JPS6247340A - Actual brain wave extraction method - Google Patents

Actual brain wave extraction method

Info

Publication number
JPS6247340A
JPS6247340A JP60186441A JP18644185A JPS6247340A JP S6247340 A JPS6247340 A JP S6247340A JP 60186441 A JP60186441 A JP 60186441A JP 18644185 A JP18644185 A JP 18644185A JP S6247340 A JPS6247340 A JP S6247340A
Authority
JP
Japan
Prior art keywords
waveform
electrocardiogram
brain
brain wave
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60186441A
Other languages
Japanese (ja)
Other versions
JPH067824B2 (en
Inventor
中村 政俊
柴崎 浩
西田 茂人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60186441A priority Critical patent/JPH067824B2/en
Priority to US06/898,698 priority patent/US4716907A/en
Publication of JPS6247340A publication Critical patent/JPS6247340A/en
Publication of JPH067824B2 publication Critical patent/JPH067824B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 産業上の利用分野 この発明は、実脳波抽出法に関するものである。 (ロ) 従来の技術 従来、脳の機能状態を示し、脳障害の(票識となるもの
として脳波が使用されているが、この脳波は脳から生ず
る微弱な不規則変動の2電極間の悩電位差を記録したも
のであり、かかる脳波を増[1〕器に導き、ペン書き式
記録機で表示したものを脳電図(EEG)と称しでおり
、脳電図を作成するための脳波の導出法としては、基準
電極をたとえば、耳たぶのように脳波の影響が比較的少
ないと考えられる部位において、活性電極を検すべき頭
皮上の部分に置き、脳電位を導出する方法等がとられて
いる。 (ハ) 発明が解決しようとする問題点しかしながら、
雑波混入のない理想的な実脳波を導出するには、活性電
極を目的脳波が検出しや1い部位に設置すると共に、膜
電位の基準となるべき基準電極を目的外の脳波及び心電
図等の雑波が波及しイ
(a) Industrial application field This invention relates to a real brain wave extraction method. (b) Conventional technology Conventionally, electroencephalograms have been used to indicate the functional state of the brain and serve as an indicator of brain disorders. The electroencephalogram (EEG) is a record of electrical potential differences, and the electroencephalogram (EEG) is when the brain waves are guided to an intensifier and displayed using a pen recording device. As a derivation method, a reference electrode is placed on a part of the scalp that is considered to be relatively unaffected by brain waves, such as the earlobe, and an active electrode is placed on the part of the scalp to be detected, and brain potentials are derived. (c) Problems that the invention seeks to solveHowever,
In order to derive ideal real brain waves without interference, the active electrode should be placed in a location where the target brain waves can be easily detected, and the reference electrode, which should serve as the reference for membrane potential, should be placed in a location where the target brain waves can be easily detected. The ripples of noise spread

【い一定電位の部位に設置するこ
とが不可欠である。 しかるに、目的外脳波が波及しない部位例えば手、足等
では心電図のレベルが膜電位より大きく肝腎の脳波の判
読が著しく困難であり、心電図の影響が少ない頭部では
目的外脳波が混入してこれまた目的脳波の判読が困難ど
なる。 そこで、止むなく目的外脳波及び心電図が混入はするが
比較的これらの影響が少ないと目される耳たぶ等に基壁
電極を設置するということが従来行われている脳波の単
極導出法である。 しかし、月たぶ等に基準電極を置いて導出した脳波では
、上記のように雑波が混在しているため、目的の脳波が
雑波でマスキングされて正確な脳の機能を示すことには
ならず、脳機能のより高度な解析及び診断を下すことが
不可能であった。 従・)で、心電図及び目的外脳波等の刹1波をフィルタ
ー等にて除去し、目的の実脳波のみ抽出する試みがすで
になされたが失敗に終り、現状で警まこれら雑波の除去
は不可能視されていた。 (ニ) 問題点を解決するための手段 この発明では、目的の脳波が導出しやすい体表面位置に
電極を設置し、そこから心電図起因の雑波混在の脳波波
形を導出し、他方別途に19だ心電図波形からトリガー
信号を生成させ、このトリガー信号から所定時間さかの
ぼった時点を起点として上記脳波波形を個々のセグメン
トに分割し、各セグメントを逐次加算平均して雑波の推
定波形を得で、この推定波形を起点を同期させながらも
との雑波混在の脳波波形から差し引いて実脳波波形を抽
出することを特徴とした実脳波抽出法を提供せ/νとす
るものである。 (ホ) 作用及び効果 この発明では、脳波に混在づ−る心電図由来の波形が、
脳波導出と同時に別途導出した心電図と同期しており、
かつ検査目的の脳波波形との独立性が高いことに着目し
、導出した脳波を心電図と同期分FI Llでセグメン
ト化とし、次々に発生するセグメントを心電図と同期し
て逐次加算平均することによって、心電図と同期した波
形成分は位相が重畳して顕在化し、非同期の波形成分は
位相が分散して平滑化されて、同期波形のみが抽出され
ることになり、目的の実脳波はこの同期波形からのfI
2差として捉えることができる。 従って、もとの導出脳波波形からこの同期波形を雑波の
推定波形として差し引くことにより実脳波の抽出を行う
ことができる。 以上のように、心電図由来の波形を消去できるのである
から、基準電極の設置位置は目的外脳波が混入しない部
位であれば心電図の影響が大きい部位でも差支えない。 かくして得た波形は、極めて高い精度で目的脳波を示す
ものであるから、脳機能のより高度な解析及び診断の資
おlとして充分な信頼性を有するものである。 (へ) 実施例 この発明の実施例を図面にもとずき詳説Jれば、第1図
〜第4図は説明の為の模式図であり、第1図は、脳電図
とトリガー信号(1)を生起するだめの心電図を示し、
この脳電図は、活性電極(2)を頭皮、Lの目的部位近
傍に設置し、基準電極(3)を顎あるいは手に設置して
、二極間の電位差から導出したものであり、この波形に
は、目的の脳波波形と心電図由来の波形とが混在してい
るが、目的外の脳波は混入していないものである。 なお、電極設置は、心電図由来の波形レベルの大小は考
慮する必要がなく、要は、目的の脳波が最も顕著に導出
できる位置を選択することができる。 また、この波形から心電図由来の波形周則が必ずしも一
定ではないこと、目的の脳波と除去すべき雑波の周波数
帯域が単複していることがわかり、従来、このことが実
脳波の抽出を困難なものとしていた。 トリガー信号(1)は、心電図波形(4)を適宜のレベ
ルに増巾し、同波形(4)中で最大ピークを示すR波(
5)を標識として生成するものである。 なお、心電図波形(4)にはR波(5)に先行するP波
(6)が存在し、この先行時間は通常200m5ecl
X内であるとされている。 第2図は、第1図の脳波波形〈7〉をトリガー信号(1
)にて同期分割した波形を示す。 なお、ここでいう同期分割とは、脳波波形(7)とトリ
ガー信号(1)すなわち心電図波形(4)との時間的整
合を意味し、具体的には、脳波波形(7〉を、トリガー
信号(1)から200 m s ecさかのぼった時点
を起点(8)として次波の同位相J:でを一個のセグメ
ント(9)に分割することであり、1ヘリガ一信号(1
)前200m5ecを分割の起点(8)とすることで心
電図波形(4)のP波(6)成分をセグメント(9)の
前部に位置させている。 第3図は、第2図で同期分割したセグメント(9)と起
点と同期させて逐次加算平均した波形を示しており、こ
の逐次加算平均により第1図に示す脳波波形(7)中の
心電図と同期した波形のみが重畳して顕在化し、非同期
の波形は平滑化されて、同期波形のみが抽出されること
になり、この顕在化した同期波形を心電図に起因する雑
波の推定波形(10)とする。なお、この逐次加算平均
は、過去の逐次加算平均値に重みづけの指数を乗じ、新
たに到来したセグメント数値に、1から同指数を差引い
た数値を乗じて両者を加算するという演算を行って、推
定波形(10)を逐次更新し被検者の雑波波形に動的に
追従させるものである。なお、重みづけの指数は、0と
1の間において任意に設定することができる。 以上の処理を、この実施例では、活性及び基準電極(2
>、(3)間の電位差を最大±5V程度に増申し、△/
D変換してデジタル処理するものであり、△/D変換の
仕様を、サンプリング間隔、1m5ec、分解能12ビ
ツトとしている。なお、脳波は、約100 l−1z以
内の比較的おそい電気振動であり、導出された電位差を
、バイナリ12ピツ1〜、すなわち4096段階に分け
て信号化するのであるから、かかる目的に対して充分な
精度が保証されている。 そして、逐次到来する脳電位のデジタル信号を時系列に
従って記憶させ、心電図から得たトリガー信号(1)か
ら200m5ecさかのぼった時点を起点(8)として
得られる一連のデジタル信号をセグメント(9)とし、
逐次到来するセグメント(9)を起点(8)と同期させ
て上記演算法により逐次加算平均して最新の推定波形(
10)とする。推定波形(10)はセグメント(9)を
構成した一連のデジタル信号がづべて入力してから更新
されるのではなく、時系列的に到来する個々のデジタル
信号入力の度ごとに、セグメント(9)のその信号に該
当する部分から逐次更新されて行くものであり、このこ
とで処理速度を高めている。 なお、心電図に起因する波形は、最大ピークを示すR波
(5)及びR波に先行したP波(6)が主成分でありR
波(5)発生後は急速に減衰すると共に周期のバラツキ
が大きくなるものであるから心電図波形(4)と同期し
た反復波形を抽出するには、P波(6)が含まれるR波
前200m5ecを起点として同期分割、逐次加算平均
を行うことで、かかる目的には充分な精度が得られるも
のである。更に、起点(8)の遡行時間を調整可能とし
て被検者の個体差に対応している。 第4図は、目的の実脳波波形(11)を示し、雑波混在
の脳波波形(7〉から、起点(8)を同期させて第3図
の雑波推定波形(10)を差し引うな機器構成を実施し
た。 すなわち、(2>、(3)はそれぞれ活性及び基準電極
を示し、電解物質を多量に含む導電性の糊料にてそれぞ
れ被検者の頭皮及び手の皮膚に貼着している。(12>
、(12)−は心電図波形(4)を導出するための電極
で、それぞれ被検者の頭部以外の皮膚に貼着している。 活性及び基準電極(2>、(3)の電位差は、増巾率が
一定の増巾器(13)により最大±5V程度に増巾され
、A/D変換″!(14)にてバイナリ−12ビツトの
デジタル信号に変換され、一時記憶装置(15)に収納
される。この△/D変換は、サンプリング間隔i rr
l S e Cで行われ、時系列に対応した一時記憶装
置(15)のアドレスに順次収納される。 一方、心電図波形(4)導出の電極(12)を、アンプ
(16)を介してシュミツ1〜素子(17)及び微分素
子(18)を内蔵しIC1〜リガ一信号発生部(19)
に接続しており、心電図波形(4)R波(5)がリファ
レンス電圧に下方からクロスした時点の立上りを捉えて
1〜リガ一信号(1)を発生し、このトリガー信号(1
)によって同期をとりながら、一時記憶装fa(15)
に収納した脳波波形(7)記憶の現時刻よりも200m
5ecさかのぼった時点に相当するアドレスから同装置
(15)の記憶をアクセスして、演算部(20)に出力
するものである。 また、トリが一信号(1)の生成をデジタル処理で行う
には、心電図波形(4)を増巾後A/D変換し、逐次入
力するデジタル信号の値を前後比較して、後の信号の値
が前の信号の値と等しいかもしくは小さくなった時点で
トリガー信号(1)を発するようにすることもできる。 演算部(20)にはレジスター(21)が内蔵されてお
り、レジスター(21)は、それまでの逐次加算平均し
た雑波の推定波形(10)を記憶しており、新たに入力
した一時記憶装置(15)からの脳波波形(7)との加
算平均を行っており常に最新の加算平均値すなわち雑波
の推定波形(10)を記憶している。そして、このレジ
スター(21)に記憶した推定波形(10)を一時記憶
装置(15)からの脳波波形(7)から差引き計算して
D/A変換器(22)に出力し、同変換器(22)に接
続したペン書き記録計(23)にて実脳波波形(11)
を画かせるものであり、2QQmsec遅れのオンライ
ン処理がなされる。 なお、演算部(20)はクロック(20) ′を内蔵し
ており、サンプリングストローブなとすべてのタイミン
グは、クロック(20>”からのパルスを分周(20)
”して得ているので、機器全体が同期、同調して作動す
るものであり、トリガー信号(1)から200m5ec
の時間遡行は、同信号(1)発生時の一時記憶装置(1
5)のアドレスの相対アドレスで−200からアクレス
を開始することにより得られるものであり、この遡行時
間は、演算部に接続したキーボード(24)の操作によ
り変更設定することができる。 また、演算部(20)から診断用等のコンピュータ(2
5)に出力して、同コンピュータ(25)に内蔵したプ
ログラム及びデータベースを用いて診断等の処理をする
こともできる。 なお、演算部(20)は、汎用のコンピュータに、上記
手順のプログラムをロードして行うことができ、高速の
コンピュータであれば、数チャンネルの活性電極からの
脳波をスキャンニングして、同時に処理することができ
るが、更に多数のチャンネルをカバーするには、増1】
器(13)からD/A変換器(22)までを集積回路化
して、これらを多数並設することによって実現されるも
のであり、この方が機器操作及び取扱のLからも望まし
い。
[It is essential to install the device in a location with a constant potential. However, in areas where unintended brain waves do not affect the brain, such as the hands and feet, the electrocardiogram level is higher than the membrane potential, making it extremely difficult to interpret liver and kidney brain waves. Also, it is difficult to decipher the target brain waves. Therefore, although unintended electroencephalograms and electrocardiograms are mixed in, the conventional unipolar derivation method for electroencephalograms is to place base wall electrodes on areas such as the earlobes, where these effects are considered to be relatively small. . However, the brain waves derived by placing a reference electrode on a lunar tube are mixed with noise waves as described above, so the target brain waves are masked by the noise waves and cannot accurately indicate brain functions. Therefore, it was impossible to perform more advanced analysis and diagnosis of brain function. Attempts have already been made to extract only the target real brain waves by removing single waves such as electrocardiograms and non-target brain waves using filters, etc., but these efforts have failed, and it is currently difficult to remove these interference waves. It was seen as impossible. (d) Means for solving the problem In this invention, electrodes are installed at positions on the body surface where it is easy to derive the desired brain waves, and from there, brain wave waveforms mixed with interference caused by electrocardiograms are derived, and on the other hand, separately 19 A trigger signal is generated from the electrocardiogram waveform, the electroencephalogram waveform is divided into individual segments starting from a point a predetermined period of time from the trigger signal, and each segment is sequentially added and averaged to obtain an estimated waveform of noise waves. This object is to provide a real brain wave extraction method characterized by extracting a real brain wave waveform by subtracting this estimated waveform from the original brain wave waveform mixed with interference while synchronizing the starting points. (e) Action and Effect In this invention, the electrocardiogram-derived waveform mixed with the brain waves is
At the same time as the electroencephalogram is derived, it is synchronized with the electrocardiogram derived separately.
Focusing on the fact that it is highly independent of the electroencephalogram waveform for testing purposes, the derived electroencephalogram is segmented using FI Ll synchronized with the electrocardiogram, and the successive segments are sequentially added and averaged in synchronization with the electrocardiogram. The waveform components that are synchronized with the electrocardiogram become apparent as their phases are superimposed, and the phases of asynchronous waveform components are dispersed and smoothed, so that only the synchronized waveforms are extracted.The target real brain wave is extracted from this synchronized waveform. fI of
It can be seen as a difference between the two. Therefore, real brain waves can be extracted by subtracting this synchronized waveform from the original derived brain wave waveform as an estimated noise waveform. As described above, since the waveform derived from the electrocardiogram can be erased, the reference electrode can be installed at a location where the influence of the electrocardiogram is large, as long as it is not contaminated with unintended electroencephalograms. The waveform thus obtained indicates the target brain wave with extremely high accuracy, and therefore has sufficient reliability as a resource for more advanced analysis and diagnosis of brain function. Embodiment If we describe the embodiment of this invention in detail based on the drawings, Figs. 1 to 4 are schematic diagrams for explanation, and Fig. 1 shows an electroencephalogram and a trigger signal. (1) shows an electrocardiogram that causes
This electroencephalogram is derived from the potential difference between the two electrodes by placing an active electrode (2) on the scalp, near the target area of L, and a reference electrode (3) on the chin or hand. The waveform contains a mixture of the target brain wave waveform and the waveform derived from the electrocardiogram, but does not contain any brain waves other than the target. Note that when setting the electrodes, it is not necessary to take into account the magnitude of the waveform level derived from the electrocardiogram, and in short, it is possible to select a position where the target brain waves can be most clearly derived. In addition, this waveform shows that the waveform periodicity derived from the electrocardiogram is not necessarily constant, and that the frequency bands of the target brainwave and noise waves to be removed are single and multiple, which has traditionally made it difficult to extract real brainwaves. I thought it was something. The trigger signal (1) amplifies the electrocardiogram waveform (4) to an appropriate level and generates an R wave (
5) is generated as a label. Note that the electrocardiogram waveform (4) includes a P wave (6) that precedes the R wave (5), and this preceding time is usually 200 m5 ecl.
It is said to be within X. Figure 2 shows the brain waveform <7> in Figure 1 as a trigger signal (1
) shows the synchronously divided waveform. Note that synchronous division here means temporal alignment of the electroencephalogram waveform (7) and the trigger signal (1), that is, the electrocardiogram waveform (4), and specifically, the electroencephalogram waveform (7>) is The in-phase J: of the next wave is divided into one segment (9) with the point (8) going back 200 m sec from (1), and one heliga signal (1
) The P wave (6) component of the electrocardiogram waveform (4) is located at the front of the segment (9) by setting 200 m5ec before the segment (8) as the starting point (8) of division. Figure 3 shows a waveform that has been sequentially averaged in synchronization with the segment (9) that was synchronously divided in Figure 2 and the starting point. Only the waveforms that are synchronized with the ECG are superimposed and become apparent, and the asynchronous waveforms are smoothed and only the synchronous waveforms are extracted. ). Note that this sequential averaging is performed by multiplying the past sequential averaging value by a weighting index, multiplying the newly arrived segment value by a value obtained by subtracting the same index from 1, and then adding both. , the estimated waveform (10) is updated sequentially to dynamically follow the interference waveform of the subject. Note that the weighting index can be set arbitrarily between 0 and 1. In this example, the above processing is performed for the active and reference electrodes (2
>, increase the potential difference between (3) to a maximum of about ±5V, △/
D conversion is performed and digital processing is performed, and the specifications of the Δ/D conversion are a sampling interval of 1 m5ec and a resolution of 12 bits. It should be noted that brain waves are relatively slow electrical oscillations within about 100 l-1z, and the derived potential difference is converted into a signal by dividing it into binary 12 bits, that is, 4096 steps. Sufficient accuracy is guaranteed. Then, the digital signals of brain potentials that arrive sequentially are stored in chronological order, and a series of digital signals obtained from a point (8) that is 200 m5ec back from the trigger signal (1) obtained from the electrocardiogram is defined as a segment (9).
Segments (9) that arrive one after another are synchronized with the starting point (8), and the latest estimated waveform (
10). The estimated waveform (10) is not updated after a series of digital signals forming the segment (9) are input, but is updated by segment ( 9) is sequentially updated starting from the part corresponding to the signal, thereby increasing the processing speed. Note that the main components of the waveform caused by the electrocardiogram are the R wave (5), which indicates the maximum peak, and the P wave (6), which precedes the R wave.
After the wave (5) is generated, it rapidly attenuates and the variation in the period increases, so in order to extract a repetitive waveform that is synchronized with the electrocardiogram waveform (4), it is necessary to extract 200 m5ec before the R wave that includes the P wave (6). By performing synchronous division and successive averaging using the starting point, sufficient accuracy can be obtained for this purpose. Furthermore, the travel time of the starting point (8) can be adjusted to accommodate individual differences among subjects. Figure 4 shows the target real brain wave waveform (11), and the estimated noise waveform (10) in Figure 3 is subtracted from the brain wave waveform (7) mixed with interference by synchronizing the starting point (8). The device configuration was carried out. That is, (2> and (3) indicate the active and reference electrodes, respectively, and they were attached to the skin of the subject's scalp and hand, respectively, with conductive glue containing a large amount of electrolyte. (12>
, (12)- are electrodes for deriving the electrocardiogram waveform (4), and are each attached to the skin of the subject other than the head. The potential difference between the active and reference electrodes (2>, (3)) is amplified to a maximum of about ±5 V by an amplifier (13) with a constant amplification rate, and converted into a binary signal by A/D conversion (14). It is converted into a 12-bit digital signal and stored in a temporary storage device (15).This Δ/D conversion is performed at a sampling interval i rr
1 S e C, and are sequentially stored in addresses of the temporary storage device (15) corresponding to the time series. On the other hand, the electrode (12) for deriving the electrocardiogram waveform (4) is connected via the amplifier (16) to the built-in Schmidts 1~element (17) and differential element (18), and the IC1~Riga signal generator (19).
It captures the rising edge of the electrocardiogram waveform (4) and R wave (5) when they cross the reference voltage from below, and generates the trigger signal (1).
) while synchronizing with temporary storage fa (15).
EEG waveform stored in (7) 200 m from the current time of memory
The memory of the device (15) is accessed from an address corresponding to a point in time 5 ec back, and output to the calculation unit (20). In addition, in order to generate one signal (1) by digital processing, the electrocardiogram waveform (4) is amplified and then A/D converted, and the values of the digital signals input sequentially are compared before and after, and the subsequent signal is It is also possible to issue the trigger signal (1) when the value of is equal to or smaller than the value of the previous signal. The arithmetic unit (20) has a built-in register (21), which stores the estimated waveform (10) of the noise waves that has been successively averaged, and stores the newly input temporarily stored waveform (10). An average is performed with the electroencephalogram waveform (7) from the device (15), and the latest average value, that is, the estimated noise waveform (10) is always stored. Then, the estimated waveform (10) stored in this register (21) is subtracted from the brain wave waveform (7) stored in the temporary storage device (15) and output to the D/A converter (22). Actual electroencephalogram waveform (11) was measured using a pen recording recorder (23) connected to (22).
The online processing is performed with a delay of 2QQmsec. Note that the arithmetic unit (20) has a built-in clock (20)', and all timings such as the sampling strobe are determined by dividing the pulse from the clock (20>'').
”, the entire device operates in synchronization and synchronization, and the trigger signal (1) is 200m5ec.
To go back in time, the temporary storage device (1) at the time of the generation of the signal (1)
This is obtained by starting the address from -200 with the relative address of address 5), and this retrograde time can be changed and set by operating the keyboard (24) connected to the calculation section. In addition, a computer (2) for diagnosis etc. is connected to the calculation unit (20).
5), and processing such as diagnosis can be performed using the program and database built into the computer (25). Note that the calculation unit (20) can be performed by loading a program for the above procedure into a general-purpose computer, and if it is a high-speed computer, it can scan the brain waves from several channels of active electrodes and process them simultaneously. However, to cover an even larger number of channels, increase 1]
This is realized by integrating the circuits from the converter (13) to the D/A converter (22) and arranging a large number of them in parallel, which is preferable from the viewpoint of equipment operation and handling.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、脳電図及び心電図 第2図は、同期分割した波形 第3図は、逐次加算平均した波形 (雑波の推定波形) 第4図は、実脳波波形 第5図は、機器構成のブロック図 (1)ニドリガー信号 (4) :心電図波形 (7):脳波波形 (8):起点 くっ):セグメント (10):雑波の推定波形 (11):実脳波波形 第1図 ■ 9  第2図 第3図 第4図 第5図 Figure 1 shows electroencephalogram and electrocardiogram Figure 2 shows the synchronously divided waveform. Figure 3 shows the sequentially averaged waveform. (Estimated waveform of noise) Figure 4 shows the real brain wave waveform. Figure 5 is a block diagram of the equipment configuration. (1) Nidoriger signal (4): Electrocardiogram waveform (7): Brain wave waveform (8): Starting point Kuh): Segment (10): Estimated waveform of noise (11): Real brain wave waveform Figure 1 ■ 9 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1)目的の脳波が導出しやすい体表面位置に電極を設置
し、そこから心電図や脈拍起因の雑波混在の脳波波形(
7)を導出し、他方別途に得た心電図波形(4)からト
リガー信号(1)を生成させ、このトリガー信号(1)
から所定時間さかのぼった時点を起点(8)として上記
脳波波形(7)を個々のセグメント(9)に分割し、各
セグメント(9)を逐次加算平均して雑波の推定波形(
10)を得て、この推定波形(10)を起点(8)を同
期させながらもとの雑波混在の脳波波形(7)から差し
引いて実脳波波形(11)を抽出することを特徴とした
実脳波抽出法。
1) Place electrodes on the body surface where it is easy to derive the desired brain waves, and from there measure the brain wave waveform mixed with interference caused by the electrocardiogram and pulse (
7), generate a trigger signal (1) from the electrocardiogram waveform (4) obtained separately, and generate the trigger signal (1).
The electroencephalogram waveform (7) is divided into individual segments (9) using a point (8) a predetermined time back from
10) is obtained, and this estimated waveform (10) is subtracted from the original EEG waveform (7) mixed with interference while synchronizing the starting point (8) to extract the actual EEG waveform (11). Real brain wave extraction method.
JP60186441A 1985-08-23 1985-08-23 Real EEG extractor Expired - Lifetime JPH067824B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60186441A JPH067824B2 (en) 1985-08-23 1985-08-23 Real EEG extractor
US06/898,698 US4716907A (en) 1985-08-23 1986-08-21 Apparatus for detecting electroencephalogram and evoked response with monopolar derivation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60186441A JPH067824B2 (en) 1985-08-23 1985-08-23 Real EEG extractor

Publications (2)

Publication Number Publication Date
JPS6247340A true JPS6247340A (en) 1987-03-02
JPH067824B2 JPH067824B2 (en) 1994-02-02

Family

ID=16188500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60186441A Expired - Lifetime JPH067824B2 (en) 1985-08-23 1985-08-23 Real EEG extractor

Country Status (1)

Country Link
JP (1) JPH067824B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229307A (en) * 2007-03-21 2008-10-02 Korea Advanced Inst Of Sci Technol Method and instrument for measuring brain wave, and recording medium
JP2014514944A (en) * 2011-04-21 2014-06-26 エービー メディカ エス.ピー.エー. Transplant device capable of acquiring and monitoring bioelectric signals in the brain and performing skull simulation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229307A (en) * 2007-03-21 2008-10-02 Korea Advanced Inst Of Sci Technol Method and instrument for measuring brain wave, and recording medium
JP2012030111A (en) * 2007-03-21 2012-02-16 Samsung Electronics Co Ltd Method and instrument for measuring brain wave, and recording medium
JP2014514944A (en) * 2011-04-21 2014-06-26 エービー メディカ エス.ピー.エー. Transplant device capable of acquiring and monitoring bioelectric signals in the brain and performing skull simulation

Also Published As

Publication number Publication date
JPH067824B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
US3779237A (en) Method and system for automatic processing of physiological information in greater than real time
EP0267710B1 (en) System activity change indicator
US5025784A (en) Apparatus and method for detecting and processing impedance rheogram
US4462411A (en) Evoked response audiometer
EP0552009A1 (en) ECG analyser
EP0137705A2 (en) EEG signal analysis system
US3858034A (en) Electrocardiac computer
US4215697A (en) Aperiodic analysis system, as for the electroencephalogram
EP1089652A1 (en) Medical signal monitoring and display
US4883065A (en) Micropotential analyzer--a Holter system with comprehensive analysis capability for very low amplitude electrocardiographic signals and method
US4862897A (en) Electrocardiogram enhancement system and method
Vincent et al. Noninvasive recording of electrical activity in the PR segment in man.
Kerwin The effect of the frequency response of electrocardiographs on the form of electrocardiograms and vectorcardiograms
JPS6247340A (en) Actual brain wave extraction method
JP3033512B2 (en) EEG processing device
US4716907A (en) Apparatus for detecting electroencephalogram and evoked response with monopolar derivation method
US4323079A (en) Aperiodic analysis system, as for the electroencephalogram
Govreen-Segal et al. Real-time PC-based system for dynamic beat-to-beat QT-RR analysis
JPS6247341A (en) Actual induced potential extraction method
JP7254399B1 (en) Program, output device and data processing method
Van Den Akker et al. An on-line method for reliable detection of waveforms and subsequent estimation of events in physiological signals
JPS61137540A (en) Apparatus for fabricating and displaying frequency and amplitude distribution map of brain wave
JAIN et al. COST EFFECTIVE COMPUTERISED Ai'-rALYSIS OF BIOLOGICAL SIGNALS
Bason et al. Comparison of methods for obtaining a heart rate variability signal from 60× real time ECG data
Schlögl et al. Biosig-Standardization and quality control in biomedical signal processing using the biosig project

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term