JPS6247593A - Method of reducing radioactivity of nuclear reactor - Google Patents

Method of reducing radioactivity of nuclear reactor

Info

Publication number
JPS6247593A
JPS6247593A JP60187261A JP18726185A JPS6247593A JP S6247593 A JPS6247593 A JP S6247593A JP 60187261 A JP60187261 A JP 60187261A JP 18726185 A JP18726185 A JP 18726185A JP S6247593 A JPS6247593 A JP S6247593A
Authority
JP
Japan
Prior art keywords
reactor
diketone
piping
nuclear reactor
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60187261A
Other languages
Japanese (ja)
Inventor
越野 靖夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP60187261A priority Critical patent/JPS6247593A/en
Publication of JPS6247593A publication Critical patent/JPS6247593A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は原子力発電プラントの一次冷却系に係り、特に
定期点検等の作業員の被曝線量低減の為の放射能低減方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a primary cooling system of a nuclear power plant, and more particularly to a method for reducing radioactivity for reducing radiation exposure of workers during periodic inspections and the like.

〔発明の背景〕[Background of the invention]

原子炉の放射能低減方法としては特開昭56−1480
99号公報に示される様に冷却水にアンモニアを添加す
る方法がある。この方法は配管の表面線量の大部分を占
める”Coイオンをアンモニアにより捕捉し配管等への
付着を防止する方法であるが、既に酸化物となった放射
性金属に対しては考慮されていない。
Japanese Patent Application Laid-Open No. 56-1480 describes a method for reducing radioactivity in nuclear reactors.
As shown in Japanese Patent No. 99, there is a method of adding ammonia to cooling water. This method uses ammonia to capture Co ions, which account for most of the surface dose of pipes, to prevent them from adhering to pipes, etc., but it does not take into account radioactive metals that have already become oxides.

〔発明の目的〕[Purpose of the invention]

本発明の目的は原子炉一次冷却水にβ−ジケトンを添加
することで、配管の放射線線量率の上昇を防止し定期点
検時等の作業員の被曝線量を低減することにある。
An object of the present invention is to add β-diketone to the primary cooling water of a nuclear reactor, thereby preventing an increase in the radiation dose rate of piping and reducing the exposure dose of workers during periodic inspections and the like.

〔発明の概要〕[Summary of the invention]

原子炉−次冷却系の配管の放射線線量率上昇の原因は、
鉄酸化物を主体としたクラッドの配管への付着である。
The cause of the increase in radiation dose rate in the piping of the reactor secondary cooling system is
This is the adhesion of cladding mainly composed of iron oxide to piping.

本発明では冷却水にβ−ジケトンを添加することで金属
酸化物の溶解及び金属イオンの捕捉を行い、配管の放射
線線量率上昇を防止する。
In the present invention, by adding β-diketone to cooling water, metal oxides are dissolved and metal ions are captured, thereby preventing an increase in the radiation dose rate of piping.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図は本発明を利用した沸騰水型原子力発電プラント
の概略系統図である。沸騰水型原子力発電プラントは原
子炉1.タービン2.復水器3.復水浄化袋@4.原子
炉冷却材浄化装置5等により構成される。本発明により
放射線線量率上昇の防止を図るのは、原子炉冷却材再循
環系配管6及び原子炉冷却材浄化系配管7である。原子
炉冷却水にβ−ジケトンを添加すると原子炉1及び配管
6゜7中でβ−ジケトンは金属イオン及びクラッドの主
成分である鉄酸化物を以下の反応により溶解捕捉する。
FIG. 1 is a schematic diagram of a boiling water nuclear power plant using the present invention. A boiling water nuclear power plant is a nuclear reactor.1. Turbine 2. Condenser 3. Condensate purification bag @4. It is composed of a reactor coolant purification device 5 and the like. According to the present invention, it is the reactor coolant recirculation system piping 6 and the reactor coolant purification system piping 7 that are intended to prevent an increase in radiation dose rate. When β-diketone is added to the reactor cooling water, the β-diketone dissolves and traps metal ions and iron oxides, which are the main components of the cladding, in the reactor 1 and piping 6.7 through the following reaction.

Fes++3HacaenFs(acac)s+3H+
Co”+ + 2Hacac→Co(a、cac)x+
2H÷FszOa + 6Hacac−+ 2Fa(a
cac) a + 3HzOFeaOa + 8)1a
cac→2Fa(acac)s+Fe(acac)z+
4Hz。
Fes++3HacaenFs(acac)s+3H+
Co”+ + 2Hacac→Co(a, cac)x+
2H÷FszOa + 6Hacac-+ 2Fa(a
cac) a + 3HzOFeaOa + 8) 1a
cac→2Fa(acac)s+Fe(acac)z+
4Hz.

但しHacacはβ−ジケトンの一種であるアセチルア
セトンを表わす、前記反応により生じた金属のβ−ジケ
トン錯体は水に対し微溶性の中性分子であるが、原子炉
冷却水中の全金属量は10ppb以下の濃度であり水に
完全に溶解する。これによりクラッドの配管への付着を
防止し配管の放射線線量率の上昇を防止する。本発明を
実施する場合、薬剤タンク8よりβ−ジケトンの一定量
を復水浄化装置4と原子炉1の間に注入する。β−ジケ
トンの注入量は1M子炉内でのβ−ジケトンの放射線分
解に対応する量とし、原子炉冷却水中のβ−ジケトン濃
度を一定に保つ様にする。この様に添加されたβ−ジケ
トンは原子炉1及び配管内で前記反応を行す。沸騰水中
で金属のβ−ジケトン錯体はβ−ジケトンが水と共に蒸
発する為、以下の反応により分解と生成を繰り返す。
However, Hacac represents acetylacetone, which is a type of β-diketone. Although the metal β-diketone complex produced by the above reaction is a neutral molecule that is slightly soluble in water, the total amount of metal in the reactor cooling water is 10 ppb or less. It is completely soluble in water. This prevents the clad from adhering to the piping and prevents the radiation dose rate of the piping from increasing. When carrying out the present invention, a certain amount of β-diketone is injected from the chemical tank 8 between the condensate purification device 4 and the nuclear reactor 1. The amount of β-diketone injected is an amount corresponding to the radiolysis of β-diketone in the 1M slave reactor, and the β-diketone concentration in the reactor cooling water is kept constant. The β-diketone added in this manner undergoes the reaction described above within the reactor 1 and piping. In boiling water, β-diketone complexes of metals undergo repeated decomposition and formation through the following reaction, as β-diketones evaporate together with water.

速い 2Fe (acac) a + 6Hx0     6
Hacac + 2Fe (OR) 5Fezes +
 3HtO+ 6Hacacしかし分解により生じた水
酸化鉄が酸化鉄になる反応は遅く、かつ水酸化鉄のβ−
ジケトン錯体生成反応は速い為、クラッドが再び配管等
に付着することはない0次に金属のβ−ジケトン錯体の
除去について説明する。錯体は中性分子である為、原子
カプラントの水処理に通常使用されているイオン交換樹
脂では除去できない。従って原子炉冷却材浄化装置5に
は逆浸透膜などを使用する必要がある。
Fast 2Fe (acac) a + 6Hx0 6
Hacac + 2Fe (OR) 5Fezes +
3HtO+ 6Hacac However, the reaction of iron hydroxide produced by decomposition to become iron oxide is slow, and the β-
Since the diketone complex formation reaction is fast, the removal of the zero-order metal β-diketone complex will be explained so that the cladding will not adhere to the piping or the like again. Because the complex is a neutral molecule, it cannot be removed by ion exchange resins commonly used for atomic couplant water treatment. Therefore, it is necessary to use a reverse osmosis membrane or the like in the reactor coolant purification device 5.

尚、β−ジケトンは特種のものを除き炭素、水素、酸素
で構成されている為、放射線分解で生じるものは二酸化
炭素、酸素、水素、水等であり問題はない。
Note that, except for special types, β-diketones are composed of carbon, hydrogen, and oxygen, so that what is produced by radiolysis is carbon dioxide, oxygen, hydrogen, water, etc., and there is no problem.

〔発明の効果〕〔Effect of the invention〕

本発明の効果を実証する実験について述べる。 An experiment to demonstrate the effects of the present invention will be described.

β−ジケトンの一種であるアセチルアセトン水溶液中の
酸化鉄(II)  (m)の溶解実験を行った。
A dissolution experiment of iron(II) oxide (m) in an aqueous solution of acetylacetone, which is a type of β-diketone, was conducted.

結果の一例を第2図に示す、第2図はアセチルアセトン
0.01 mo 12/ Q水溶液にφ20xt5Iの
大きさに焼結した酸化鉄(n)(m)を投入した時の経
過時間と溶解鉄量の関係を示している。
An example of the results is shown in Figure 2. Figure 2 shows the elapsed time and dissolved iron when iron oxide (n) (m) sintered to a size of φ20xt5I was added to an acetylacetone 0.01 mo 12/Q aqueous solution. It shows the relationship between quantities.

これ町よ、すβ−ジケトンが効果的に酸化鉄を溶解する
ことがわかる。従って本発明により原子炉冷却水中のク
ラッドの配管への付着を防止することができ、配管の放
射線線量率上昇の防止ひいては作業員の被曝線量低減が
可能である。
It turns out that beta-diketones effectively dissolve iron oxide. Therefore, according to the present invention, it is possible to prevent the crud in the reactor cooling water from adhering to the piping, and it is possible to prevent an increase in the radiation dose rate of the piping and, in turn, to reduce the exposure dose of workers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を利用した沸騰水型原子力発電プラント
の概略系統図、第2図は本発明を実証する実験結果を示
す図である。 1・・・原子炉、2・・・タービン、3・・・復水器、
4・・・復水浄化装置、5・・・原子炉冷却材浄化装置
、6・・・原子炉冷却材再循環系配管、7・・・原子炉
冷却材浄化系配管、7・・・薬剤タンク。
FIG. 1 is a schematic system diagram of a boiling water nuclear power plant using the present invention, and FIG. 2 is a diagram showing experimental results demonstrating the present invention. 1... Nuclear reactor, 2... Turbine, 3... Condenser,
4... Condensate purification device, 5... Reactor coolant purification device, 6... Reactor coolant recirculation system piping, 7... Reactor coolant purification system piping, 7... Drug tank.

Claims (1)

【特許請求の範囲】[Claims] 1、原子炉一次冷却水にβ−ジケトンを添加することを
特徴とする原子炉の放射能低減方法。
1. A method for reducing radioactivity in a nuclear reactor, which comprises adding β-diketone to the reactor primary cooling water.
JP60187261A 1985-08-28 1985-08-28 Method of reducing radioactivity of nuclear reactor Pending JPS6247593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60187261A JPS6247593A (en) 1985-08-28 1985-08-28 Method of reducing radioactivity of nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60187261A JPS6247593A (en) 1985-08-28 1985-08-28 Method of reducing radioactivity of nuclear reactor

Publications (1)

Publication Number Publication Date
JPS6247593A true JPS6247593A (en) 1987-03-02

Family

ID=16202879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60187261A Pending JPS6247593A (en) 1985-08-28 1985-08-28 Method of reducing radioactivity of nuclear reactor

Country Status (1)

Country Link
JP (1) JPS6247593A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03235874A (en) * 1990-02-09 1991-10-21 Mitsui Sekika Sanshi Kk Three-dimensional pattern forming method
JPH07195338A (en) * 1993-12-28 1995-08-01 Planning Tenshiyon:Kk Method of forming shaping material for producing molding, shaping material obtained thereby, method of producing molding using the same shaping material and molding obtained

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03235874A (en) * 1990-02-09 1991-10-21 Mitsui Sekika Sanshi Kk Three-dimensional pattern forming method
JPH07195338A (en) * 1993-12-28 1995-08-01 Planning Tenshiyon:Kk Method of forming shaping material for producing molding, shaping material obtained thereby, method of producing molding using the same shaping material and molding obtained

Similar Documents

Publication Publication Date Title
TW201131581A (en) Method for surface-decontamination
US6504077B1 (en) Method for the decontamination of metallic surfaces
US5024805A (en) Method for decontaminating a pressurized water nuclear reactor system
Murray A chemical decontamination process for decontaminating and decommissioning nuclear reactors
CA1136398A (en) Decontaminating reagents for radioactive systems
Welch et al. Dissolution of feldspars in oxalic acid solutions
JPS6247593A (en) Method of reducing radioactivity of nuclear reactor
Sellers The radiation chemistry of nuclear reactor decontaminating reagents
Kim et al. Magnetite dissolution using hydrazine-acid solution for chemical decontamination
Delegard et al. Effects of Hanford high-level waste components on the solubility of cobalt, strontium, neptunium, plutonium, and americium
US5901368A (en) Radiolysis-assisted decontamination process
Crowe Evaluation of agents for preventing precipitation of ferric hydroxide from spent treating acid
JP2020076650A (en) Radioactive waste liquid processing method and radioactive waste liquid processing system
Kim et al. Preliminary Evaluation of Decontamination Agent and Ion Exchange Resin Requirements for System Decontamination of a Nuclear Power Plant
Speranzini et al. Corrosion response of nuclear reactor materials to mixtures of decontamination reagents
Shaw et al. Chemical decontamination: an overview
Whitaker et al. Decontaminating reactor coolant systems
JPS62261099A (en) Decontaminating agent for chemically dissolving radioactive clad and decontaminating method thereof
Baybarz DESCALING AND DECONTAMINATING METHOD FOR METALS
JP3179500B2 (en) Nuclear power plant and operation method thereof
McSweeney Removal of deposited copper from nuclear steam generators
Tsunoda et al. EFFECT OF SULPHURIC ACID AND CHROMIC ACID MIXTURE TREATMENTS OF PLASTICS ON THEIR WETTABILITY AND RADIOACTIVE CONTAMINATION
JPS6195290A (en) Method of reducing dosage of nuclear power plant
Choi et al. Chemical decontamination of a primary coolant system using hydrazine based solutions-15215
Mikhal'chenko et al. Kinetics of magnetite dissolution in aqueous solutions of hydroxyethylidenediphosphonic acid