JPS6247196Y2 - - Google Patents

Info

Publication number
JPS6247196Y2
JPS6247196Y2 JP12406083U JP12406083U JPS6247196Y2 JP S6247196 Y2 JPS6247196 Y2 JP S6247196Y2 JP 12406083 U JP12406083 U JP 12406083U JP 12406083 U JP12406083 U JP 12406083U JP S6247196 Y2 JPS6247196 Y2 JP S6247196Y2
Authority
JP
Japan
Prior art keywords
waveguide
heating section
spiral
heating
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12406083U
Other languages
Japanese (ja)
Other versions
JPS6032792U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12406083U priority Critical patent/JPS6032792U/en
Publication of JPS6032792U publication Critical patent/JPS6032792U/en
Application granted granted Critical
Publication of JPS6247196Y2 publication Critical patent/JPS6247196Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Description

【考案の詳細な説明】 この考案は導波管の加熱部にマイクロ波を供給
し、その加熱部に被加熱体を供給することによつ
て誘電加熱により被加熱物を加熱する誘電加熱装
置に関する。
[Detailed description of the invention] This invention relates to a dielectric heating device that heats an object by dielectric heating by supplying microwaves to a heating section of a waveguide and supplying an object to the heating section. .

マイクロ波の誘電加熱装置は家庭用の電子レン
ジに用いられ、また工業用には例えばゴムの加硫
などに広く用いられている。誘電加熱の原理は被
加熱物である誘電体の電気双極子が高周波電磁界
によつて反転を繰返すことにより衝突発熱する現
象であつて、これは外部より被加熱物を加熱する
のとは異なり、被加熱物の内部から加熱するもの
である。被加熱物の単位体積中に発する熱エネル
ギーは毎秒次の式で示される。
Microwave dielectric heating devices are used in household microwave ovens, and are also widely used in industrial applications, such as in the vulcanization of rubber. The principle of dielectric heating is that the electrical dipoles of the dielectric material that is the object to be heated collide and generate heat as they are repeatedly reversed by a high-frequency electromagnetic field.This is different from heating the object from the outside. , which heats the object from inside. The thermal energy emitted per unit volume of the heated object per second is expressed by the following formula.

P=5/9εtanδ××(V/d) ×10-12〔W/cm2〕 εは被加熱物の比誘電率、はマイクロ波の周
波数(Hz)、tanδは物質の誘電正接、Vは電極間
電圧(ボルト)、dは電極間間隔(cm) 工業用誘電加熱装置は一般に第1図に示すよう
に構成されている。即ちマイクロ波発生器11よ
りマイクロ波は導波管12を通じアイソレータ1
3で入出力が分離され、更に導波管12を通じて
加熱部14に供給される。加熱部14の終端を短
絡する場合は加熱部14の入力側に整合器15を
設ける必要があり、短絡しない場合は水負荷16
に余つた電磁波を吸収させる。この場合は整合器
15は不用となる。被加熱物は加熱部14内でバ
ツチ的に処理される場合やベルトコンベヤのよう
に連続的に加熱部内を通過して処理する場合があ
る。
P=5/9εtanδ××(V/d) 2 ×10 -12 [W/cm 2 ] ε is the dielectric constant of the heated object, is the microwave frequency (Hz), tanδ is the dielectric loss tangent of the material, V is the voltage between the electrodes (volts), and d is the distance between the electrodes (cm).An industrial dielectric heating device is generally constructed as shown in FIG. That is, the microwave is transmitted from the microwave generator 11 to the isolator 1 through the waveguide 12.
The input and output are separated at 3 and further supplied to the heating section 14 through the waveguide 12. When the terminal end of the heating section 14 is short-circuited, it is necessary to provide a matching device 15 on the input side of the heating section 14, and when the terminal end of the heating section 14 is not short-circuited, the water load 16
absorbs leftover electromagnetic waves. In this case, the matching box 15 becomes unnecessary. The objects to be heated may be processed in batches within the heating section 14, or may be processed by passing through the heating section continuously like a belt conveyor.

加熱部14は方形波導波管構造とされ、例えば
第2図に示すように方形導波管の長辺aは短辺b
の2倍に選定され、使用波長λに対しては長辺a
はλとλ/2との間に選定され、短辺bはλ/2より小
と される。基本波TE10モードで励振される。この
場合第2図の曲線17に示すように管軸と直角な
面内の電界分布は長辺aの中央部で最大となる。
従つて例えば第3図Aに示すように方形導波管の
加熱部14内をその管軸に沿つて長辺aの中央部
位置で被加熱体18を移動させて誘電加熱を行
い、或は第3図Bに示すように加熱部14を長辺
の中央部を管軸と直角方向に被加熱物18を通過
させ、加熱部14内を通る際に加熱が行われるよ
うにされる。
The heating section 14 has a square wave waveguide structure, and for example, as shown in FIG. 2, the long side a of the square waveguide is connected to the short side b.
, and for the used wavelength λ, the long side a
is selected between λ and λ/2, and the short side b is smaller than λ/2. Excited in fundamental TE 10 mode. In this case, as shown by a curve 17 in FIG. 2, the electric field distribution in a plane perpendicular to the tube axis is maximum at the center of the long side a.
Therefore, for example, as shown in FIG. 3A, the object to be heated 18 is moved inside the heating section 14 of the rectangular waveguide along its tube axis at the central position of the long side a to perform dielectric heating, or As shown in FIG. 3B, the object to be heated 18 is passed through the heating section 14 through the central part of the long side in a direction perpendicular to the tube axis, so that the object 18 is heated as it passes through the inside of the heating section 14.

導波管内の電界強度の高い点を何回も被加熱物
が通過するように例えば第4図に示すように導波
管を繰返し折返して加熱部14とし、被加熱物1
4を管軸と直角に各折返された導波管を通過する
ようにしたものもある。また第5図に示すように
導波管14a乃至14bを順次隣接して並べ、こ
れら導波管の長手方向にそれぞれ仕切板19を管
軸と直角に一定間隔で配列し、これら導波管14
a,14b,14c,14dに隣接するものを矢
印で示すように電磁波を互に逆方向に伝搬させ、
このような各櫛形導波管により管内進行波の節と
腹との位置を固定し、見かけ上管内波長を短縮
し、つまり電界強度の強い部分を近接して配列
し、このような櫛形導波管の管軸と直角方向に被
加熱物18を加熱部14内に通過させるものもあ
る。
For example, as shown in FIG. 4, the waveguide is repeatedly folded to form a heating section 14 so that the object to be heated passes through points with high electric field strength within the waveguide many times.
There is also one in which the waveguide 4 passes through each folded waveguide at right angles to the tube axis. Further, as shown in FIG. 5, the waveguides 14a to 14b are successively arranged adjacent to each other, and partition plates 19 are arranged in the longitudinal direction of these waveguides at regular intervals perpendicular to the tube axis.
Electromagnetic waves are propagated in opposite directions to those adjacent to a, 14b, 14c, and 14d as shown by arrows,
These comb-shaped waveguides fix the positions of the nodes and antinodes of the traveling wave in the tube, and the apparent wavelength in the tube is shortened, that is, the parts with strong electric field strength are arranged close together. There is also one in which the object to be heated 18 is passed through the heating section 14 in a direction perpendicular to the tube axis.

第4図に示した加熱部14はその導波管の折曲
げ部において損失が比較的大きく、従つて導波管
の長さを長くすることができなかつた。
The heating section 14 shown in FIG. 4 has a relatively large loss at the bent portion of the waveguide, and therefore the length of the waveguide cannot be increased.

被加熱物18のtanδが小さい時は、被加熱物
を加熱するとtanδが大きくなることを利用し
て、例えば第6図に示すように加熱部14を上下
からフード21,22で挾み、その下側フード2
1より熱風や加温窒素ガスなどの加熱気体23を
加熱部14内に送り、上側フード22より加熱部
14を通過した気体23を集め、これを加熱して
再び下側フード21へ供給するように循環させて
被加熱部18の温度を上げることがある。加熱部
14には上下方向に熱風を通す小さな孔を多数開
けてある。このような加熱を行う場合は加熱部1
4内において被加熱物の加熱状態を外部から見る
ことはできない。
When the tan δ of the object to be heated 18 is small, taking advantage of the fact that tan δ increases when the object is heated, for example, as shown in FIG. lower hood 2
1, a heated gas 23 such as hot air or heated nitrogen gas is sent into the heating section 14, and the upper hood 22 collects the gas 23 that has passed through the heating section 14, heats it, and supplies it again to the lower hood 21. The temperature of the heated portion 18 may be increased by circulating the heated portion 18. The heating section 14 has many small holes through which hot air passes in the vertical direction. When performing such heating, heating section 1
The heated state of the object to be heated cannot be seen from the outside.

この考案の目的は比較的小さな設置場所に設け
ることができ、しかも導波管の長さを長くするこ
とができ、加熱を効率的に行うことができる誘電
加熱装置を提供することにある。
The purpose of this invention is to provide a dielectric heating device that can be installed in a relatively small installation space, can increase the length of the waveguide, and can heat efficiently.

第7図及び第8図はこの考案による誘電加熱装
置の実施例を示し、定在波形に適用した場合で、
その加熱部14は方形導波管14aが2段以上の
螺旋状に折曲げられて構成されている。この導波
管14aの短辺bは螺旋の中心軸と平行とされ、
かつ導波管14aに対する励振モードはTE10
され、従つて磁界伝搬面は螺旋の中心軸心に対し
てほぼ垂直とされている。例えば導波管14aの
上端24よりマイクロ波が供給励振され、導波管
14aの下端25は図に示してないが短絡板で塞
がれている。
FIGS. 7 and 8 show an embodiment of the dielectric heating device according to this invention, when applied to a standing waveform.
The heating section 14 is constructed by bending a rectangular waveguide 14a into a spiral shape of two or more stages. The short side b of this waveguide 14a is parallel to the central axis of the spiral,
The excitation mode for the waveguide 14a is TE 10 , and therefore the magnetic field propagation surface is substantially perpendicular to the central axis of the helix. For example, microwaves are supplied and excited from the upper end 24 of the waveguide 14a, and the lower end 25 of the waveguide 14a is closed with a shorting plate (not shown).

導波管14aの長辺aのほぼ中央位置において
螺旋の中心軸とほぼ平行に被加熱物が通る通路2
6が構成される。通路26は例えば導波管14a
の長辺のほぼ中央位置において導波管14aの管
軸に沿うスリツトが形成され、そのスリツトが螺
旋の軸心と平行した線上に順次相対向して設けら
れ、これらスリツトにより上下方向の通路26が
構成される。螺旋の導波管14aの管軸上の半径
をRとする時、2πRが管内波長λの1/2の整数
倍になるようにされ、従つて螺旋の各段に発生し
ている定在波の節と腹の各位置が上下方向におい
て一致するようにされる。その各腹の位置に通路
26をそれぞれ形成することによつて強い加熱が
可能となる。しかし強い加熱を必要としない場合
においては螺旋の半径Rを前述のように選ぶ必要
はない。通路26としては螺旋の周方向に沿つて
全周にわたつて形成してもよい。この場合は加熱
部14は管軸にそつて両側に分割した導波管の螺
旋状の内側部分と外側部分とが同心的に配された
構成となる。
A passage 2 through which the object to be heated passes approximately parallel to the central axis of the spiral at approximately the center of the long side a of the waveguide 14a.
6 is composed. The passage 26 is, for example, a waveguide 14a.
A slit along the tube axis of the waveguide 14a is formed at approximately the center of the long side, and the slits are sequentially provided facing each other on a line parallel to the axis of the spiral, and these slits form a passage 26 in the vertical direction. is configured. When the radius on the tube axis of the spiral waveguide 14a is R, 2πR is set to be an integral multiple of 1/2 of the tube wavelength λ, and therefore the standing wave generated at each stage of the spiral The positions of the nodes and antinodes of are made to match in the vertical direction. Strong heating is possible by forming passages 26 at each antinode position. However, if strong heating is not required, it is not necessary to select the radius R of the spiral as described above. The passage 26 may be formed along the entire circumference of the spiral. In this case, the heating section 14 has a structure in which a spiral inner part and an outer part of a waveguide divided into both sides along the tube axis are arranged concentrically.

必要に応じて第7図に示すように螺旋状導波管
14aの螺旋の各段の周面に螺旋軸心と平行した
スリツト状ののぞき窓27を形成することができ
る。このようなのぞき窓27は螺旋の周面の任意
の個所に設けることができ、また一つのみならず
複数個所設けてもよい。この各のぞき窓27に対
し、λ/4スタブを外側に付けてのぞき窓27から
の電磁波が漏れないようにすることができる。加
熱物を加熱気体によつて加熱する場合は例えば螺
旋状導波管14aの下端の周面に1/4波長突出し
た送風口28を設け、この送風口28より熱風な
どを導波管14a内に吹込むようにすることがで
きる。
If necessary, as shown in FIG. 7, a slit-shaped observation window 27 parallel to the helical axis can be formed on the circumferential surface of each spiral stage of the helical waveguide 14a. Such a peephole 27 can be provided at any location on the circumferential surface of the spiral, and may be provided not only at one but at a plurality of locations. A λ/4 stub can be attached to the outside of each peephole 27 to prevent electromagnetic waves from leaking from the peephole 27. When heating an object with heated gas, for example, an air outlet 28 projecting by a quarter wavelength is provided on the circumferential surface of the lower end of the spiral waveguide 14a, and hot air or the like is directed from this air outlet 28 into the waveguide 14a. It can be made to infuse into the air.

この螺旋状導波管においても櫛形構成、つまり
進行波形とすることができる。例えば第9図に示
すように螺旋状導波管14aに対し、その管軸を
直角方向、つまり螺旋軸心に対して放射方向の仕
切り板19を管軸方向に沿つて配列形成する。各
仕切り板19が螺旋軸心方向において対応するも
のが同一線上にあるようにされる。つまり角度的
に同一角度位置に仕切り板19を設けることによ
つて櫛形導波管の加熱部14が構成される。この
ように電磁波を進行波形として用いる場合におい
て外部加熱を行うには例えば螺旋状導波管14a
の内周面にスリツト状送風孔29を各仕切り板1
9の間において形成し、これらと対応してスリツ
ト状排気孔31を螺旋状導波管14aの外周面に
形成し、導波管14aの螺旋の内周筒より送風孔
29を通じて導波管14a内に熱風を送り、排気
孔31より出た熱風を、加熱部14の外側に同心
的に設けた筒状の回収筒32を通して回収し、加
熱して内周筒に再び供給するようにすればよい。
This spiral waveguide can also have a comb-shaped configuration, that is, a traveling waveform. For example, as shown in FIG. 9, partition plates 19 are arranged in a direction perpendicular to the tube axis of the helical waveguide 14a, that is, in a radial direction with respect to the helical axis, along the tube axis. The corresponding partition plates 19 are arranged on the same line in the direction of the helical axis. That is, by providing the partition plates 19 at the same angular position, the heating section 14 of the comb-shaped waveguide is constructed. In order to perform external heating when electromagnetic waves are used as traveling waveforms, for example, a spiral waveguide 14a is used.
A slit-shaped ventilation hole 29 is provided on the inner peripheral surface of each partition plate 1.
A slit-like exhaust hole 31 is formed in the outer peripheral surface of the spiral waveguide 14a in correspondence with these, and a slit-like exhaust hole 31 is formed in the outer circumferential surface of the spiral waveguide 14a. If hot air is sent inside, the hot air coming out of the exhaust hole 31 is collected through a cylindrical recovery cylinder 32 provided concentrically outside the heating part 14, heated, and then supplied to the inner peripheral cylinder again. good.

上述した加熱部14の作成は例えば第10図に
おいて螺旋状の導波管14aの螺旋の内周壁33
と螺旋壁34とを一体として銅合金或はアルミニ
ユウムなどの鋳物を機械加工して作り、これに対
してその外側に筒状の外周壁35を挿通すればよ
い。またこの第10図に示すように外側の筒状外
周壁の一部を、軸心と平行な軸39を中心として
開閉自在の扉部36として作ることによつて、加
熱部14の使用前の準備や清掃などを容易に行う
ことができる。また分解組立てのために例えば第
11図に示すように電解強度が最大な部分をつら
ねた円筒面37を境界として内外の二つの筒状部
に分け、或は軸心を含む垂直面38により左右に
分けるようにしてもよい。導波管14を折曲げて
螺旋状にするのはその一段を円形状にする場合に
限らず、楕円状、或るいは方形状に折曲げた螺旋
状にしてもよい。またこのような螺旋状に折曲げ
た導波管の二つを同軸心的に二重、更に多重に設
けてもよい。
The above-mentioned heating section 14 is created by, for example, the spiral inner peripheral wall 33 of the spiral waveguide 14a in FIG.
The spiral wall 34 and the spiral wall 34 may be integrally made by machining a casting made of copper alloy or aluminum, and the cylindrical outer circumferential wall 35 may be inserted into the outside thereof. Furthermore, as shown in FIG. 10, by forming a part of the outer cylindrical peripheral wall as a door portion 36 that can be opened and closed about an axis 39 parallel to the axis, the heating section 14 can be opened and closed before use. Preparation and cleaning can be done easily. In addition, for disassembly and assembly, for example, as shown in FIG. 11, the cylindrical surface 37 that connects the area with the maximum electrolytic strength is divided into two inner and outer cylindrical sections, or the left and right sections are separated by a vertical surface 38 including the axis. It may be divided into The waveguide 14 may be bent into a spiral shape not only when one stage thereof is circular, but may also be bent into an elliptical or rectangular spiral shape. Further, two of such spirally bent waveguides may be provided coaxially in double or even in multiples.

以上述べたようにこの考案による誘電加熱装置
においては導波管14aを螺旋状に折曲げて構成
しているため、これに沿つて伝搬するマイクロ波
の損失が少なく、導波管14aの全長を長くする
ことができ、また導波管14aが積み重ねるよう
に折曲げられているため設置場所が狭くて済み、
特に上下方向に被加熱物を通して加熱するような
場合に便利であり、長尺の帯,反物類,紙,テー
プ,海苔或は糸や紐などの連続加熱に便利であ
る。
As mentioned above, in the dielectric heating device according to this invention, the waveguide 14a is bent into a spiral shape, so there is little loss of microwaves propagating along this, and the entire length of the waveguide 14a is reduced. Since the waveguides 14a are bent so as to be stacked, the installation space is small.
It is particularly useful when heating objects to be heated by passing them in the vertical direction, and is useful for continuous heating of long bands, cloth, paper, tape, seaweed, threads, strings, etc.

第7図に示した定在波形の場合は導波管14a
の管軸に沿つて熱風を吹込んで加熱することがで
き、その加熱が容易であり、しかもその外周面の
任意の位置から内部を観察することができる。
In the case of the standing waveform shown in FIG. 7, the waveguide 14a
It is easy to heat the tube by blowing hot air along the axis of the tube, and the inside can be observed from any position on the outer circumferential surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は工業用誘電加熱装置の一般的構成を示
す図、第2図はその加熱部の最も単純な形におけ
る電界分布を示す図、第3図は加熱部と被加熱物
との関係を示す図、第4図及び第5図はそれぞれ
従来の加熱部を示す図、第6図は従来の加熱部に
外部加熱を加えた状態を示す正面図、第7図はこ
の考案による誘電加熱装置の加熱部の一例を示す
斜視図、第8図は第7図の平面図、第9図はこの
考案による誘電加熱装置の加熱部の他の例を示す
斜視図、第10図は加熱部の更に他の例を示す斜
視図、第11図は加熱部を二つ割りとする例を示
す斜視図である。 11……マイクロ波発生器、12……導波管、
14……加熱部、14a……螺旋状に折曲げられ
た導波管、24……マイクロ波供給端、26……
被加熱物の通路、27……観察用窓、28……熱
風送風口。
Figure 1 shows the general configuration of an industrial dielectric heating device, Figure 2 shows the electric field distribution in the simplest form of the heating part, and Figure 3 shows the relationship between the heating part and the object to be heated. 4 and 5 are views showing a conventional heating section, FIG. 6 is a front view showing a state in which external heating is applied to the conventional heating section, and FIG. 7 is a dielectric heating device according to this invention. 8 is a plan view of FIG. 7, FIG. 9 is a perspective view of another example of the heating section of the dielectric heating device according to this invention, and FIG. 10 is a perspective view of the heating section of the dielectric heating device according to the invention. FIG. 11 is a perspective view showing still another example, and FIG. 11 is a perspective view showing an example in which the heating section is divided into two. 11...Microwave generator, 12...Waveguide,
14...Heating part, 14a...Spirally bent waveguide, 24...Microwave supply end, 26...
Passage of the object to be heated, 27...observation window, 28...hot air outlet.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 導波管の加熱部にマイクロ波を供給し、その加
熱部に被加熱物を通過させてその被加熱物を誘電
加熱する誘電加熱装置において、方形状導波管が
その短辺が中心軸とほぼ平行した2段以上の螺旋
状に折曲げられて前記加熱部が構成され、その加
熱部はマイクロ波によつてTE10モードで励振さ
れ、かつマイクロ波の磁界伝搬面は前記螺旋の中
心軸に対しほぼ垂直とされ、前記被加熱物を前記
導波管の長辺のほぼ中央位置において前記螺旋の
中心軸とほぼ平行に加熱部内を通過させる通路が
形成されていることを特徴とする誘電加熱装置。
In a dielectric heating device that supplies microwaves to a heating section of a waveguide and passes an object through the heating section to dielectrically heat the object, the rectangular waveguide has its short side aligned with the central axis. The heating section is formed by bending two or more substantially parallel steps into a spiral, and the heating section is excited by microwaves in the TE 10 mode, and the microwave magnetic field propagation surface is aligned with the central axis of the spiral. A dielectric device characterized in that a passage is formed that is substantially perpendicular to the waveguide, and allows the object to be heated to pass through the heating section substantially parallel to the central axis of the spiral at a substantially central position of the long side of the waveguide. heating device.
JP12406083U 1983-08-10 1983-08-10 dielectric heating device Granted JPS6032792U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12406083U JPS6032792U (en) 1983-08-10 1983-08-10 dielectric heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12406083U JPS6032792U (en) 1983-08-10 1983-08-10 dielectric heating device

Publications (2)

Publication Number Publication Date
JPS6032792U JPS6032792U (en) 1985-03-06
JPS6247196Y2 true JPS6247196Y2 (en) 1987-12-25

Family

ID=30282951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12406083U Granted JPS6032792U (en) 1983-08-10 1983-08-10 dielectric heating device

Country Status (1)

Country Link
JP (1) JPS6032792U (en)

Also Published As

Publication number Publication date
JPS6032792U (en) 1985-03-06

Similar Documents

Publication Publication Date Title
US3560694A (en) Microwave applicator employing flat multimode cavity for treating webs
US5389153A (en) Plasma processing system using surface wave plasma generating apparatus and method
US2467230A (en) Ultra high frequency dielectric heater
KR20030031112A (en) Improved dielectric heating using inductive coupling
US3221132A (en) Non-resonant oven cavity and resonant antenna system for microwave heating oven
US3819900A (en) Waveguide filter for microwave heating apparatus
US2627571A (en) Choke joint high-frequency heater
US3715551A (en) Twisted waveguide applicator
US4463239A (en) Rotating slot antenna arrangement for microwave oven
US3673370A (en) Microwave applicator system with cylindrical resonant cavity
US4496814A (en) Microwave excitation system
US4006338A (en) Microwave heating apparatus with improved multiple couplers and solid state power source
JP2004529480A (en) Circulating microwave heating device
CA1263452A (en) Rotating slot antenna arrangement for microwave oven
US5828040A (en) Rectangular microwave heating applicator with hybrid modes
JPS6247196Y2 (en)
US3471672A (en) Slotted waveguide applicator
US7528353B2 (en) Microwave heating device
US3758737A (en) Waveguide filter for microwave heating apparatus
US2640142A (en) Microwave heating
CA1113547A (en) Primary choke system for microwave oven
US3688068A (en) Continuous microwave heating or cooking system and method
JPS6247197Y2 (en)
US2937259A (en) Ultra-high frequency heating apparatus
US3838368A (en) Waveguide filter for microwave heating apparatus