JPS6247101B2 - - Google Patents

Info

Publication number
JPS6247101B2
JPS6247101B2 JP140882A JP140882A JPS6247101B2 JP S6247101 B2 JPS6247101 B2 JP S6247101B2 JP 140882 A JP140882 A JP 140882A JP 140882 A JP140882 A JP 140882A JP S6247101 B2 JPS6247101 B2 JP S6247101B2
Authority
JP
Japan
Prior art keywords
slab
casting
mold
receiving
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP140882A
Other languages
Japanese (ja)
Other versions
JPS58119443A (en
Inventor
Katsuhiko Matsuoka
Osamu Tsubakihara
Hiroshi Yamakawa
Wataru Oohashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP140882A priority Critical patent/JPS58119443A/en
Publication of JPS58119443A publication Critical patent/JPS58119443A/en
Publication of JPS6247101B2 publication Critical patent/JPS6247101B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 本発明は湾曲型連続鋳造設備における鋼の連続
鋳造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous casting method for steel in curved continuous casting equipment.

周知の如く連続鋳造においては一般にタンデイ
ツシユに貯留された溶鋼を鋳型内に注入し、所定
の断面形状を有した鋳片とし、それを下方へ連続
的に引抜き、前記鋳片の芯部まで凝固せしめた
後、設定長さに切断することによつて鋼の製造が
行われる。前記鋳片は連続鋳造設備を引抜かれる
間に表面より順次凝固し、連続鋳造設備(以下、
連鋳機と云う)の機端までにその芯部まで完全に
凝固するよう機長が設定され、かつ、引抜速度お
よび冷却強度等が制御されている。
As is well known, in continuous casting, molten steel stored in a tundish is generally injected into a mold to form a slab with a predetermined cross-sectional shape, which is then continuously pulled downward and solidified to the core of the slab. After that, the steel is manufactured by cutting it to a predetermined length. While the slab is being pulled out of the continuous casting equipment, it solidifies sequentially from the surface, and is transferred to the continuous casting equipment (hereinafter referred to as
The machine length is set so that the core is completely solidified by the end of the continuous casting machine, and the drawing speed, cooling intensity, etc. are controlled.

ところで前記鋳型内への溶鋼の注入、即ち鋳造
を終了するにあたつては、鋳片のトツプ部(本発
明において鋳片トツプ部とは、鋳造終了時点にお
ける鋳型から引抜かれる鋳片の尻端部を云う)を
確実に凝固させて引抜く必要がある。つまり前記
鋳片トツプ部の凝固が不充分な状態で鋳片の引抜
きを行つた場合、鋳片表面に生成された凝固殻が
連鋳機内で破断し溶鋼の流出及びブリードを生
じ、設備損傷や水蒸気爆発を生じる事態が発生し
設備上および安全上に大きな問題となる。而して
従来の連続鋳造においては鋳造末期に際して鋳造
速度を大巾に低下させ、極端な場合には、引抜き
を停止し鋳片トツプ部を充分に凝固させてから
徐々に引抜くことが一般的であつた。このため前
記鋳造末期においては生産性が著しく低下し、又
連鋳機内に位置する鋳片の温度低下も当然のこと
ながら著しいものであつた。前記問題を解決する
ために従来、例えば金属屑や鉄板等の冷材を鋳型
内に投入する方法が提案され、採用されていた。
しかしながら該方法においても鋳片トツプ部が確
実に凝固するまでは鋳型より引抜くことはできず
前述の引抜速度を大巾に低下させる時間の若干の
短縮は行えるものゝ前記引抜パターンを変えるこ
とはできず満足すべき効果は得られていなかつ
た。
By the way, when pouring molten steel into the mold, that is, when finishing the casting, the top part of the slab (in the present invention, the top part of the slab refers to the bottom end of the slab that is pulled out from the mold at the end of casting). It is necessary to reliably solidify the material before pulling it out. In other words, if the slab is pulled out when the top of the slab is insufficiently solidified, the solidified shell formed on the slab surface will break in the continuous caster, causing molten steel to flow out and bleed, resulting in equipment damage and damage. A situation that causes a steam explosion may occur, posing a major problem in terms of equipment and safety. Therefore, in conventional continuous casting, the casting speed is greatly reduced toward the end of casting, and in extreme cases, it is common practice to stop drawing and allow the top of the slab to sufficiently solidify before gradually pulling it out. It was hot. For this reason, in the final stage of casting, the productivity was significantly reduced, and the temperature of the slab located in the continuous casting machine was naturally also significantly reduced. In order to solve the above-mentioned problem, a method has been proposed and adopted in which a cold material such as metal scraps or iron plates is charged into the mold.
However, even in this method, the slab cannot be pulled out from the mold until the top part of the slab is solidified, and although it is possible to shorten the time required to drastically reduce the aforementioned drawing speed, it is not possible to change the drawing pattern. Therefore, no satisfactory effect was obtained.

本発明は前記鋳造末期における問題点の抜本的
な解決を計るため種々実験を繰返した結果発明さ
れたものであつて、その要旨は、鋳造終了時にあ
たり鋳片トツプ部に流出溶融物受金具を装着せし
め引抜きを行なうことを特徴とする鋼の湾曲型連
続鋳造方法に関するものである。
The present invention was developed as a result of repeated various experiments in order to fundamentally solve the problems at the final stage of casting. This invention relates to a method for continuous casting of curved steel, which is characterized by mounting and drawing.

以下実施例に基づき本発明を詳述する。 The present invention will be described in detail below based on Examples.

第1図は周知の一般的な連鋳機の断面構造図で
ある。図において1は溶鋼2を貯留する鍋であり
3はタンデイツシユである。タンデイツシユ3に
は注入ノズル4が装着されており該注入ノズル4
を介してタンデイツシユ3内の溶鋼2は鋳型5に
注入される。6は鋳型5より引抜かれた鋳片、7
は鋳片6を冷却するための冷却装置であり、8は
鋳片6を連続的に引き抜くと共に鋳片6を水平に
矯正せしめつゝ搬送するガイドロール群、9は鋳
片6を設定長さに切断する切断装置、10は設定
長さに切断された鋼をそれぞれ示す。而して通常
の連続鋳造作業においてはタンデイツシユ3の溶
鋼2を注入ノズル4を介して鋳型5に注入するこ
とにより所定の断面形状を有する鋳片6とすると
共に該鋳片6を連続的に引抜き連鋳機の機端近傍
に設けられた切断装置9で設定長さに切断して鋼
10の製造が行われる。ところがタンデイツシユ
3内溶鋼2の残量が所定量以下となるかあるいは
零となると例えばスライデイングノズル30が閉
鎖され鋳造が終了する。第2図および第3図は、
前記鋳造終了時点における本発明の基本的説明を
行うためのものであり注入ノズル4が退避した後
の鋳型近傍を示す斜視図(第2図)および横断面
図(第3図)である。即ち、本発明においては前
記鋳造が終了すると、まず鋳型5内に位置する鋳
片トツプ部6a(破線で示す)に流出溶融物受金
具(以下受金具と云う)11を装着する。受金具
11は、例えば第2図および第3図の実施例にお
いては受皿状に形成された受部材12、未凝固あ
るいは半凝固状態の鋳片トツプ部6aに挿入固定
される固定部材13、前記受部材12と固定部材
13を連結する連結部材14とから構成されてい
る。而して受金具11は固定部材13を鋳片トツ
プ部6aに差し込むように挿入せしめることによ
つて装着される。固定部材13は冷材としての機
能をも発揮し鋳片トツプ部6aの凝固速度を促進
し、これによつて受金具11を強固に保持する。
この受金具11の装着にあたつては前記受部材1
2が湾曲する鋳片6の外側の面(以下F面と云
う)に位置するように装着される。さて鋳片トツ
プ部6aに受金具11の装着が終つたら通常の連
続鋳造作業と同様に鋳片6の引抜きを行なう。即
ち、本発明においては鋳片トツプ部6aに受金具
11を装着した状態で鋳片6の引抜きを行なう。
ところで本発明において鋳片トツプ部6aは鋳型
5内で冷却された鋳型壁面と接する外側および固
定部材13と接する部分より順次凝固するが充分
な凝固を完了せず未凝固部分を残したまゝで鋳型
5より引抜かれる状態も多々生ずる。特に鋳片6
の側部に形成される凝固殻6a1(第4図参照)は
冷却された鋳型壁面との接触で充分な強度を有す
る厚みとなるが頂面に形成される凝固殻6a2はパ
ウダーやスラグで覆われることから極めて薄い場
合が多い。一方湾曲型の連鋳機では前述の如く鋳
型5を出た鋳片6を垂直方向から徐々に湾曲させ
最終的に水平方向になるよう矯正しつゝ引抜かれ
る。
FIG. 1 is a cross-sectional structural diagram of a well-known general continuous casting machine. In the figure, 1 is a pot for storing molten steel 2, and 3 is a tundish. An injection nozzle 4 is attached to the tundish 3, and the injection nozzle 4
The molten steel 2 in the tundish 3 is injected into the mold 5 through the tundish 3. 6 is a slab pulled out from the mold 5; 7
is a cooling device for cooling the slab 6; 8 is a group of guide rolls that continuously pulls out the slab 6, straightens the slab 6 horizontally, and conveys it; 9 is a group of guide rolls that transport the slab 6 to a set length; 10 indicates the steel cut to a predetermined length. In normal continuous casting operations, the molten steel 2 from the tundish 3 is injected into the mold 5 through the injection nozzle 4 to form a slab 6 having a predetermined cross-sectional shape, and the slab 6 is continuously drawn out. The steel 10 is manufactured by cutting the steel 10 to a set length using a cutting device 9 provided near the end of the continuous casting machine. However, when the remaining amount of molten steel 2 in the tundish 3 becomes less than a predetermined amount or becomes zero, for example, the sliding nozzle 30 is closed and casting is completed. Figures 2 and 3 are
FIG. 2 is a perspective view (FIG. 2) and a cross-sectional view (FIG. 3) showing the vicinity of the mold after the injection nozzle 4 has been retracted, and are intended to provide a basic explanation of the present invention at the time of completion of the casting. That is, in the present invention, when the casting is completed, first, an outflow melt receiving fitting (hereinafter referred to as a receiving fitting) 11 is attached to the slab top portion 6a (indicated by a broken line) located in the mold 5. For example, in the embodiment shown in FIGS. 2 and 3, the receiving fitting 11 includes a receiving member 12 formed in the shape of a saucer, a fixing member 13 inserted and fixed into the top portion 6a of the slab in an unsolidified or semi-solidified state, and the above-mentioned. It is composed of a connecting member 14 that connects a receiving member 12 and a fixing member 13. The receiving fitting 11 is attached by inserting the fixing member 13 into the slab top portion 6a. The fixing member 13 also functions as a cold material and accelerates the solidification rate of the slab top portion 6a, thereby firmly holding the receiving fitting 11.
When installing this receiving metal fitting 11, the receiving member 1
2 is mounted so that it is located on the outer surface (hereinafter referred to as F surface) of the curved slab 6. Now, after the fitting 11 has been attached to the slab top portion 6a, the slab 6 is pulled out in the same manner as in normal continuous casting work. That is, in the present invention, the slab 6 is pulled out with the receiving metal fitting 11 attached to the slab top portion 6a.
By the way, in the present invention, the top part 6a of the slab is solidified in the mold 5 from the outer side that contacts the cooled mold wall surface and the part that contacts the fixing member 13, but sufficient solidification is not completed and the mold is left with an unsolidified part. There are many situations in which it is pulled out from 5. Especially slab 6
The solidified shell 6a 1 (see Fig. 4) formed on the sides of the mold becomes thick enough to have sufficient strength when it comes into contact with the cooled mold wall, but the solidified shell 6a 2 formed on the top surface is filled with powder and slag. It is often extremely thin because it is covered with On the other hand, in a curved type continuous casting machine, as described above, the slab 6 that has come out of the mold 5 is gradually curved from the vertical direction and finally straightened to be horizontal, and then pulled out.

前記鋳片トツプ部6aの頂面凝固殻6a2は鋳型
5を出てほぼ垂直方向へ引抜かれる間に凝固が促
進し、その厚みが厚くなる。しかしながら鋳片ト
ツプ部6aが第4図に示す如く湾曲部に達すると
頂面6a3が傾斜し、鋳片内部の未凝固の溶鋼2に
よる静圧が凝固殻6a2に加わるようになる。而し
て前記凝固殻6a2の厚みが薄く強度の弱い部分が
あるとそれが破断し未凝固の溶鋼つまり本発明で
称する溶融物100が流出する現象を生ずる。本
発明はかかる流出した溶融物100を前述の受金
具11に受容せしめることによつて引抜き速度を
低下させることなく連続鋳造作業の続行を可能な
らしめたものである。
The top solidified shell 6a2 of the slab top portion 6a accelerates solidification while being pulled out from the mold 5 in a substantially vertical direction, and its thickness increases. However, when the slab top portion 6a reaches a curved portion as shown in FIG. 4, the top surface 6a3 is inclined, and static pressure from the unsolidified molten steel 2 inside the slab is applied to the solidified shell 6a2 . If there is a portion of the solidified shell 6a2 that is thin and weak in strength, it will break, causing a phenomenon in which unsolidified molten steel, that is, the molten material 100 referred to in the present invention, flows out. The present invention makes it possible to continue the continuous casting operation without reducing the drawing speed by receiving such flowed melt 100 in the aforementioned receiving fitting 11.

次に本発明に基づき250mm厚み×950mm巾の鋳片
6を製造した具体的な実施例について説明する。
Next, a specific example in which a slab 6 having a thickness of 250 mm and a width of 950 mm was manufactured based on the present invention will be described.

本実施例において受金具11は前記第2図およ
び第3図に示す構成のものを用いた。この受金具
11の固定部材13としては厚9mm、巾30mm、長
さ250mmの普通鋼板、6枚で構成し鋳片厚み方向
のほぼ中心部に挿入固定されるよう連結部材14
のほぼ中央部に固着した。
In this embodiment, the metal holder 11 having the structure shown in FIGS. 2 and 3 was used. The fixing member 13 of this receiving bracket 11 is composed of six ordinary steel plates with a thickness of 9 mm, a width of 30 mm, and a length of 250 mm.
It was stuck almost in the center.

連結部材14は直径16mm、長さ190mmの丸棒で
構成し、その後端に受部材12が固着されてい
る。受部材12は厚5mmの鉄板で鍔の高さh50
mm、長さl200mm、巾w950〜1250mmの受皿状に形
成されている。受部材12の底面には2〜5mmφ
の水抜穴15が適宜数設けられている。この水抜
穴15は受部材12に溶融物100が流れ込む前
に散水によつて貯留される冷却水を効率的に排出
せしめると共に粘性の高い溶融物100の流出を
防止し、溶融物100の流出による水蒸気爆発を
防止でき効果的である。第5図は本実施例におけ
る鋳造末期における引抜速度の変化(以下、引抜
速度パターンと云う)を示す線図である。該第5
図の実線aが本発明に基づく引抜速度パターンを
示すもので、1.6m/分の引抜速度で鋳造作業を
行つていた状態において鋳造末期を迎えた実施例
である。第5図においてxが鋳造終了時点であ
り、本実施例では前記鋳造終了時点と同時に引抜
速度を0.2m/分まで低下させ、この低速状態で
前述した受金具11を鋳片トツプ部6aに装着し
た。前記装着に要する時間は10〜20秒程度であり
該装着が終ると直ちに引抜速度を1.6m/分まで
上昇し、通常の鋳造作業と同様に引抜きを行なつ
た。尚、本実施例においては前記鋳造終了に先立
つて鋳造終了時点の45秒前より引抜速度を低下さ
せ1.0m/分に制御した状態で鋳造を終了させる
ことによりスラグの分離を確実に行わしめると共
に前記0.2m/分の極めて低速度までの速度ダウ
ン制御をスムーズに行わしめた。
The connecting member 14 is made of a round bar with a diameter of 16 mm and a length of 190 mm, and the receiving member 12 is fixed to the rear end. The receiving member 12 is a 5mm thick iron plate with a flange height of h50.
It is shaped like a saucer with a length of 200 mm and a width of 950 to 1250 mm. The bottom of the receiving member 12 has a diameter of 2 to 5 mm.
An appropriate number of drain holes 15 are provided. This drain hole 15 allows the cooling water stored by water spraying to be efficiently discharged before the melt 100 flows into the receiving member 12, and also prevents the highly viscous melt 100 from flowing out. It is effective in preventing steam explosions. FIG. 5 is a diagram showing the change in drawing speed (hereinafter referred to as drawing speed pattern) at the final stage of casting in this example. The fifth
The solid line a in the figure shows the drawing speed pattern based on the present invention, and is an example in which the final stage of casting was reached while casting work was being performed at a drawing speed of 1.6 m/min. In FIG. 5, x indicates the end of casting, and in this example, the drawing speed is reduced to 0.2 m/min at the same time as the end of casting, and the above-mentioned receiving fitting 11 is attached to the slab top part 6a in this low speed state. did. The time required for the mounting was about 10 to 20 seconds, and immediately after the mounting was completed, the drawing speed was increased to 1.6 m/min, and drawing was carried out in the same manner as in normal casting work. In this example, prior to the end of the casting, the drawing speed is reduced from 45 seconds before the end of the casting, and the casting is ended with the drawing speed controlled at 1.0 m/min to ensure separation of the slag. Speed down control to the extremely low speed of 0.2 m/min was performed smoothly.

而して本実施例において鋳片トツプ部6aから
の前述した流出溶融物100の量はせいぜい20Kg
程度であり、受部材12に効率的に受容され、該
流出した溶融物100は勿論、鋳片6もガイドロ
ール群8を引抜かれる間に凝固し、支障なく鋼の
製造できることが確認された。一方前記第5図に
おいて破線bは従来の鋳造方法における一般的な
鋳造末期の引抜速度パターンを示すもので鋳造終
了時点の約3〜5分前から約5〜8分後までの長
時間に亘つて低速度での引抜きを行うことが普通
であつた。従つて、鋳片トツプ部6aが鋳型5よ
り切断装置9まで引抜かれる所要時間も本実施例
では従来法に比べ2/3の23分間という極めて短時
間となつた。この結果鋼10の生産性は大巾に向
上し、加えて鋳片6の温度降下も著しく減少させ
ることが可能となつた。第6図は、前記第5図の
実施例に対応した鋳片6の側面より40mmの部位の
温度降下状況を示す線図である。第6図において
実線cが第5図の実線a、即ち本発明の実施例で
あり、破線dが第5図の破線b、即ち従来法に対
応するもので冷却装置7による冷却を注水比0.65
/Kgで行つたものである。該第6図より判るよ
うに本実施例の鋳造法では従来法に比べ切断装置
9の直前における温度を極めて高く維持できるこ
とが確認された。このことは近年積極的に採用さ
れている鋳片6を冷却することなく直接、圧延工
程へ送給する直接圧延において特にその効果を発
揮する。即ち、前記直接圧延を行うには鋳片6の
温度降下を極力防止しできるだけ高温で圧延工程
へ送給することが肝要である。従つて、本発明に
よつて鋳造末期に製造される鋳片6もそのまゝ、
あるいは若干の加熱を行う程度で直接圧延の実施
が可能となつた。
Therefore, in this embodiment, the amount of the aforementioned melted material 100 flowing out from the slab top portion 6a is at most 20 kg.
It was confirmed that the melt 100 that flowed out was efficiently received by the receiving member 12, and not only the flowed melt 100 but also the slab 6 solidified while being pulled out of the guide roll group 8, and that steel could be manufactured without any problems. On the other hand, in FIG. 5, the broken line b shows the general drawing speed pattern at the end of casting in the conventional casting method, which extends over a long period of time from about 3 to 5 minutes before the end of casting to about 5 to 8 minutes after the end of casting. It was common practice to perform extraction at low speeds. Therefore, the time required for pulling the slab top portion 6a from the mold 5 to the cutting device 9 in this embodiment was extremely short at 23 minutes, which is two-thirds of that in the conventional method. As a result, the productivity of the steel 10 has been greatly improved, and in addition, it has become possible to significantly reduce the temperature drop in the slab 6. FIG. 6 is a diagram showing the temperature drop at a portion 40 mm from the side surface of the slab 6 corresponding to the embodiment shown in FIG. 5. In FIG. 6, the solid line c corresponds to the solid line a in FIG. 5, that is, the embodiment of the present invention, and the broken line d corresponds to the broken line b in FIG. 5, that is, the conventional method.
/Kg. As can be seen from FIG. 6, it was confirmed that the casting method of this example could maintain an extremely high temperature immediately before the cutting device 9 compared to the conventional method. This is especially effective in direct rolling, which has been actively adopted in recent years, in which the slab 6 is directly fed to the rolling process without being cooled. That is, in order to carry out the above-mentioned direct rolling, it is important to prevent the temperature drop of the slab 6 as much as possible and to feed it to the rolling process at as high a temperature as possible. Therefore, the slab 6 manufactured according to the present invention at the final stage of casting is also
Alternatively, it has become possible to carry out direct rolling with only slight heating.

以上のように本発明は鋳造終了時点にあたり鋳
片トツプ部6aに受金具11を装着せしめ、引抜
きを行なうことにより、鋳造末期における引抜速
度の低下を最少限に止めると共に溶鋼流出による
トラブルを効果的に解決し、安全で効率的な連続
鋳造作業を可能ならしめたものである。
As described above, in the present invention, by attaching the receiving fitting 11 to the top part 6a of the slab at the end of casting and performing the drawing, the reduction in the drawing speed at the end of casting is minimized, and troubles caused by molten steel flowing out can be effectively prevented. This solution enabled safe and efficient continuous casting work.

尚、受金具11は前記実施例に限定されるもの
ではなく前述の機能を発揮できるものであれば製
造される鋳片6のサイズ、鋳型5の構造、その他
の設備、操業条件等に応じて適宜設計し用いれば
よい。第7図は例えば注入ノズル4を退避させな
い状態でも装着可能な受金具の実施例を示す斜視
図である。本実施例における受金具110は、受
部材120がほぼ中央部で分割されている。而し
て固定部材130および連結部材140を受部材
120より突出して構成しても受部材120を注
入ノズル4の両側方より取り込み接合させること
によつて鋳片トツプ部6aに容易に装着すること
ができる。
Incidentally, the receiving fitting 11 is not limited to the above-mentioned embodiment, and may be used depending on the size of the slab 6 to be manufactured, the structure of the mold 5, other equipment, operating conditions, etc., as long as it can perform the above-mentioned functions. It may be designed and used as appropriate. FIG. 7 is a perspective view showing an embodiment of a receiving fitting that can be attached even when the injection nozzle 4 is not retracted. In the receiving fitting 110 in this embodiment, the receiving member 120 is divided approximately at the center. Even if the fixing member 130 and the connecting member 140 are configured to protrude from the receiving member 120, the receiving member 120 can be easily attached to the slab top portion 6a by taking the receiving member 120 from both sides of the injection nozzle 4 and joining them. Can be done.

以上詳述したように本発明は簡単な構成ではあ
るがその実用的効果は非常に大である。
As described in detail above, although the present invention has a simple configuration, its practical effects are very large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は周知の一般的な湾曲型連鋳機の構造
図、第2図は本発明に基づく受金具の一実施例を
示す斜視図、第3図は第2図の横断面図、第4図
は本発明に基づく鋳片トツプ部の湾曲部引抜き状
況図、第5図は鋳造末期の引抜速度パターンの一
例を示す線図、第6図は第5図の引抜速度パター
ンに対応する温度変化状況を示す線図、第7図は
本発明に基づく受金具の他の実施例を示す斜視図
である。 1:鍋、2:溶鋼、3:タンデイツシユ、4:
注入ノズル、5:鋳型、6:鋳片、7:冷却装
置、8:ガイドロール群、9:切断装置、10:
鋼、11,110:受金具、12,120:受部
材、13,130:固定部材、14,140:連
結部材、100:溶融物。
Fig. 1 is a structural diagram of a well-known general curved continuous casting machine, Fig. 2 is a perspective view showing an embodiment of a receiving fitting based on the present invention, Fig. 3 is a cross-sectional view of Fig. 2, and Fig. 3 is a cross-sectional view of Fig. 2; Fig. 4 is a drawing diagram of the curved part of the top of the slab according to the present invention, Fig. 5 is a diagram showing an example of the drawing speed pattern at the final stage of casting, and Fig. 6 is a diagram showing the temperature corresponding to the drawing speed pattern of Fig. 5. FIG. 7 is a diagram showing the changing situation, and is a perspective view showing another embodiment of the receiving fitting based on the present invention. 1: pot, 2: molten steel, 3: tundish, 4:
Injection nozzle, 5: Mold, 6: Slab, 7: Cooling device, 8: Guide roll group, 9: Cutting device, 10:
steel, 11,110: receiving metal fitting, 12,120: receiving member, 13,130: fixing member, 14,140: connecting member, 100: molten material.

Claims (1)

【特許請求の範囲】[Claims] 1 鋳造終了時点にあたり鋳片トツプ部に流出溶
融物受金具を装着せしめ引抜きを行なうことを特
徴とする鋼の湾曲型連続鋳造方法。
1. A method for continuous casting of curved steel, characterized in that at the end of casting, a fitting for receiving molten metal is attached to the top of the slab and then the slab is pulled out.
JP140882A 1982-01-08 1982-01-08 Curved type continuous casting method of steel Granted JPS58119443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP140882A JPS58119443A (en) 1982-01-08 1982-01-08 Curved type continuous casting method of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP140882A JPS58119443A (en) 1982-01-08 1982-01-08 Curved type continuous casting method of steel

Publications (2)

Publication Number Publication Date
JPS58119443A JPS58119443A (en) 1983-07-15
JPS6247101B2 true JPS6247101B2 (en) 1987-10-06

Family

ID=11500661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP140882A Granted JPS58119443A (en) 1982-01-08 1982-01-08 Curved type continuous casting method of steel

Country Status (1)

Country Link
JP (1) JPS58119443A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6528645B2 (en) * 2015-10-28 2019-06-12 Jfeスチール株式会社 Head end cold material for continuous casting top slab and continuous casting method

Also Published As

Publication number Publication date
JPS58119443A (en) 1983-07-15

Similar Documents

Publication Publication Date Title
US3467168A (en) Continuous casting apparatus and method including mold lubrication,heat transfer,and vibration
KR19990008228A (en) Steel strip continuous casting method
JP4549201B2 (en) Continuous casting method of different steel types
JPS6247101B2 (en)
EP0362983A1 (en) Method and apparatus for continuously casting strip steel
US4054171A (en) Method and apparatus for starting the continuous casting of a metal
JP4113967B2 (en) Metal ingot casting apparatus and casting method
US4078600A (en) Continuous casting
CN111482563B (en) Continuous casting production method of super-large section special-shaped blank
JPS5850167A (en) Prevention for clogging of sprue
JP3237725B2 (en) Continuous casting method
JP2820365B2 (en) Dummy sheet for twin-drum continuous casting machine
JPS58184049A (en) Continuous casting method of steel in curbed type
JPH0475750A (en) Method and apparatus for continuously casting duplex layer cast slab
JPS583787B2 (en) How to change slab width during continuous casting
JPS6153143B2 (en)
JPH11320043A (en) Continuous casting equipment and continuous casting method
JPS58187254A (en) Continuous casting method of steel
JPH01107951A (en) Tundish for horizontal continuous casting
JPS58159949A (en) Continuous casting device of thin sheet
JPH0367460B2 (en)
RU1770044C (en) Method of continuous steel casting by smelt
JPS636309B2 (en)
JPH07102428B2 (en) Casting start method for continuous casting machine for sheet metal
JPS61212455A (en) Continuous production of clad steel ingot