、
ハむドロパヌオキシド及びこれらず重合促進剀ず
の組合わせ、あるいはアゟ化合物等が甚いられ
る。 重合枩床は、甚いられる溶媒や重合開始剀によ
り適宜定められるが、通垞〜120℃の範囲内で
行われる。 氎を溶媒ずする堎合、重合觊媒ずしお亜硫酞氎
玠ナトリりム−酞玠を甚いおもよい。この堎合重
合は、原料単量䜓を含む溶媒䞭に亜硫酞氎玠ナト
リりムを添加しながら、酞玠ガスあるいは酞玠ず
䞍掻性気䜓ずの混合ガスを溶媒䞭に吹き蟌み、
〜80℃の枩床範囲内で重合反応を進めるこずによ
り行うこずができる。 塊状重合は、重合開始剀ずしおパヌオキシド、
ハむドロパヌオキシドあるいはアゟ化合物等を甚
い、50〜150℃の枩床範囲内で行われる。 このようにしお氎溶性重合䜓を補造するに際し
お、ポリアルキレングリコヌルモノアリル゚ヌテ
ルずメタアクリル酞系単量䜓ず
の仕蟌比率、甚いる重合開始剀の量、重合枩床、
溶媒䞭での重合の堎合は溶媒の皮類ず量等によ
り、埗られる氎溶性重合䜓の分子量を適宜調節す
るこずができる。 そしお本発明の蒞発脱塩装眮甚スケヌル防止剀
ずしお甚いられる氎溶性重合䜓の分子量は特に制
限はなく、広い範囲のものを甚いるこずができる
が、䞭でも500〜50000の範囲のものが効果が優れ
おいる。 このようにしお埗られた氎溶性重合䜓はそのた
たでも本発明の蒞発脱塩装眮甚スケヌル防止剀ず
しお甚いられるが、必芁に応じお曎にアルカリ性
物質で䞭和しおもよい。この様なアルカリ性物質
ずしおは、䞀䟡金属及び二䟡金属の氎酞化物、塩
化物及び炭酞塩、アンモニア、有機アミン等が奜
たしいものずしお挙げられる。 本発明の蒞発脱塩装眮甚スケヌル防止剀は、単
独で甚いおも充分効果があるが、硫酞等の酞ず䜵
甚しおもよく、曎に必芁により圓技術分野におい
お公知の他の氎凊理剀ず䞀緒に䜿甚しおもよい。
そのような他の氎凊理剀ずしおは、分散剀たたは
限界剀䟋えば、ポリアクリル酞又はその塩、加
氎分解されたポリアクリロニトリル、ポリメタク
リル酞又はその塩、ポリアクリルアミド、アクリ
ル酞又はメタクリル酞ずアクリルアミドずの共重
合䜓、リグニンスルホン酞又はその塩、タンニ
ン、ナフタリンスルホン酞−ホルムアルデヒド瞮
合生成物、デンプン又はその誘導䜓、カルボキシ
メチルセルロヌズ等のセルロヌス誘導䜓、ポリマ
レむン酞又はその塩、アルキルホスホン酞、−
アミノアルキル・−ゞホスホン酞又はその
塩、アルカリ金属リン酞塩等沈柱剀䟋え
ば、アルカリ金属オルトホスプヌト、アルカリ
金属、カヌボネヌト、アルカリ金属ヒドロキシド
等酞玠スカベンゞダヌ䟋えば、アルカリ金
属サルフアむト、アルカリ金属ヒドラゞン等
金属むオン封鎖剀䟋えば、ニトリロトリ酢酞又
はその塩、゚チレンゞアミンテトラ酢酞又はその
塩等腐食抑制剀䟋えば、シクロヘキシルア
ミン、モルホリン、ゞステアリルアミン−゚チレ
ンオキシド瞮合物、ステアリルアミン、硫酞ナト
リりム、硫酞マグネシりム等アワ止メ剀䟋
えば、ゞステアリルセバミド、ゞステアリルアゞ
パミド等あるいはカプリルアルコヌル等の脂
肪族アルコヌルもしくは脂肪族アルコヌルず゚チ
レンオキシドずの瞮合物等を挙げるこずができ
る。 本発明で蒞発脱塩装眮甚スケヌル防止剀ずしお
甚いられる氎溶性重合䜓を䜿甚するには、海氎た
たは倩然塩氎に連続的にあるいは適時添加しお䜿
甚すればよい。そしお、その添加量は広い範囲に
亘り䜿甚するこずができるが、通垞は0.1〜
100ppm重量基準の範囲ずするのがよい。 本発明の蒞発脱塩装眮甚スケヌル防止剀を䜿甚
すれば、長期に亘り蒞発脱塩装眮のスケヌルの発
生を抑制し、たた、長期間の運転によりスケヌル
が析出沈着した堎合に斌おも析出したスケヌルは
本発明の蒞発脱塩装眮甚スケヌル防止剀の䜜甚に
より軟質なものずな぀おいるため氎流によ぀お容
易に分散陀去するこずができる。 たた、氎溶性重合䜓は、その分子䞭でポリアル
キレングリコヌル郚分が゚ヌテル結合により該重
合䜓䞻鎖ず結合しおおり、そのため高枩䞋や沞隰
氎䞭あるいは高いPH領域での長時間の䜿甚に斌い
おも加氎分解が党く起こらず、その性胜に䜕ら圱
響を受けないずいう特長をも有しおいる。 以䞋、参考䟋及び実斜䟋により本発明を説明す
るが、本発明はこれらの䟋によ぀お限定されるも
のではない。たた、䟋䞭特にこずわりのない限り
郚は党お重量郚を、は党お重量を衚わすもの
ずする。 尚、䟋䞭の氎溶性重合䜓氎溶液粘床は党おビス
メトロン粘床蚈粟機工業研究所補を甚い、25
℃、60rpmの条件で枬定した。たた、分子量の枬
定はゲルパヌメヌシペンクロマトグラフむヌり
オヌタヌズ瀟補244型を甚いお行぀た。 参考䟋  枩床蚈、撹拌機、滎䞋ロヌト、ガス導入管及び
還流冷华噚を備えたガラス補反応容噚にポリ゚チ
レングリコヌルモノアリル゚ヌテル平均分子
圓り個の゚チレンオキシド単䜍を含むもの
7.5郚及び氎389.9郚を仕蟌み、撹拌䞋に反応容噚
内を窒玠眮換し、窒玠雰囲気䞭で95℃に加熱し
た。その埌、38アクリル酞ナトリりム氎溶液
506.6郚ず過硫酞アンモニりム氎溶液80郚ず
をそれぞれ120分で添加した。添加終了埌、曎に
16郚の過硫酞アンモニりム氎溶液を20分で添
加した。モノマヌ氎溶液の添加完結埌、120分間
95℃に枩床を保持しお重合反応を完了し、氎溶性
重合䜓(1)を埗た。枛圧䞋で濃瞮しお埗たこの氎溶
性重合䜓(1)の40氎溶液のPHは7.3、粘床は
267cpsであ぀た。又、分子量は4100であ぀た。 参考䟋  参考䟋ず同じ反応容噚にポリ゚チレングリコ
ヌルモノアリル゚ヌテル平均分子圓り10個の
゚チレンオキシド単䜍を含むもの9.8郚及び氎
441.7郚を仕蟌み、撹拌䞋に反応容噚内を窒玠眮
換し、窒玠雰囲気䞭で沞点たで加熱した。その埌
38アクリル酞ナトリりム氎溶液500.5郚ず
過硫酞アンモニりム氎溶液40郚ずをそれぞれ120
分で添加し、添加終了埌、曎に郚の過硫酞
アンモニりム氎溶液を20分で添加した。モノマヌ
の添加完結埌120分間沞点に枩床を保持しお重合
反応を完了し、氎溶性重合䜓(2)を埗た。この氎溶
性重合䜓(2)の40氎溶液のPHは7.5、粘床は
348cpsであ぀た。又、分子量は4700であ぀た。 参考䟋  参考䟋ず同じ反応容噚にポリプロピレングリ
コヌルモノアリル゚ヌテル平均分子圓り個
のプロピレンオキシド単䜍を含むもの郚ずむ
゜プロピルアルコヌル以䞋IPAず略すず氎ず
の共沞組成物IPA氎87.412.6重量比
495.5郚を仕蟌み、撹拌䞋に反応容噚内を窒玠眮
換し、沞点たで加熱した。その埌アクリル酞199
郚、ベンゟむルパヌオキシド郚及びIPA−氎共
沞組成物298.5郚の混合物を120分で添加した。添
加終了埌、120分間沞点に枩床を保持しお重合反
応を完了させた。その埌40カセむ゜ヌダ氎溶液
276.2郚にお䞭和を行ない、IPAを留去しお氎溶
性重合䜓(3)を埗た。この氎溶性重合䜓(3)の45氎
溶液のPHは8.5、粘床は830cpsであ぀た。又、分
子量は2800であ぀た。 参考䟋  参考䟋ず同じ反応容噚にむ゜プロピルアルコ
ヌル以䞋IPAず略す。285郚を仕蟌み、撹拌䞋
に反応容噚内を窒玠眮換し、窒玠雰囲気䞭で沞点
たで加熱した。その埌ポリアルキレングリコヌル
モノアリル゚ヌテル平均分子圓り18個の゚チ
レンオキシド単䜍ず個のプロピレンオキシド単
䜍を含むもの4.5郚ずアクリル酞295.5郚、ベン
ゟむルパヌオキシド郚及びIPA300郚の混合物
を120分で添加し、添加終了埌、曎に0.6郚のベン
ゟむルパヌオキシドをIPA11.4郚に分散させたも
のを30分毎に回に分けお添加した。モノマヌ混
合物の添加完結埌、120分間沞点に枩床を保持し
お重合反応を完了させた。その埌40カセむ゜ヌ
ダ氎溶液410.1郚にお䞭和した。次いでIPAを留
去し、氎溶性重合䜓(4)を埗た。この氎溶性重合䜓
(4)の45氎溶液のPHは8.5、粘床は1920cpsであ぀
た。又、分子量は3000であ぀た。 参考䟋  参考䟋ず同じ反応容噚に氎438.8郚を仕蟌
み、撹拌䞋に反応容噚内に窒玠眮換し、95℃に加
熱した。その埌10ポリ゚チレングリコヌルモノ
アリル゚ヌテル平均分子圓りに30個の゚チレ
ンオキシド単䜍を含むもの氎溶液63郚ず郚分䞭
和したアクリル酞ナトリりム80モル䞭和の
38氎溶液378.2郚及び過硫酞アンモニりム
氎溶液120郚をそれぞれ120分で添加した。添加終
了埌、120分間95℃に枩床を保持しお重合反応を
完了させた。その埌、カセむ゜ヌダ氎溶液にお完
党䞭和しお氎溶性重合䜓(5)を埗た。この氎溶性重
合䜓(5)の40氎溶液のPHは9.0、粘床は403cpsで
あ぀た。又、分子量は4800であ぀た。 実斜䟋  のビヌカヌに海氎700mlを入れ、これに参
考䟋で埗た氎溶性重合䜓(1)を5.0ppmになる様
に添加し、この海氎䞭に熱源ずしおパむプヒヌタ
ヌ100V、500Wを浞挬しお撹拌䞋に蒞発濃瞮
を行぀た。蒞発濃瞮ずずもに氎溶性重合䜓(1)を
5.0ppm添加した海氎を順次補充した。この様な
操䜜を行い぀぀、濃瞮倍率が倍にな぀た時点で
のパむプヒヌタヌに付着したスケヌル量を求め
た。結果を第衚に瀺した。 実斜䟋 〜 実斜䟋においお、氎溶性重合䜓(1)のかわりに
参考䟋〜で埗た氎溶性重合䜓(2)〜(5)をそれぞ
れ甚いる他は実斜䟋ず同様にしお詊隓した。結
果を第衚に瀺した。 比范䟋  実斜䟋においお、氎溶性重合䜓(1)のかわりに
垂販のポリアクリル酞゜ヌダ分子量5000を甚
いる他は実斜䟋ず同様にしお詊隓した。結果を
第衚に瀺した。 比范䟋  実斜䟋においお、氎溶性重合䜓(1)を甚いない
堎合に぀いお詊隓した。結果を第衚に瀺した。
The present invention relates to scale inhibitors produced in steam desalination equipment. More specifically, the present invention relates to a scale inhibitor having the effect of suppressing the formation of scale deposited on the heat transfer surface of various evaporative desalination devices and dispersing the formed scale in an aqueous system. In order to solve the shortage of fresh water, various methods of desalinating seawater, natural saltwater, wastewater, etc. have been researched and developed in many parts of the world for many years.
The desalinated water thus obtained can be used as drinking water or industrial water, and can also be safely discharged into natural waters. BACKGROUND ART Various types of evaporative desalination apparatuses, such as multistage flash evaporators, thin film evaporators, and submerged evaporators, have been used to obtain fresh water by heating and evaporating seawater and then concentrating it. However, when seawater, natural salt water, etc. is evaporated and desalinated using various evaporative desalination equipment, as it is concentrated to a high concentration, the calcium ions, magnesium ions, etc. contained in it are converted into salts, hydroxides, etc. This deposits as scale on the heat exchange surfaces of the evaporative desalination equipment. As a result, the heat exchange coefficient decreases significantly, the desalination efficiency gradually decreases, and the plant ultimately has to be shut down for scale removal, which causes serious damage. The main scales deposited on the heat exchange surfaces of evaporative desalination equipment, such as seawater, are of two types: alkaline scale (calcium carbonate and magnesium hydroxide) and calcium sulfate scale. This alkaline scale can be suppressed by adjusting the pH by adding acids such as sulfuric acid, but in order to decompose the scale components, the amount of acid added must be increased, and moreover, the corrosion of equipment materials etc. However, there are also problems with the handling of normally used acids such as sulfuric acid, and it cannot be said that this method is necessarily satisfactory in practice. On the other hand, no effective method has yet been found for suppressing the formation of calcium sulfate scale. A method of adding scale inhibitors such as polyphosphates and polycarboxylate salts has been proposed, but polyphosphates easily hydrolyze at high temperatures and lose their scale prevention ability, causing calcium ions and It forms an insoluble salt with magnesium ions and becomes a factor in scale formation. Furthermore, although polycarboxylate salts are recognized to have a certain degree of scale prevention ability, the scale that is generated is hard and adherent eggshell-like scale. For this reason, scale formation in evaporative desalination equipment is currently avoided by appropriately controlling the concentration degree and concentration temperature, which is inefficient and is an important factor hindering the development of seawater desalination. It's summery. As described above, a satisfactory scale prevention method has not yet been developed for desalination of seawater, etc. using evaporative desalination equipment, and there is currently a need for the development of an effective scale prevention method in this field. be. In view of the current situation, the present inventors have conducted intensive research to develop an excellent scale inhibitor that is effective for suppressing scale precipitation in evaporative desalination equipment and dispersing the precipitated scale. The inventors have discovered that the water-soluble polymer has particularly excellent effects as a scale inhibitor for evaporative demineralization equipment, and have completed the present invention. Therefore, an object of the present invention is to provide an excellent scale inhibitor effective for suppressing scale precipitation and dispersing precipitated scale for use in evaporative desalination equipment. That is, the scale inhibitor for evaporative demineralization equipment of the present invention has the general formula (However, in the formula, m and n are 0 or positive integers, and m+n=
1 to 100, and the (-C 2 H 4 O)- and (-C 3 H 6 O)- units may be bonded in any order. ) Polyalkylene glycol monoallyl ether () represented by the general formula (However, in the formula, R 1 represents hydrogen or a methyl group, and
represents hydrogen, a monovalent metal, a divalent metal, an ammonium group or an organic amine group. ) (meta)
Copolymerizing the acrylic acid monomer () using a polymerization initiator at a ratio such that () is 0.1% by weight or more and less than 5.0% by weight with respect to the total of () and (),
It consists of a water-soluble polymer obtained by further neutralizing with an alkaline substance if necessary. The polyalkylene glycol monoallyl ether () used in the present invention is represented by the above general formula, and has an added mole number m+n of 1 to 100 of alkylene oxide. Number of moles added m
If +n is 0, the resulting copolymer will not have sufficient performance as a scale inhibitor for evaporative demineralization equipment;
When it exceeds 100, the copolymerization reactivity of such polyalkylene glycol monoallyl ether is low, and a polymer effective as a scale inhibitor for an evaporative desalination apparatus of the present invention cannot be obtained. Polyalkylene glycol monoallyl ether () can be synthesized by a known method of directly adding ethylene oxide and/or propylene oxide to allyl alcohol using an alkali such as KOH or NaOH as a catalyst. The (meth)acrylic acid monomer () is represented by the general formula above, and specifically includes acrylic acid, methacrylic acid, their monovalent metal salts, divalent metal salts, ammonium salts, and organic amines. Salt can be mentioned. One or more of these can be used. Water-soluble polymer used as a scale inhibitor for evaporative desalination equipment of the present invention by copolymerizing polyalkylene glycol monoallyl ether () and (meth)acrylic acid monomer () using a polymerization initiator can be manufactured. Copolymerization can be carried out by methods such as polymerization in a solvent or bulk polymerization. Polymerization in a solvent can be carried out either batchwise or continuously, and the solvents used in this case include water,
Examples include lower alcohols, mixed solvents of water and lower alcohols, aromatic hydrocarbons, aliphatic hydrocarbons, ketone compounds, and ethyl acetate. Depending on the solvent used, various water-soluble polymerization initiators, peroxides,
Hydroperoxides, combinations of these with polymerization accelerators, azo compounds, etc. are used. The polymerization temperature is appropriately determined depending on the solvent and polymerization initiator used, but it is usually carried out within the range of 0 to 120°C. When water is used as a solvent, sodium hydrogen sulfite-oxygen may be used as a polymerization catalyst. In this case, the polymerization is carried out by blowing oxygen gas or a mixed gas of oxygen and an inert gas into the solvent while adding sodium hydrogen sulfite to the solvent containing the raw material monomer.
This can be carried out by proceeding the polymerization reaction within a temperature range of ~80°C. Bulk polymerization uses peroxide as a polymerization initiator,
It is carried out using hydroperoxide or an azo compound, etc., within a temperature range of 50 to 150°C. When producing a water-soluble polymer in this way, the charging ratio of polyalkylene glycol monoallyl ether () and (meth)acrylic acid monomer (), the amount of polymerization initiator used, the polymerization temperature,
In the case of polymerization in a solvent, the molecular weight of the resulting water-soluble polymer can be adjusted as appropriate by adjusting the type and amount of the solvent. The molecular weight of the water-soluble polymer used as the scale inhibitor for the evaporative desalination equipment of the present invention is not particularly limited, and a wide range of molecular weights can be used, but those in the range of 500 to 50,000 are particularly effective. ing. The water-soluble polymer thus obtained can be used as it is as a scale inhibitor for the evaporative desalination apparatus of the present invention, but it may be further neutralized with an alkaline substance if necessary. Preferred examples of such alkaline substances include hydroxides, chlorides, and carbonates of monovalent metals and divalent metals, ammonia, and organic amines. The scale inhibitor for evaporative desalination equipment of the present invention is sufficiently effective when used alone, but it may also be used in combination with an acid such as sulfuric acid, and if necessary, it may be used in combination with other water treatment agents known in the art. May be used together.
Such other water treatment agents include dispersants or limiting agents such as polyacrylic acid or its salts, hydrolyzed polyacrylonitrile, polymethacrylic acid or its salts, polyacrylamide, acrylic acid or methacrylic acid and acrylamide. copolymers with ligninsulfonic acid or its salts, tannins, naphthalenesulfonic acid-formaldehyde condensation products, starch or its derivatives, cellulose derivatives such as carboxymethyl cellulose, polymaleic acid or its salts, alkylphosphonic acids, 1-
(aminoalkyl 1,1-diphosphonic acids or their salts, alkali metal phosphates, etc.); precipitants (e.g., alkali metal orthophosphates, alkali metals, carbonates, alkali metal hydroxides, etc.); oxygen scavengers (e.g., alkali metal phosphates, etc.); metal sulfite, alkali metal hydrazine, etc.);
Sequestering agents (e.g. nitrilotriacetic acid or its salts, ethylenediaminetetraacetic acid or its salts, etc.); Corrosion inhibitors (e.g. cyclohexylamine, morpholine, distearylamine-ethylene oxide condensate, stearylamine, sodium sulfate, magnesium sulfate, etc.) ); anti-foaming agents (for example, distearylsebamide, distearyl adipamide, etc.); or aliphatic alcohols such as caprylic alcohol or condensates of aliphatic alcohols and ethylene oxide. In order to use the water-soluble polymer used as a scale inhibitor for evaporative desalination equipment in the present invention, it may be added continuously or at appropriate times to seawater or natural salt water. The amount added can be used over a wide range, but it is usually 0.1~
A range of 100ppm (weight basis) is recommended. By using the scale inhibitor for evaporative desalination equipment of the present invention, the generation of scale in evaporative desalination equipment can be suppressed over a long period of time, and even when scale is precipitated due to long-term operation, it can be prevented from forming. Since the scale is made soft by the action of the scale inhibitor for evaporative desalination equipment of the present invention, it can be easily dispersed and removed by a water stream. In addition, in water-soluble polymers, the polyalkylene glycol moiety in the molecule is bonded to the main chain of the polymer through an ether bond, so it is difficult to use water-soluble polymers for long periods of time at high temperatures, in boiling water, or in high pH ranges. It also has the feature that hydrolysis does not occur at all, and its performance is not affected in any way. The present invention will be described below with reference to Reference Examples and Examples, but the present invention is not limited to these Examples. Further, in the examples, unless otherwise specified, all parts are by weight, and all percentages are by weight. In addition, all water-soluble polymer aqueous solution viscosities in the examples were measured using a Bismethron viscometer (manufactured by Seiki Kogyo Kenkyusho).
Measurement was performed at ℃ and 60 rpm. Furthermore, the molecular weight was measured using gel permation chromatography (Model 244 manufactured by Waters). Reference Example 1 Polyethylene glycol monoallyl ether (containing an average of 5 ethylene oxide units per molecule) was placed in a glass reaction vessel equipped with a thermometer, stirrer, dropping funnel, gas introduction tube, and reflux condenser.
7.5 parts and 389.9 parts of water were charged, and the inside of the reaction vessel was purged with nitrogen while stirring, and heated to 95°C in a nitrogen atmosphere. Then, 38% sodium acrylate aqueous solution
506.6 parts and 80 parts of 5% ammonium persulfate aqueous solution were each added over 120 minutes. After addition, further
16 parts of 5% ammonium persulfate aqueous solution was added over 20 minutes. 120 minutes after completion of addition of monomer aqueous solution
The temperature was maintained at 95°C to complete the polymerization reaction, and a water-soluble polymer (1) was obtained. A 40% aqueous solution of this water-soluble polymer (1) obtained by concentrating under reduced pressure has a pH of 7.3 and a viscosity of
It was 267cps. Moreover, the molecular weight was 4100. Reference Example 2 In the same reaction vessel as Reference Example 1, add 9.8 parts of polyethylene glycol monoallyl ether (containing an average of 10 ethylene oxide units per molecule) and water.
After charging 441.7 parts, the inside of the reaction vessel was purged with nitrogen while stirring, and heated to the boiling point in a nitrogen atmosphere. after that
500.5 parts of 38% sodium acrylate aqueous solution and 5%
40 parts of ammonium persulfate aqueous solution and 120 parts each
After the addition was complete, 8 parts of 5% ammonium persulfate aqueous solution was added over 20 minutes. After the addition of the monomers was completed, the temperature was maintained at the boiling point for 120 minutes to complete the polymerization reaction, yielding a water-soluble polymer (2). A 40% aqueous solution of this water-soluble polymer (2) has a pH of 7.5 and a viscosity of
It was 348cps. Moreover, the molecular weight was 4700. Reference Example 3 In the same reaction vessel as in Reference Example 1, an azeotropic composition of 1 part of polypropylene glycol monoallyl ether (containing on average 2 propylene oxide units per molecule), isopropyl alcohol (hereinafter abbreviated as IPA), and water. (IPA/water = 87.4/12.6 (weight ratio))
495.5 parts were charged, and the inside of the reaction vessel was purged with nitrogen while stirring, and heated to the boiling point. then acrylic acid 199
1 part, 6 parts of benzoyl peroxide and 298.5 parts of IPA-water azeotrope was added over 120 minutes. After the addition was complete, the temperature was maintained at the boiling point for 120 minutes to complete the polymerization reaction. Then 40% caustic soda aqueous solution
Neutralization was performed using 276.2 parts, and IPA was distilled off to obtain a water-soluble polymer (3). A 45% aqueous solution of this water-soluble polymer (3) had a pH of 8.5 and a viscosity of 830 cps. Moreover, the molecular weight was 2800. Reference Example 4 In the same reaction vessel as in Reference Example 1, 285 parts of isopropyl alcohol (hereinafter abbreviated as IPA) was charged, the inside of the reaction vessel was purged with nitrogen while stirring, and the mixture was heated to the boiling point in a nitrogen atmosphere. Then, a mixture of 4.5 parts of polyalkylene glycol monoallyl ether (containing on average 18 ethylene oxide units and 2 propylene oxide units per molecule), 295.5 parts of acrylic acid, 3 parts of benzoyl peroxide and 300 parts of IPA was added over 120 minutes. After the addition was completed, 0.6 parts of benzoyl peroxide dispersed in 11.4 parts of IPA was added in two portions every 30 minutes. After the addition of the monomer mixture was completed, the temperature was maintained at the boiling point for 120 minutes to complete the polymerization reaction. Thereafter, it was neutralized with 410.1 parts of a 40% caustic soda aqueous solution. Next, IPA was distilled off to obtain a water-soluble polymer (4). This water-soluble polymer
The 45% aqueous solution of (4) had a pH of 8.5 and a viscosity of 1920 cps. Moreover, the molecular weight was 3000. Reference Example 5 438.8 parts of water was charged into the same reaction vessel as in Reference Example 1, and while stirring, the reaction vessel was purged with nitrogen and heated to 95°C. Then, 63 parts of a 10% aqueous solution of polyethylene glycol monoallyl ether (containing on average 30 ethylene oxide units per molecule) and partially neutralized sodium acrylate (80 mol% neutralization) were added.
378.2 parts of a 38% aqueous solution and 120 parts of a 5% ammonium persulfate aqueous solution were each added over 120 minutes. After the addition was complete, the temperature was maintained at 95° C. for 120 minutes to complete the polymerization reaction. Thereafter, it was completely neutralized with a caustic soda aqueous solution to obtain a water-soluble polymer (5). A 40% aqueous solution of this water-soluble polymer (5) had a pH of 9.0 and a viscosity of 403 cps. Moreover, the molecular weight was 4800. Example 1 Put 700ml of seawater into the beaker 1, add the water-soluble polymer (1) obtained in Reference Example 1 to 5.0ppm, and add a pipe heater (100V, 500W) as a heat source to this seawater. was immersed in the solution and evaporated and concentrated under stirring. Water-soluble polymer (1) is evaporated and concentrated.
Seawater added at 5.0 ppm was sequentially replenished. While performing such operations, the amount of scale attached to the pipe heater was determined at the time when the concentration ratio increased to 4 times. The results are shown in Table 1. Examples 2 to 5 The same procedure as in Example 1 was carried out except that the water-soluble polymers (2) to (5) obtained in Reference Examples 2 to 5 were used instead of the water-soluble polymer (1). It was tested. The results are shown in Table 1. Comparative Example 1 A test was carried out in the same manner as in Example 1, except that commercially available sodium polyacrylate (molecular weight 5000) was used in place of the water-soluble polymer (1). The results are shown in Table 1. Comparative Example 2 In Example 1, a test was conducted in which the water-soluble polymer (1) was not used. The results are shown in Table 1.

【衚】 第衚に瀺した結果から明らかな劂く、本発明
の蒞発脱塩装眮甚スケヌル防止剀はスケヌル析出
防止に優れた効果を有しおいる。
[Table] As is clear from the results shown in Table 1, the scale inhibitor for evaporative desalination equipment of the present invention has an excellent effect on preventing scale precipitation.

Claims (1)

【特蚱請求の範囲】  䞀般匏 䜆し、匏䞭及びは又は正の敎数で
〜100であり、−C2H4O−単䜍ず−C3H6O−
単䜍ずはどのような順序に結合しおいおもよ
い。で瀺されるポリアルキレングリコヌルモノ
アリル゚ヌテル、及び 䞀般匏 䜆し、匏䞭R1は氎玠又はメチル基を衚わし、
は氎玠、䞀䟡金属、二䟡金属、アンモニりム基又
は有機アミン基を衚わす。で瀺されるメタ
アクリル酞系単量䜓を、ずの
合蚈に察しおが0.1重量以䞊5.0重量未
満ずなる比率で重合開始剀を甚いお共重合させお
埗た氎溶性重合䜓からなる蒞発脱塩装眮甚スケヌ
ル防止剀。  䞀般匏 䜆し、匏䞭及びは又は正の敎数で
〜100であり、−C2H4O−単䜍ず−C3H6O−
単䜍ずはどのような順序に結合しおいおもよ
い。で瀺されるポリアルキレングリコヌルモノ
アリル゚ヌテル、及び 䞀般匏 䜆し、匏䞭R1は氎玠又はメチル基を衚わし、
は氎玠、䞀䟡金属、二䟡金属、アンモニりム基又
は有機アミン基を衚わす。で瀺されるメタ
アクリル酞系単量䜓を、 ずの合蚈に察しおが0.1重
量以䞊5.0重量未満ずなる比率で重合開始剀
を甚いお共重合させ、曎にアルカリ性物質で䞭和
しお埗た氎溶性重合䜓からなる蒞発脱塩装眮甚ス
ケヌル防止剀。
[Claims] 1. General formula (However, in the formula, m and n are 0 or positive integers, and m+n
= 1 to 100, and (-C 2 H 4 O)- unit and (-C 3 H 6 O)-
Units may be combined in any order. ) Polyalkylene glycol monoallyl ether () represented by the general formula (However, in the formula, R 1 represents hydrogen or a methyl group, and
represents hydrogen, a monovalent metal, a divalent metal, an ammonium group or an organic amine group. ) (meta)
A water-soluble polymer obtained by copolymerizing acrylic acid monomer () using a polymerization initiator at a ratio such that () is 0.1% by weight or more and less than 5.0% by weight with respect to the total of () and (). A scale inhibitor for evaporative desalination equipment consisting of a combination of 2 General formula (However, in the formula, m and n are 0 or positive integers, and m+n
= 1 to 100, and (-C 2 H 4 O)- unit and (-C 3 H 6 O)-
Units may be combined in any order. ) Polyalkylene glycol monoallyl ether () represented by the general formula (However, in the formula, R 1 represents hydrogen or a methyl group, and
represents hydrogen, a monovalent metal, a divalent metal, an ammonium group or an organic amine group. ) (meta)
Acrylic acid monomer () is copolymerized using a polymerization initiator at a ratio such that () is 0.1% by weight or more and less than 5.0% by weight based on the total of () and (), and further copolymerized with an alkaline substance. A scale inhibitor for evaporative desalination equipment made of a water-soluble polymer obtained by
JP56080982A 1981-05-29 1981-05-29 Scale inhibitor for evaporative desalting apparatus Granted JPS57197098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56080982A JPS57197098A (en) 1981-05-29 1981-05-29 Scale inhibitor for evaporative desalting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56080982A JPS57197098A (en) 1981-05-29 1981-05-29 Scale inhibitor for evaporative desalting apparatus

Publications (2)

Publication Number Publication Date
JPS57197098A JPS57197098A (en) 1982-12-03
JPS6247599B2 true JPS6247599B2 (en) 1987-10-08

Family

ID=13733703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56080982A Granted JPS57197098A (en) 1981-05-29 1981-05-29 Scale inhibitor for evaporative desalting apparatus

Country Status (1)

Country Link
JP (1) JPS57197098A (en)

Also Published As

Publication number Publication date
JPS57197098A (en) 1982-12-03

Similar Documents

Publication Publication Date Title
KR100904789B1 (en) Method for controlling scale formation and deposition in aqueous systems
JP4043551B2 (en) Scale inhibitor and scale prevention method
US4455235A (en) Scale inhibition method employing (meth)acrylic acid/methallylsulfonate copolymer
US7316787B2 (en) Methods for controlling silica scale in aqueous systems
US4530955A (en) Water treatment composition comprising a hydrolyzed maleic anhydride copolymer and a zinc compound
JPH05228494A (en) Control of scale in black liquor evaporator
GB2181735A (en) Maleic acid polymer for use as scale inhibitor
JPS63258697A (en) Corrosion inhibitor also for suppressing scale of metals in aqueous system
JPS5876195A (en) Scale and precipitation inhibitor for industrial water and/or household water treatment
JPS6225164B2 (en)
JP3252314B2 (en) Scale inhibition method
JPS6247599B2 (en)
JPS6260000B2 (en)
IL230104A (en) Preparing maleic acid-isoprenol copolymers
US4086146A (en) Water treating process
EP0818423A1 (en) Scale inhibition process
JPS5914277B2 (en) Anti-scale agent
EP0274733A2 (en) Water treatment polymer
JPH0146594B2 (en)
JPS6347790B2 (en)
JPS5916519B2 (en) Anti-scale agent
JPS6319240B2 (en)
JPS5912908A (en) Novel copolymer and preparation thereof
JPS6247600B2 (en)
JPS5950399B2 (en) Anti-scale agent