JPS6247011A - Optical vibration isolator - Google Patents

Optical vibration isolator

Info

Publication number
JPS6247011A
JPS6247011A JP18708985A JP18708985A JPS6247011A JP S6247011 A JPS6247011 A JP S6247011A JP 18708985 A JP18708985 A JP 18708985A JP 18708985 A JP18708985 A JP 18708985A JP S6247011 A JPS6247011 A JP S6247011A
Authority
JP
Japan
Prior art keywords
parallel
image
correcting optical
lens
move
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18708985A
Other languages
Japanese (ja)
Inventor
Toru Nagata
徹 永田
Hiroki Someya
広己 染矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP18708985A priority Critical patent/JPS6247011A/en
Priority to DE19863628480 priority patent/DE3628480A1/en
Publication of JPS6247011A publication Critical patent/JPS6247011A/en
Priority to US08/197,454 priority patent/US5606456A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lens Barrels (AREA)

Abstract

PURPOSE:To prevent optical vibration with a simple constitution by allowing a correcting optical pat to move in parallel in a correct position by the dynamic pressure generated with a flow of liquid. CONSTITUTION:A correcting optical part 2 converges parallel rays of a luminous flux and is shifted to move an image and is stored airtightly in a lens barrel, and the extent of shift of the correcting optical part corresponds to that of the image on the image surface in 1:1. When the correcting optical part 2 receives a driving force to move momently to a suspended cylinder, dynamic pressures are generated between parallel plane glasses GO and GO' and parallel planes G and G' respectively, and automatic alignment and parallel movement are performed because they are in the same state with respect to longitudinal gaps. Thus, the dynamic pressure effect of the fluid is generated symmetrically before and after a suspended part to keep the degree of parallel and gaps.

Description

【発明の詳細な説明】 〔産業分野〕 未発明は光学的防振装置に関し、特に画像振動を補正す
るための作用部の実際的構成に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field] The present invention relates to an optical vibration isolator, and in particular to a practical configuration of an active part for correcting image vibration.

〔技術分野〕〔Technical field〕

従来より光学的防振への要求は極めて高い。 There has been an extremely high demand for optical image stabilization compared to the past.

撮影画面のブレは、スポーツ競技の撮影あるいはニュー
ス取材の撮影のときにカメラを自動車に、通常引起され
る。スポーツの中継あるいはニュース番組は多くの場合
、ビデオカメラかシネカメラで撮影されるが、ステイル
・カメラの場合は焦点距離の長いレンズを装着して手持
撮影をするときには画像のブレが生じ易い。従って三脚
を使うのが汀通であるが、換作性が悪化することは否め
ない。
BACKGROUND ART Shaking of a photographic screen is usually caused when a camera is moved to a car when photographing a sports event or a news report. Sports broadcasts or news programs are often shot with a video camera or cine camera, but in the case of a still camera, when hand-held shooting is carried out with a long focal length lens attached, images tend to blur. Therefore, it is best to use a tripod, but it cannot be denied that the ease of reproduction will deteriorate.

公知の光学的防振装置の1つは、撮影系内に光学楔を備
え、振動による光路の偏倚を光学楔の角度を変えてその
プリズム作用で修正する方法を採用している。また別の
装置は、空間座標に対してジャイロ装置により固定され
た反射鏡を撮影系中に備え、この反射鏡による光路の偏
向を利用して画像を静止させている。しかしながら、い
ずれの装置も著しく大型化しやすく。
One of the known optical image stabilization devices employs a method in which an optical wedge is provided in the imaging system, and the deviation of the optical path due to vibration is corrected by changing the angle of the optical wedge and using its prism effect. Another device includes a reflecting mirror fixed by a gyro device with respect to spatial coordinates in the photographing system, and uses deflection of the optical path by the reflecting mirror to freeze the image. However, both devices tend to be significantly larger.

長時間の手持ち撮影には適さない。Not suitable for long-term handheld shooting.

その他の方法として、レンズを液体中に懸架せしめ、装
置に外力が加わったとしても、レンズの位置が空間座標
に対して維持される様にし〔発明が解決しようとしてい
る問題点〕本発明は液体懸架法により画像の防振を図る
ことを目的とする。− 例えば光学系の一部に光軸と垂直な方向へ変位自在な部
分を設け、この部分を変位させれば像面上の像を移動さ
せることができる。従って、逆に変位量をカメラの手ブ
レ等によって生じる像の移動を相殺する様に定めてやれ
ば、カメラ・ブレの生じない撮影レンズを実現できるわ
けである。
Another method is to suspend the lens in a liquid such that the position of the lens is maintained relative to the spatial coordinates even if an external force is applied to the device. The purpose is to prevent image vibration using the suspension method. - For example, if a portion of the optical system is provided with a portion that can be freely displaced in a direction perpendicular to the optical axis, and this portion is displaced, the image on the image plane can be moved. Therefore, if the amount of displacement is determined so as to offset the movement of the image caused by camera shake, etc., it is possible to realize a photographic lens that does not suffer from camera shake.

その際、懸架構造に要求されている点は、(1)変位に
際して光軸の倒れがない事、(2)摩擦その他、駆動力
に対して損失がない事、(3)変位するレンズは2次元
方向に動作可能である事である。
In this case, the requirements for the suspension structure are (1) that the optical axis does not fall during displacement, (2) that there is no loss of friction or other driving force, and (3) that the lens that is displaced is It is possible to operate in dimensional directions.

以上の諸点を満たすために光学系の変位する部分と他の
部分を平行平面で構成し、変位する部分を駆動する方法
を取り得るが、平行平面の間隔や平行度は光学性能を維
持するために正確に保つ必要がある。しかしながら、取
付部材で間隔調整をしたり、懸架用鏡筒の外側から機械
的に支持することは、*擦の増大や2次元運動への適応
性から見て、好ましい方法とは言えなかった。
In order to satisfy the above points, it is possible to configure the displacing part and other parts of the optical system with parallel planes and drive the displacing part, but the spacing and parallelism of the parallel planes should be adjusted to maintain optical performance. must be kept accurate. However, adjusting the spacing with mounting members or mechanically supporting the suspension lens barrel from the outside were not desirable methods in terms of increased friction and adaptability to two-dimensional movement.

本発明は以上の難点を解決するもので、変位する部分を
それより前側の部分及び後側の部分に対しそれぞれ平行
平面で構成すれば、両間隔が対称構造になる事、及び間
隔を厳密に保つ必要が有るのは、ブレの補正時で、この
時、変位する部分が運動している事に着目する。
The present invention solves the above-mentioned difficulties. By configuring the displacing part to be a plane parallel to the front part and the rear part, the two spaces can be symmetrical, and the spaces can be strictly controlled. What needs to be maintained is when correcting blur, and at this time, pay attention to the fact that the displaced part is moving.

そして光学系の一部を液体で懸架する様にした装置の、
懸架される部分と他の部分が実質平行平面をなす様に構
成すると共にこの面もしくはこの面を保持する部材に対
向面間隔が光軸方向に変化する部分を設け、変化する部
分を具えた面と対向する平面とのずれで生じる流体の動
圧効果が、懸架される部分の前後で対称的に発生するこ
とにより、平行度と間隔の維持を達成している。
And of a device in which part of the optical system is suspended in liquid,
A surface that is configured so that the suspended portion and the other portion form substantially parallel planes, and that this surface or the member that holds this surface has a portion in which the distance between opposing surfaces changes in the optical axis direction, and that the surface has a changing portion. Parallelism and spacing are maintained by the dynamic pressure effect of the fluid caused by the deviation between the suspended part and the opposing plane occurring symmetrically in front and behind the suspended part.

〔実施例〕〔Example〕

以下、図面に従って本発明の詳細な説明するもので・防
振装置の構成した後、本発明に特徴的な部分の説明を行
う。
Hereinafter, the present invention will be explained in detail with reference to the drawings. After the vibration isolating device is constructed, the characteristic parts of the present invention will be explained.

第1図は鏡筒り内での主要構成要素の配置を示す断面図
である。1amljは望遠レンズの7フオーカル光学系
の構成レンズ、又、接合レンズif、Igはこれを前後
進させる事で焦点合せを行なうフォーカスレンズである
。2は平行光束を収束するとともに、このシフトによっ
て像を移動させる補正光学部で補正光学系は鏡筒に気密
を保って収納されている。補正光学部のシフト量と、像
面での像のシフト量はl:1である。3 、3’は補正
光学部2にスペーサ3d。
FIG. 1 is a sectional view showing the arrangement of main components within the lens barrel. 1amlj is a component lens of the 7-focal optical system of the telephoto lens, and cemented lenses if and Ig are focus lenses that perform focusing by moving back and forth. Reference numeral 2 denotes a correction optical unit that converges parallel light beams and moves an image by this shift, and the correction optical system is housed in a lens barrel in an airtight manner. The shift amount of the correction optical section and the shift amount of the image on the image plane are l:1. 3 and 3' are spacers 3d in the correction optical section 2.

3d’を介して結合する可動磁石3a、3a’、コイル
3b、3b、可動磁石3a、3a’を非通電時定位置に
保つ板バネ3c 、 3c ’から成るプランジャ、S
lはレンズ主点近傍に配置された光軸に垂直で、紙面に
平行な方向の加速度をm仙する加速度センサ ≦2を士
St)同士面の加速度を検出する加速度センサで像面近
傍に配する。尚、プランジャ及び加速度センサは第1図
図示に直角方向の光軸含みの断面内にも本図と同様に配
置されているものとする。4は絞りの絞り込み駆動制御
部、5はフォーカスレンズif、Igを動かすフォーカ
ス駆動、制御部である。Pは不図示のカメラボディ本体
と、フォーカス情報、絞り情報、レリーズ情報等をやり
とりするための接点群の1つ、Fは銀塩フィルムあるい
は固体撮像素子が決める像面である。補正光学部2の保
持、駆動構造は第3図で可脱する。
A plunger S consisting of movable magnets 3a, 3a' coupled via 3d', coils 3b, 3b, and leaf springs 3c, 3c' that keep the movable magnets 3a, 3a' in position when not energized.
l is an acceleration sensor placed near the principal point of the lens that detects acceleration in a direction perpendicular to the optical axis and parallel to the plane of the paper. do. It is assumed that the plunger and the acceleration sensor are also arranged in a cross section including the optical axis in a direction perpendicular to the illustration in FIG. 1 in the same manner as in this figure. Reference numeral 4 represents an aperture aperture drive control unit, and 5 represents a focus drive and control unit that moves the focus lenses if and Ig. P is one of a group of contact points for exchanging focus information, aperture information, release information, etc. with the camera body (not shown), and F is an image plane determined by a silver halide film or a solid-state image sensor. The holding and driving structure of the correction optical section 2 is removable as shown in FIG.

第2図は本実施例のシステム全体を示すブロック図であ
る。5aは接点Piから入力される公知のカメラのフォ
ーカス制御信号によってフォーカスレンズlf、1gを
所定位置に移動するフォーカス駆動部、5bはフォーカ
ス位置検出部である。10は撮影光軸のシフトに起因す
る像の移動加速度演算回路で、フォーカス位置信号検出
部5bの出力信号から構倍圭βを算出し、これを加速度
センサS1の出力を乗じて出力する。20は光軸の主点
回りのローテーションに起因する像の移動加速度演算回
路で、除算回路30から出力される加速度センナS2と
加速度センサSlとの差分に、フォーカス位置信号によ
って決定されるあらかじめ設定された重み付けを行ない
出力する。これら両者の信号を加算回路40によって加
え合わせ像の移動加速度を得る。それぞれの加速度算出
を数式によって記述すると以下の通り。
FIG. 2 is a block diagram showing the entire system of this embodiment. 5a is a focus drive unit that moves the focus lenses lf and 1g to predetermined positions in response to a known camera focus control signal inputted from a contact Pi, and 5b is a focus position detection unit. Reference numeral 10 denotes an image movement acceleration calculation circuit caused by a shift of the photographing optical axis, which calculates the composite magnification β from the output signal of the focus position signal detection section 5b, multiplies this by the output of the acceleration sensor S1, and outputs the result. Reference numeral 20 denotes a calculation circuit for the movement acceleration of the image caused by rotation around the principal point of the optical axis. The output is weighted and output. These two signals are added by an adder circuit 40 to obtain the moving acceleration of the image. The calculation of each acceleration is described using a mathematical formula as follows.

(10)加速度センサーStの出力をal、フォーカス
位置検出部5bの出力(=<り出し量)X、撮影レンズ
全体の焦点距離fにおいて出力a 10とすると横倍率
β=−千故に、光軸のシフトに因る移動加速度a10=
−至Xa1 (20)加速度センサS1の出力a1、加速度センサS
2の出力a2、加速度センサ5IS2の距離文、くり出
し量X、焦点距離fにおいて出力a ZOとすると 光軸のティルトθ= (−az+a2) /見故に、主
点回りの回転に因る像の移動加速度 a2o= (x′+f) X (−al+a2)/交4
5は1本システムが作動中、加速度信号から速度信号を
発生する積分回路、50は積分回路で、リセツ) (R
ESET)入力への電圧印加時を起点とする経過時間に
ついて積分を行ない、リセット時からの成る経過時間経
過後の像の移動変位量を得る。積分開始信号は、オア・
ゲート90によって与えられ、カメラ側から接点P2に
ケえられたシャツタ開信号(HIGH→LOW)または
、接点P3に与えられるオートフォーカス(AF)用セ
ンサ(不図示)の蓄橿開始信号(LOW、HI GH)
に従って与えられる。尚、本信号はセンサへの蓄積中保
たれる。
(10) If the output of the acceleration sensor St is al, the output of the focus position detection unit 5b (=<extension amount) Movement acceleration a10 due to shift of
- to Xa1 (20) Output a1 of acceleration sensor S1, acceleration sensor S
If the output a2 of 2, the distance statement of the acceleration sensor 5IS2, the amount of extension Acceleration a2o= (x'+f) X (-al+a2)/cross 4
(R
ESET) Integrate the elapsed time starting from the time when voltage is applied to the input to obtain the amount of displacement of the image after the elapsed time from the time of reset. The integration start signal is OR
The shutter open signal (HIGH → LOW) given by the gate 90 and applied to contact P2 from the camera side, or the accumulation start signal (LOW, HIGH)
given according to. Note that this signal is maintained while being stored in the sensor.

この積分開始信号は同時にスイッチング回路100に与
えられ、シャッタ開放中またはAFセンサの蓄積時間中
は像の変位量信号がアクチュエータ3の駆動回路60に
インバータ110を印加される。尚、PGは・レンズと
カメラのGNO接続端子である。アクチュエータ駆動回
路は、補正光学部2の位置検出回路3Cの出力インバー
タ110の出力を比較して、これが零となる様にアクチ
ュエータのコイル3b、3b’に通電する。これによっ
て結局補正光学部2は、変位信号を逆向きに駆動されて
、前述した様に補正光学部のシフト量と像面F上の像の
シフト量は1:1であるから像面F上の像の動きをIL
める。また駆動回路60には像の加速度信号がフィード
・フォーワードされ、予測制御を行なうとともに、アク
チュエータの特性入力回路70を参照しつつアクチュエ
ータを駆動する。カメラの作動シーケンスに従って本シ
ステムの作動を記述すると以下の通りである。
This integration start signal is simultaneously applied to the switching circuit 100, and an image displacement amount signal is applied to the inverter 110 to the drive circuit 60 of the actuator 3 while the shutter is open or during the AF sensor's accumulation time. Note that PG is the GNO connection terminal between the lens and camera. The actuator drive circuit compares the output of the output inverter 110 of the position detection circuit 3C of the correction optical section 2, and energizes the coils 3b and 3b' of the actuator so that the output becomes zero. As a result, the correction optical section 2 is driven in the opposite direction by the displacement signal, and as mentioned above, since the shift amount of the correction optical section and the shift amount of the image on the image plane F are 1:1, the correction optical section 2 is driven in the opposite direction. The movement of the statue is IL
Melt. Further, the image acceleration signal is fed forward to the drive circuit 60, which performs predictive control and drives the actuator while referring to the actuator characteristic input circuit 70. The operation of this system is described below according to the camera operation sequence.

まず、カメラが静止している間に本システムの作動が開
始され、次にシャッターボタンの第1ストロークが押さ
れAFクシ−ンスがスタートし、AFセンサへの蓄積中
は補正光学部が作動し、像のブレが防止される。さらに
シャッタボタンが第2ストロークまで押されレリーズさ
れるとシャッタ開放中再び像ブレが防止される0次に第
3図に従って、補正光学部の構造を詳述する。第3図は
補正光学部の構造を示す断面図である。2bはシフトレ
ンズの鏡筒で。
First, the system starts operating while the camera is stationary, then the first stroke of the shutter button is pressed to start the AF sequence, and the correction optical section operates while the AF sensor is storing data. , image blur is prevented. Furthermore, when the shutter button is pressed to the second stroke and released, image blur is prevented again while the shutter is open.The structure of the correction optical section will be described in detail with reference to FIG. FIG. 3 is a sectional view showing the structure of the correction optical section. 2b is the lens barrel of the shift lens.

内部にCリングw、w’によって仮定されたレンズ01
〜Gを持ち、両端に平行平面ガラスGo 、 Go ’
が接着によって気密に固着されている。2aは懸架筒で
両端には平行平面ガラスG、G’がパツキン材P、P’
を介してリング2C、2C’によって固定され、側面に
は、ゴム等の可撓性材料で底に軸R2を持つ漏斗状に一
体成形されたレンズ駆動部材R,R″が押え部材2 d
 、 2 d ”によって圧着され、気密構造となって
いる。レンズ駆動部材と押え部材は光軸対称にもう一対
配置され、結局4ケ配置されている。これらのレンズ駆
動補助部材は軸部R2の一端においてプランジャ3に連
結され、軸部の先端R3において、鏡筒2bに係合連結
される。尚、レンズ駆動部材R,R″はその膜部が補正
光学部の位置を大略維持する作用も果している。
Lens 01 assumed by C rings w, w' inside
~G, with parallel plane glasses Go, Go' at both ends
are airtightly fixed with adhesive. 2a is a suspension cylinder with parallel plane glasses G and G' at both ends and packing materials P and P'
The holding member 2d is fixed by rings 2C and 2C' through the lens driving members R and R'', which are integrally molded in the shape of a funnel with a shaft R2 at the bottom and made of a flexible material such as rubber.
, 2 d'' to form an airtight structure.Another pair of lens drive members and presser members are arranged symmetrically with the optical axis, resulting in a total of four lenses.These lens drive auxiliary members are attached to the shaft portion R2. It is connected to the plunger 3 at one end, and is engaged and connected to the lens barrel 2b at the tip R3 of the shaft part.The lens drive members R, R'' also have membrane parts that maintain the position of the correction optical part. I am accomplishing it.

そして、その剛性は駆動方向に対しては大きく、それと
直角方向には極めて小さく、例えば駆動部材Rは駆動部
材R”を介してのレンズの駆動力に対してほとんど抵抗
とならない、気密な鏡筒部と気密な懸架筒の間には無色
透明、均質な液体、例えばシリコン・オイルが満たされ
、鏡筒部に働く重力の影響を軽減または除去し、かつ潤
滑材として作用する。その際、レンズ鏡筒の設計により
、レンズ部の比重を液体の比重と略一致させる様にする
。平行平面ガラスGとco、c’とGo′の間は鏡筒部
の光軸の倒れと液体の光学的悪影響が無い程度に設定さ
れ、平行平面ガラスc(、、GQ ’の端面はレンズ鏡
筒が駆動された時、流体の動圧効果にょっ、てG、G’
表面から浮上し易い様に浅い角度の面取が行なわれてい
る。
The rigidity is large in the driving direction, but extremely small in the direction perpendicular to the driving direction.For example, the driving member R is an airtight lens barrel that provides almost no resistance to the driving force of the lens via the driving member R. A colorless, transparent, homogeneous liquid such as silicone oil is filled between the lens barrel and the airtight suspension tube to reduce or eliminate the influence of gravity acting on the lens barrel and act as a lubricant. By designing the lens barrel, the specific gravity of the lens section is made to approximately match the specific gravity of the liquid.The parallel plane glasses G and co, and between c' and Go' The end face of the parallel plane glass c (...
The chamfer is chamfered at a shallow angle to make it easier to lift off the surface.

尚、上記構成で平行平面ガラスの一平面はレンズの片側
の面でも良い。
In the above configuration, one plane of the parallel plane glass may be one side of the lens.

従って、補正光学部2が駆動力を受けて懸架筒に対し、
瞬間的に移動した時、平行平面ガラスGO,GO′と平
行平面ガラスG、G’の間ではそれぞれ動圧が発生し、
前後の間隔で同じ状態となるから自動調心が行われると
共に平行移動が実現される。
Therefore, the correction optical section 2 receives the driving force and moves toward the suspension cylinder.
When they momentarily move, dynamic pressure is generated between the parallel plane glasses GO, GO' and the parallel plane glasses G, G', respectively.
Since the state is the same at the front and rear intervals, self-centering is performed and parallel movement is realized.

第4図は傾斜部の変形例を示すもので、ここでは片側の
み描いているが補正光学部の前後とも形成されているも
のとする。
FIG. 4 shows a modification of the inclined portion, and although only one side is depicted here, it is assumed that the inclined portion is formed both before and after the correction optical portion.

図(A)は平行平面ガラスGoを固定した鏡筒2bの端
縁に、上記実施例とは逆勾配の傾斜を与えたものであり
、図CB)は鏡筒2bの突起と平行平面ガラスGoの傾
斜が連続する構成としたものである。
Figure (A) shows that the edge of the lens barrel 2b to which the parallel plane glass Go is fixed is given a slope opposite to that of the above embodiment, and Figure CB) shows the protrusion of the lens barrel 2b and the parallel plane glass Go. The structure has a continuous slope.

又、傾面の代りに緩い曲面を与えることも可能である。It is also possible to provide a gently curved surface instead of an inclined surface.

(効果) 以上、述べた本発明は液体懸架法に固有の液体に着目し
、固定的な構成でありながら液体の流れで発生する動圧
で補正光学部が正しい位置で平行運動することを可能に
する効果がある。
(Effects) The present invention described above focuses on the liquid unique to the liquid suspension method, and although it has a fixed configuration, it is possible to move the correction optical part in parallel at the correct position using the dynamic pressure generated by the flow of the liquid. It has the effect of

また、これにより、簡単な構成で光学的防振が実現され
た。
Additionally, optical image stabilization was achieved with a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す断面図で、第2図はその
プレ補正システムのブロック図、第3図は補正光学部の
斜視図、第4図は変形例の要部を示す図。
Fig. 1 is a sectional view showing an embodiment of the present invention, Fig. 2 is a block diagram of its pre-correction system, Fig. 3 is a perspective view of the correction optical section, and Fig. 4 is a diagram showing the main parts of a modified example. .

Claims (1)

【特許請求の範囲】[Claims] 光学系の一部を液体で懸架する様にした装置であって、
懸架される部分と他の部分が平行平面となる様にすると
共にこの面もしくはこの面を保持する部材に対向面間隔
が光軸方向に変化する部分を設けたことを特徴とする光
学的防振装置。
A device in which a part of the optical system is suspended in liquid,
Optical vibration isolation characterized in that the suspended part and the other part are parallel planes, and this surface or the member holding this surface is provided with a part in which the distance between opposing surfaces changes in the optical axis direction. Device.
JP18708985A 1985-08-23 1985-08-26 Optical vibration isolator Pending JPS6247011A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP18708985A JPS6247011A (en) 1985-08-26 1985-08-26 Optical vibration isolator
DE19863628480 DE3628480A1 (en) 1985-08-23 1986-08-22 Method and device for compensating a movement of an image
US08/197,454 US5606456A (en) 1985-08-23 1994-02-16 Image processing apparatus and display system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18708985A JPS6247011A (en) 1985-08-26 1985-08-26 Optical vibration isolator

Publications (1)

Publication Number Publication Date
JPS6247011A true JPS6247011A (en) 1987-02-28

Family

ID=16199914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18708985A Pending JPS6247011A (en) 1985-08-23 1985-08-26 Optical vibration isolator

Country Status (1)

Country Link
JP (1) JPS6247011A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5039211A (en) * 1988-07-28 1991-08-13 Asahi Kogaku Kogyo Kabushiki Kaisha Zoom lens capable of image blur compensation
WO2008133234A1 (en) * 2007-04-23 2008-11-06 Nikon Corporation Optical element holding device, lens barrel, exposure device, and device manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5039211A (en) * 1988-07-28 1991-08-13 Asahi Kogaku Kogyo Kabushiki Kaisha Zoom lens capable of image blur compensation
WO2008133234A1 (en) * 2007-04-23 2008-11-06 Nikon Corporation Optical element holding device, lens barrel, exposure device, and device manufacturing method
US8363340B2 (en) 2007-04-23 2013-01-29 Nikon Corporation Optical element holding apparatus, barrel, exposure apparatus, and manufacturing method for device
US8498067B2 (en) 2007-04-23 2013-07-30 Nikon Corporation Optical element holding apparatus, barrel, exposure apparatus, and manufacturing method for device

Similar Documents

Publication Publication Date Title
US5606456A (en) Image processing apparatus and display system
US6091900A (en) Lens barrel and image pickup apparatus
US6211910B1 (en) Image pickup apparatus with image shake correction and resolving power change
JP3109815B2 (en) Image stable shooting lens system
JP3524482B2 (en) Zoom lens and optical device using the same
JPS6247012A (en) Vibration-proof optical device
JPH07104218A (en) Variable power optical system
US20210239999A1 (en) Camera module
JPH0760223B2 (en) Shooting optical system for image stabilization
US20050286141A1 (en) Lens barrel and photographing apparatus incorporating the same
JPH10133247A (en) Shake preventing device for video camera
JPH0421832A (en) Device for suppressing image blur
JPS6266774A (en) Image deflecting device for image pickup device
JPS6247011A (en) Optical vibration isolator
JPS6244707A (en) Optical element supporting structure for vibration isolator
JPH01284823A (en) Variable power optical system with vibration proof function
JPH1127573A (en) Image motion correcting device
JPS6247013A (en) Controller for vibration-proof system
KR200190490Y1 (en) Hand-shake correcting structure for a video camera
US6035132A (en) Optical apparatus having flash-illumination-area controlling device using image shake correction device
JPH02262612A (en) Image blur correcting device for camera
JPH01223413A (en) Image stabilizing optical system
JPH0420942A (en) Front converter lens with image blur correcting means
JPS63261329A (en) Autofocusing device capable of correcting fluctuation by hand
JPH05134286A (en) Variable apex angle prism device