JPS624669B2 - - Google Patents

Info

Publication number
JPS624669B2
JPS624669B2 JP52098917A JP9891777A JPS624669B2 JP S624669 B2 JPS624669 B2 JP S624669B2 JP 52098917 A JP52098917 A JP 52098917A JP 9891777 A JP9891777 A JP 9891777A JP S624669 B2 JPS624669 B2 JP S624669B2
Authority
JP
Japan
Prior art keywords
doppler
signal
circuit
signals
doppler signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52098917A
Other languages
Japanese (ja)
Other versions
JPS5432292A (en
Inventor
Kazuhiro Ban
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9891777A priority Critical patent/JPS5432292A/en
Publication of JPS5432292A publication Critical patent/JPS5432292A/en
Publication of JPS624669B2 publication Critical patent/JPS624669B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/62Sense-of-movement determination

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

【発明の詳細な説明】 この発明は自動車などの衝突防止用レーダ装置
に関するものである。以下自動車衝突防止用レー
ダ装置を例に挙げて説明する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radar device for preventing collisions in automobiles and the like. A description will be given below using a radar device for automobile collision prevention as an example.

自動車の複走、高速化の結果、衝突事故は激増
し、人命を失う事故も少くない。これらの事故を
可能な限り防止するために障害物の検知、それま
での距離、および相対速度を測定し、自車の操舵
角、車速などの走行情報をも考慮に入れて衝突の
危険を察知し、運転者に警報を発しもしくは自動
的にブレーキ機構を動作せしめる自動車衝突防止
用レーダ装置の開発が進められつゝある。
As a result of double-driving cars and faster speeds, the number of collisions has increased dramatically, with many accidents resulting in loss of human life. In order to prevent these accidents as much as possible, the system detects obstacles, measures the distance to them, and relative speed, and also takes into account driving information such as the own vehicle's steering angle and vehicle speed to detect the risk of collision. However, progress is being made in the development of automobile collision prevention radar devices that issue a warning to the driver or automatically operate a brake mechanism.

第1図は従来のこの種装置の高周波部の一例を
示すブロツク構成図で、図において、1は空中
線、2はハイブリツド結合器、3a,3bはスイ
ツチ、4a,4bはミキサ、5は周波数変調、
FMガン発振器、6はFMガン発振器、5のバラ
クタダイオードを駆動するバラクタドライバ、7
はスイツチ3a,3bを駆動して開放状態と短絡
状態とに切換えるスイツチドライバ、8はバラク
タドライバ6およびスイツチドライバ7をトリガ
駆動するトリガ発振器、9はミキサ4a,4bに
よつて得られる中間周波IF信号を増幅するIF増
幅器、10はIF信号出力端子である。
FIG. 1 is a block diagram showing an example of the high frequency section of a conventional device of this kind. In the figure, 1 is an antenna, 2 is a hybrid coupler, 3a, 3b are switches, 4a, 4b are mixers, and 5 is a frequency modulator. ,
FM gun oscillator, 6 is the FM gun oscillator, varactor driver that drives the varactor diode of 5, 7
8 is a trigger oscillator that drives the varactor driver 6 and switch driver 7, and 9 is an intermediate frequency IF obtained by mixers 4a and 4b. An IF amplifier amplifies the signal, and 10 is an IF signal output terminal.

第2図は発振部分の動作を説明するための波形
図で、図イはバラクタドライバ6およびスイツチ
ドライバ7の駆動出力波形、図ロはFMガン発振
器5の発振状況、図ハは空中線1からの送信号出
力を示す。図示のように、バラクタドライバ6お
よびスイツチドライバ7は第2図イに示すような
ドライブパルスをそれぞれFMガン発振器5およ
びスイツチ3a,3bに供給する。FMガン発振
器5においては第2図ロに示すように期間T1
周波数で発振し、期間T2は周波数Lで発振
する。一方、スイツチ3a,3bは期間T1には
短絡状態となり、期間T2には開放状態になるよ
うに駆動される。従つて、期間T1には周波数
の発振出力はハイブリツド結合器2を通つてス
イツチ3a,3bに加えられるが、スイツチ3
a,3bは短絡状態にあるので再びハイブリツド
結合器2を通つて第2図ハに示すように空中線1
から送信される。期間T2には周波数Lの発振出
力がハイブリツド結合器2を通つてスイツチ3
a,3bに加えられるが、このときはスイツチ3
a,3bは開放状態にあるので、この周波数L
の発振出力はミキサ4a,4bへ送られて後述す
る反射波受信用の局部発振出力として動作し、空
中線1からは実質的には放出されない。
Figure 2 is a waveform diagram for explaining the operation of the oscillation part. Shows the transmit signal output. As shown, a varactor driver 6 and a switch driver 7 supply drive pulses as shown in FIG. 2A to an FM gun oscillator 5 and switches 3a and 3b, respectively. The FM gun oscillator 5 oscillates at frequency 1 during period T 1 and oscillates at frequency L during period T 2 as shown in FIG. On the other hand, the switches 3a and 3b are driven to be short-circuited during period T1 and open during period T2 . Therefore, during period T 1 the frequency
The oscillation output of switch 1 is applied to switches 3a and 3b through hybrid coupler 2, but switch 3
Since the wires a and 3b are short-circuited, the antenna 1 is connected again through the hybrid coupler 2 as shown in FIG. 2C.
Sent from. During period T 2 , the oscillation output of frequency L passes through hybrid coupler 2 and switches to switch 3.
a, 3b, but in this case switch 3
Since a and 3b are open, this frequency L
The oscillation output is sent to mixers 4a and 4b and operates as a local oscillation output for receiving reflected waves, which will be described later, and is not substantially emitted from the antenna 1.

期間T1に空中線1から送出された周波数
の電波は目標物から反射され、期間T2に入つて
から空中線1から受信され、ハイブリツド結合器
2を経て、更に開放状態にあるスイツチ3a,3
bに妨げられることなく、ミキサ4a,4bに加
えられる。一方、このときには上述のようにFM
ガン発振器5からの周波数Lの発振出力が局部
発振出力としてミキサ4a,4bに加えられてい
るので、ミキサ4a,4bからはそれぞれIF
Lなる周波数の中間周波IF信号が得られ
る。これらのミキサ4a,4bから得られるIF
信号は加え合わされ、IF増幅器9で増幅され、
IF信号出力端子10へ出力される。
Frequency 1 transmitted from antenna 1 during period T 1
The radio waves are reflected from the target object, are received from the antenna 1 after entering the period T2 , and are further transmitted to the open switches 3a and 3 via the hybrid coupler 2.
It is added to mixers 4a and 4b without being hindered by b. On the other hand, in this case, the FM
Since the oscillation output of frequency L from Gunn oscillator 5 is applied to mixers 4a and 4b as local oscillation output, IF = IF =
An intermediate frequency IF signal with a frequency of 1L is obtained. IF obtained from these mixers 4a and 4b
The signals are summed and amplified by an IF amplifier 9,
The signal is output to the IF signal output terminal 10.

次に、このIF信号から目標物の速度情報を与
えるドプラ波を得る従来装置を第3図に示すブロ
ツク構成図と第4図A〜Dに示す各種位相におけ
る動作波形図および第5図に示す綜合波形図によ
つて説明する。
Next, a conventional device for obtaining Doppler waves that provide velocity information of a target from this IF signal is shown in the block diagram shown in Fig. 3, the operating waveform diagrams at various phases shown in Figs. 4A to D, and Fig. 5. This will be explained using a combined waveform diagram.

図において、11はIF信号入力端子、12は
第1図のトリガ発振器8から得られる送信トリガ
aの入力端子、13はIF信号bの瞬時値が正の
ある設定値+E1を越えたときに信号cを出す第
1のコンパレータ、14は負のある設定値−E2
を越えたときに信号dを出す第2のコンパレー
タ、15は信号cと信号dとの論理和である信号
eを得るOR回路、16は信号aでセツトされ信
号eでリセツトされ信号を出すR―Sフリツプ
フロツプ回路、17は信号cと信号との論理積
である信号gを出すAND回路、18は信号dと
信号との論理積である信号hを出すAND回
路、19は信号gでセツトされ信号hでリセツト
され第5図に示す信号iを出すR―Sフリツプフ
ロツプ回路、20は所望のドプラ波である信号i
を取り出す端子である。
In the figure, 11 is an IF signal input terminal, 12 is an input terminal for the transmission trigger a obtained from the trigger oscillator 8 in FIG. The first comparator that outputs c, 14 is a negative set value -E2
15 is an OR circuit which obtains a signal e which is the logical sum of the signal c and the signal d. 16 is an OR circuit which is set by the signal a and reset by the signal e and outputs the signal. -S flip-flop circuit, 17 is an AND circuit that outputs a signal g which is the logical product of the signal c and the signal, 18 is an AND circuit that generates the signal h which is the logical product of the signal d and the signal, and 19 is set by the signal g. An RS flip-flop circuit which is reset by a signal h and outputs a signal i shown in FIG. 5, 20 is a signal i which is a desired Doppler wave.
This is the terminal to take out.

第4図A〜Dのそれぞれのbに示してあるIF
信号は立上り位相が順次変化しているが、これは
所定時間間隔をおいて送信トリガaによつて、
次々と送出される送信パルスの反射波を受信して
得られたIF信号を時間の流れに沿つて示してあ
り、目標物の相対移動に伴うドプラ効果によるも
のである。従つて、この立上り位相をプロツトす
ればドプラ波形が得られる。
IF shown in b of each of Figures 4A to D
The rising phase of the signal changes sequentially, but this is caused by the transmission trigger a at predetermined time intervals.
The IF signal obtained by receiving the reflected waves of the transmitted pulses sent out one after another is shown along the flow of time, and is due to the Doppler effect accompanying the relative movement of the target. Therefore, by plotting this rising phase, a Doppler waveform can be obtained.

第3図はこのような原理による装置で、フリツ
プフロツプ16は送信トリガaによつてセツトさ
れ、IF信号bの立上りが正であろうと負であろ
うと所定振幅になつた時にリセツトされる。信号
c,dと信号eとの間、および信号eの立上りと
信号の立上り(フリツプ.フロツプ16のリセ
ツト)との間には論理回路の動作遅延がある。
AND回路17,18およびフリツプフロツプ1
9の構成から、第4図A,BのようにIF信号b
が正極性から始まるときは信号gが得られ、第4
図C,Dのように負極性から始まるときは信号h
が得られ、フリツプフロツプ19はその境界で反
転し、第5図iに示すようにドプラ信号が得られ
ることは容易に理解できよう。但し、第5図は第
4図A,B,CおよびDの時間軸を縮めて示して
あることに注意されたい。
FIG. 3 shows a device based on such a principle, in which the flip-flop 16 is set by the transmission trigger a and reset when the rising edge of the IF signal b reaches a predetermined amplitude, whether positive or negative. There is an operation delay of the logic circuit between the signals c, d and the signal e, and between the rise of the signal e and the rise of the signal (reset of the flip-flop 16).
AND circuits 17, 18 and flip-flop 1
From the configuration of 9, the IF signal b as shown in Fig. 4 A and B
starts from positive polarity, a signal g is obtained, and the fourth
When starting from negative polarity as shown in Figures C and D, the signal h
is obtained, the flip-flop 19 is inverted at the boundary, and it is easy to understand that a Doppler signal as shown in FIG. 5i is obtained. However, it should be noted that FIG. 5 shows the time axes of FIG. 4 A, B, C, and D compressed.

この方式は原理的には極めて簡単な回路でドプ
ラ信号を得られる優れた方式ではあるが、受信信
号のレベルに変動があると、第5図に示したよう
にはならず、例えば第6図g′,h′およびi′に示す
ような波形となり正常なドプラ信号が得られなく
なる。更に上記の方式では目標物の移動方向の判
別は不可能であつた。
In principle, this method is an excellent method for obtaining a Doppler signal with an extremely simple circuit, but if there are fluctuations in the level of the received signal, it will not work as shown in Figure 5, and for example, as shown in Figure 6. The waveforms become as shown in g', h', and i', making it impossible to obtain a normal Doppler signal. Furthermore, with the above method, it was impossible to determine the moving direction of the target object.

この発明は以上の点に鑑みてなされたもので、
ミキサから得られる2つのIF信号を個々に利用
することによつて、受信信号レベルに変動があつ
ても正しいドプラ信号が得られ、更に目標物の移
動方向判別機能をもたせるような発展可能なレー
ダ装置を得ることを目的とするものである。
This invention was made in view of the above points,
By individually using the two IF signals obtained from the mixer, a correct Doppler signal can be obtained even if the received signal level fluctuates, and the radar can be developed to have the ability to determine the moving direction of a target. The purpose is to obtain a device.

第7図はこの発明の一実施例を示すブロツク構
成図で、図において、空中線1からミキサ4a,
4bまでおよびFMガン発振器5からトリガ発振
器8までの高周波部は第1図に示した従来装置と
同一で、この発明では2つのミキサ4a,4bで
得られるIF信号をそれぞれ別個にIF増幅器9
a,9bで増幅して、それぞれ端子10a,10
bへ出力する。
FIG. 7 is a block configuration diagram showing an embodiment of the present invention. In the figure, from the antenna 1 to the mixer 4a,
4b and from the FM gun oscillator 5 to the trigger oscillator 8 are the same as the conventional device shown in FIG.
a, 9b, and terminals 10a, 10, respectively.
Output to b.

このようにして得られる2つのIF信号には互
いに90゜の位相差が得られることに着目してこの
発明はなされたもので、両IF信号に90゜の位相
差が存在することは両IF信号に含まれるドプラ
信号にもドプラ周波数における90゜の位相差があ
ることは理解されるであろう。この発明はこの2
つのドプラ信号の位相差を利用して、第6図に示
すような受信レベルの変動にもとづく不正常波形
g′,h′が得られたときでも正常なドプラ信号を得
ようとするものである。以下、この実施例装置の
動作を説明するための各部波形を示す第8図を参
照しつゝ説明する。
This invention was made by focusing on the fact that the two IF signals obtained in this way have a phase difference of 90 degrees from each other. It will be appreciated that the Doppler signals included in the signal also have a 90° phase difference at the Doppler frequency. This invention is
Using the phase difference between two Doppler signals, abnormal waveforms based on fluctuations in reception level as shown in Figure 6 are generated.
The aim is to obtain a normal Doppler signal even when g' and h' are obtained. The operation of the apparatus of this embodiment will be explained below with reference to FIG. 8, which shows waveforms of various parts.

さて、このようにしてIF増幅器9a,9bで
増幅されたIF信号はそれぞれドプラ発生器21
a,21bへ入力される。このドプラ発生器21
a,21bはいずれも第3図に示した従来装置と
同様のものである。例えばドプラ発生器21aに
ついて、第6図について説明したと同様に受信レ
ベルの変動によつて信号g,hがそれぞれ第8図
g′,h′に示したようになると、その出力iaは第
8図ia′に示すようになり、ドプラ発生器21b
の出力は前述のようにドプラ周波数において90゜
の位相差を有する波形第8図ib′のようになる。
22a,22bはそれぞれドプラ発生器21a,
21bの出力ia,ibの時間微分波形を得る微分
回路で、第8図には微分回路22aの出力波形j
aのみを示してある。23a,23bは両波検波
回路、24a,24bはそれぞれ上記両波検波回
路23a,23dの出力パルスでトリガされた所
定幅のパルスを出す単安定マルチバイブレータ
で、それぞれの出力波形を第8図ka,kbに示
す。25は信号kaでセツトされ信号kbでリセツ
トされ出力波形mを出すR―Sフリツプフロツ
プ、26は信号波形mが高電位のときは信号ib
を出力し、信号波形mが低電位のときは信号ia
を出力するように切換えるスイツチ回路、27は
このスイツチ回路26の出力端子で所望の正確な
ドプラ周期の信号nが得られる。以上の説明から
この装置の動作は理解できると考えるが、要する
にこの発明では、反射受信マイクロ波と局部発振
周波出力とをハイブリツド結合器で結合し、これ
を平衡形ミキサに加えて2つのIF信号を得てい
るので、両IF信号の間には90゜の位相差があ
る。従つて、この両IF信号に含まれるドプラ信
号にも90゜の位相差があることを利用して、それ
ぞれのドプラ信号を個別に求め、その一方に不正
常波形が現われときには他方を用いるようにする
ことによつて、正常なドプラ周期の信号が得ら
れ、所定時間内の波数を計数すれば目標物の速度
情報が得られる。より詳述すれば、不正常波形は
ドプラ信号の状態が反転する近傍の期間で発生す
る訳であるが、一方のドプラ信号においてその状
態にあいまいさがある期間(不安定期間)は、他
方の90〓位相差を有するドプラ信号においては安
定した期間であり、この他方のドプラ信号の、上
記一方のドプラ信号の不安定期間においては必ず
不正常波形は生じない。そこで各ドプラ信号の状
態の反転するタイミングを検出し、その近傍の不
安定期間については他方のドプラ信号を用いるよ
うにしたものである。
Now, the IF signals amplified by the IF amplifiers 9a and 9b in this way are each sent to the Doppler generator 21.
a, 21b. This Doppler generator 21
Both a and 21b are similar to the conventional device shown in FIG. For example, with respect to the Doppler generator 21a, signals g and h are changed as shown in FIG.
g' and h', the output i a becomes as shown in FIG. 8 i a ', and the Doppler generator 21b
The output has a waveform i b ' in FIG. 8 having a phase difference of 90° at the Doppler frequency as described above.
22a and 22b are Doppler generators 21a and 22b, respectively.
This is a differentiating circuit that obtains time-differentiated waveforms of the outputs i a and i b of the differentiating circuit 21b.
Only a is shown. 23a and 23b are double-wave detection circuits, and 24a and 24b are monostable multivibrators that generate pulses of a predetermined width triggered by the output pulses of the double-wave detection circuits 23a and 23d, respectively, and their output waveforms are shown in FIG. Shown in a and k b . 25 is an RS flip-flop which is set by signal k a and reset by signal k b and outputs an output waveform m; 26 is a signal i b when the signal waveform m is at a high potential.
and when the signal waveform m is at a low potential, the signal i a
A switch circuit 27 switches to output a signal n having a desired accurate Doppler period at the output terminal of this switch circuit 26. I believe that the operation of this device can be understood from the above explanation, but in short, in this invention, the reflected reception microwave and the local oscillation frequency output are combined by a hybrid coupler, and this is added to a balanced mixer to generate two IF signals. Therefore, there is a 90° phase difference between the two IF signals. Therefore, by taking advantage of the fact that there is a 90° phase difference in the Doppler signals included in both IF signals, each Doppler signal is obtained individually, and if an abnormal waveform appears in one of them, the other is used. By doing this, a signal with a normal Doppler period can be obtained, and by counting the wave numbers within a predetermined time, velocity information of the target object can be obtained. To explain in more detail, abnormal waveforms occur in the vicinity of the period when the state of the Doppler signal reverses, but during the period in which there is ambiguity in the state of one Doppler signal (unstable period), the state of the Doppler signal is ambiguous. 90〓 This is a stable period in a Doppler signal having a phase difference, and an abnormal waveform does not necessarily occur in the unstable period of one Doppler signal of the other Doppler signal. Therefore, the timing at which the state of each Doppler signal inverts is detected, and the other Doppler signal is used for the unstable period in the vicinity.

次に、第7図に一点鎖線で囲んだ部分Aについ
て、第9図に示す動作設明用波形図を用いて設明
する。この部分Aを附加することによつて、目標
物の移動方向判別信号が得られる。図において、
28は信号mを1/2分周して信号pを出す分周
器、29はこの信号pと出力端子27に得られた
信号nとの排他的論理和Ex―OR信号qを得る
Ex―OR回路、30は方向判別信号qを出力する
出力端子である。
Next, a portion A surrounded by a dashed line in FIG. 7 will be explained using the waveform diagram for explaining the operation shown in FIG. 9. By adding this portion A, a signal for determining the moving direction of the target object can be obtained. In the figure,
28 is a frequency divider which divides the signal m by 1/2 and outputs the signal p, and 29 obtains the exclusive OR Ex-OR signal q of this signal p and the signal n obtained at the output terminal 27.
In the Ex-OR circuit, 30 is an output terminal that outputs a direction determination signal q.

すなわち、目標物がレーダ装置に接近しつゝあ
る時と、レーダ装置から離反しつゝある時とで
は、ドプラ発生器21aと21bとに得られる出
力信号iaとibとの位相関係が逆になる。第8図
に示し、第9図にもそのまゝ示した信号ia′とi
b′との関係が、目標物が接近しているときの位相
関係とすれば、目標物が離反しつゝあるときの関
係は第9図の信号ia′とibrとの関係のようにな
る。(図では、この後者の場合に添字rを附すと
ともにすべて破線で示した。) 第9図から判るように分周器28の出力信号p
は目標物の移動方向に無関係に一定であり、Ex
―OR回路29において信号nとの間には出力q
を得るが、該出力信号pとnrとは全く同一波形
となり、出力qrは常に零である。この信号出力
qによつて目標物の移動方向の情報が得られる。
That is, when the target is approaching the radar device and when it is moving away from the radar device, the phase relationship between the output signals i a and i b obtained from the Doppler generators 21a and 21b is as follows. It will be the opposite. The signals i a ' and i shown in FIG. 8 and also shown in FIG.
If the relationship with b ' is the phase relationship when the target is approaching, the relationship when the target is moving away is the relationship between the signals i a ' and i b ' r in Figure 9. become that way. (In the figure, the subscript r is added to this latter case and all are indicated by broken lines.) As can be seen from FIG. 9, the output signal p of the frequency divider 28
is constant regardless of the moving direction of the target, and Ex
- In the OR circuit 29, the output q is connected to the signal n.
However, the output signals p and n r have exactly the same waveform, and the output q r is always zero. Information on the moving direction of the target object can be obtained from this signal output q.

以上詳述したように、この発明ではレーダパル
スの目標物からの反射受信波と局部発振周波数波
とをハイブリツド結合器で結合し、このハイブリ
ツド結合器の出力側に平衡形ミキサを設け、2つ
の出力にそれぞれIF信号を得て、それぞれのIF
信号からそれぞれドプラ信号を得ることによつ
て、両ドプラ信号間の位相の差を利用し、一方の
ドプラ信号の不案定時には他方のドプラ信号を採
用するようにしたので、正常なドプラ信号が得ら
れる。
As described in detail above, in this invention, the reflected reception wave of the radar pulse from the target object and the local oscillation frequency wave are combined by a hybrid coupler, a balanced mixer is provided on the output side of the hybrid coupler, and two Get each IF signal at the output, and
By obtaining Doppler signals from each signal, the phase difference between the two Doppler signals is used, and when one Doppler signal is unstable, the other Doppler signal is adopted, so that a normal Doppler signal can be obtained. can get.

また、このようにして得たドプラ信号の位相を
判定することによつて目標物の移動方向(接近も
しくは離反)を示す信号が得られる。
Further, by determining the phase of the Doppler signal obtained in this way, a signal indicating the moving direction (approach or departure) of the target object can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のレーダ装置の高周波部の一例を
示すブロツク構成図、第2図はその発振部分の動
作を説明するための波形図、第3図は従来から用
いられているドプラ発生器のブロツク構成図、第
4図A〜Dは各種位相におけるこのドプラ発生器
の各部動作波形図、第5図はその綜合波形図、第
6図は受信信号レベルに変動があつたようなとき
のドプラ出力波形の一例を示す図、第7図はこの
発明の一実施例を示すブロツク構成図、第8図は
その動作を説明するための各部波形図、第9図は
目標物の移動方向情報を得る部分の動作説明のた
めの各部波形図である。 図において、1は空中線、2はハイブリツド結
合器、3a,3bはスイツチ、4a,4bはミキ
サ、21a,21bはドプラ発生器、22a,2
2bは微分回路、23a,23bは両波検波器、
24a,24bは単安定マルチバイブレータ、2
5は双安定回路、26はスイツチ回路、27はド
プラ信号出力端子、28は分周器、29は排他的
論理和回路、30は移動方向判定信号出力端子で
ある。なお、図中同一符号は同一もしくは相当部
分を示す。
Figure 1 is a block configuration diagram showing an example of the high frequency section of a conventional radar device, Figure 2 is a waveform diagram to explain the operation of the oscillation section, and Figure 3 is a diagram of a conventional Doppler generator. The block configuration diagram, Figures 4A to 4D are operational waveform diagrams of each part of this Doppler generator at various phases, Figure 5 is a combined waveform diagram, and Figure 6 is a Doppler diagram when there is a fluctuation in the received signal level. A diagram showing an example of an output waveform, FIG. 7 is a block configuration diagram showing an embodiment of the present invention, FIG. 8 is a waveform diagram of each part to explain its operation, and FIG. 9 is a diagram showing information on the moving direction of a target. It is a waveform diagram of each part for explaining the operation of the obtained part. In the figure, 1 is an antenna, 2 is a hybrid coupler, 3a, 3b are switches, 4a, 4b are mixers, 21a, 21b are Doppler generators, 22a, 2
2b is a differential circuit, 23a and 23b are double wave detectors,
24a, 24b are monostable multivibrators, 2
5 is a bistable circuit, 26 is a switch circuit, 27 is a Doppler signal output terminal, 28 is a frequency divider, 29 is an exclusive OR circuit, and 30 is a moving direction determination signal output terminal. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 送信された高周波パルス電波の目標物からの
反射受信波と局部発振周波数波とを結合するハイ
ブリツド結合器、 このハイブリツド結合器の出力側に設けられ互
いに90゜の位相差を有する第1、第2の中間周波
信号を得る第1、第2の平衡型ミキサ、 上記各中間周波信号について、ドプラ周波数の
周期で変化する中間周波パルス毎の最初の半サイ
クルの極性を検出し、互いに90゜の位相差を有す
る第1、第2のドプラ信号を得る第1、第2のド
プラ発生器、 上記各ドプラ信号の、立上り、立下り近傍の不
安定期間を検出する検出手段、及び 上記各ドプラ信号の不安定期間を他方のドプラ
信号で置き換えてなるドプラ信号を出力する切換
え回路を備えたことを特徴とするレーダ装置。 2 上記検出手段は、 上記第1、第2のドプラ発生器から得られる第
1、第2のドプラ信号を微分する第1、第2の微
分回路と、 これらの微分回路の出力をそれぞれ両波整流し
て波形整形する第1、第2の両波検波回路と、 上記第1のドプラ信号から得た波形整形出力で
セツトされ、上記第2のドプラ信号から得た波形
整形出力でリセツトされる双安定回路とからなる
ものであり、 上記切換え回路は、上記双安定回路のセツトさ
れている時には上記第2のドプラ信号を出力し、
リセツトされている時には上記第1のドプラ信号
を出力するように切換えるスイツチ回路であるこ
とを特徴とする特許請求の範囲第1項記載のレー
ダ装置。 3 送信された高周波パルス電波の目標物からの
反射受信波と局部発振周波数波とを結合するハイ
ブリツド結合器、 このハイブリツド結合器の出力側に設けられ互
いに90゜の位相差を有する第1、第2の中間周波
信号を得る第1、第2の平衡型ミキサ、 上記各中間周波信号について、ドプラ周波数の
周期で変化する中間周波パルス毎の最初の半サイ
クルの極性を検出し、互いに90゜の位相差を有す
る第1、第2のドプラ信号を得る第1、第2のド
プラ発生器、 上記各ドプラ信号の、立上り、立下り近傍の不
安定期間を検出する検出手段、 上記各ドプラ信号の不安定期間を他方のドプラ
信号で置き換えてなるドプラ信号を出力する切換
え回路、及び 該切換え回路から得られるドプラ信号の位相を
判定して上記目標物の移動方向判定信号を得る位
相判定回路を備えたことを特徴とするレーダ装
置。 4 上記検出手段は、 上記第1、第2のドプラ発生器から得られる第
1、第2のドプラ信号を微分する第1、第2の微
分回路と、 これらの微分回路の出力をそれぞれ両波整流し
て波形整形する第1、第2の両波検波回路と、 上記第1のドプラ信号から得た波形整形出力で
セツトされ、上記第2のドプラ信号から得た波形
整形出力でリセツトされる双安定回路とからなる
ものであり、 上記切換え回路は、上記双安定回路のセツトさ
れている時には上記第2のドプラ信号を出力し、
リセツトされている時には上記第1のドプラ信号
を出力するように切換えるスイツチ回路であり、 上記位相判定回路は、 上記双安定回路の出力を1/2分周する分周器
と、 この分周器の出力信号と上記切換え回路から得
られるドプラ信号との排他的論理和をとる排他的
論理和回路とからなるものであることを特徴とす
る特許請求の範囲第3項記載のレーダ装置。
[Claims] 1. A hybrid coupler that combines a received wave reflected from a target object of a transmitted high-frequency pulse radio wave and a local oscillation frequency wave, and a hybrid coupler provided on the output side of the hybrid coupler and having a phase difference of 90° from each other. first and second balanced mixers for obtaining first and second intermediate frequency signals having the following characteristics; for each of the intermediate frequency signals, detecting the polarity of the first half cycle of each intermediate frequency pulse that changes at the period of the Doppler frequency; first and second Doppler generators that obtain first and second Doppler signals having a phase difference of 90 degrees from each other, and a detection means for detecting unstable periods near the rising and falling edges of each of the above Doppler signals. , and A radar device comprising: a switching circuit that outputs a Doppler signal by replacing the unstable period of each Doppler signal with the other Doppler signal. 2 The detection means includes first and second differentiating circuits that differentiate the first and second Doppler signals obtained from the first and second Doppler generators, and outputs of these differentiating circuits into both waves. A first and second double-wave detection circuit that rectifies and shapes the waveform, and is set by the waveform shaping output obtained from the first Doppler signal and reset by the waveform shaping output obtained from the second Doppler signal. the switching circuit outputs the second Doppler signal when the bistable circuit is set;
2. The radar device according to claim 1, further comprising a switch circuit that outputs the first Doppler signal when the radar device is reset. 3. A hybrid coupler that combines the reflected reception wave from the target of the transmitted high-frequency pulse radio wave and the local oscillation frequency wave, a first and a first coupler that are provided on the output side of this hybrid coupler and have a phase difference of 90 degrees from each other. The first and second balanced mixers obtain two intermediate frequency signals, and for each of the above intermediate frequency signals, detect the polarity of the first half cycle of each intermediate frequency pulse that changes with the period of the Doppler frequency, and first and second Doppler generators that obtain first and second Doppler signals having a phase difference; detection means for detecting unstable periods near the rising and falling edges of each of the Doppler signals; A switching circuit that outputs a Doppler signal by replacing the unstable period with another Doppler signal, and a phase determination circuit that determines the phase of the Doppler signal obtained from the switching circuit to obtain a moving direction determination signal of the target object. A radar device characterized by: 4 The detection means includes first and second differentiating circuits that differentiate the first and second Doppler signals obtained from the first and second Doppler generators, and outputs of these differentiating circuits into both waves. A first and second double-wave detection circuit that rectifies and shapes the waveform, and is set by the waveform shaping output obtained from the first Doppler signal and reset by the waveform shaping output obtained from the second Doppler signal. the switching circuit outputs the second Doppler signal when the bistable circuit is set;
It is a switch circuit that switches to output the first Doppler signal when it is reset, and the phase determination circuit includes a frequency divider that divides the output of the bistable circuit by 1/2, and this frequency divider. 4. The radar device according to claim 3, further comprising an exclusive OR circuit that takes an exclusive OR of the output signal of the switch and the Doppler signal obtained from the switching circuit.
JP9891777A 1977-08-17 1977-08-17 Radar unit Granted JPS5432292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9891777A JPS5432292A (en) 1977-08-17 1977-08-17 Radar unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9891777A JPS5432292A (en) 1977-08-17 1977-08-17 Radar unit

Publications (2)

Publication Number Publication Date
JPS5432292A JPS5432292A (en) 1979-03-09
JPS624669B2 true JPS624669B2 (en) 1987-01-31

Family

ID=14232474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9891777A Granted JPS5432292A (en) 1977-08-17 1977-08-17 Radar unit

Country Status (1)

Country Link
JP (1) JPS5432292A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63187783U (en) * 1987-05-26 1988-12-01
JP2014102195A (en) * 2012-11-21 2014-06-05 Nec Corp Radar device and radar device monitoring method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492565A (en) * 1972-03-13 1974-01-10
JPS501698A (en) * 1973-05-04 1975-01-09
JPS5154392A (en) * 1974-11-06 1976-05-13 Mitsubishi Electric Corp SHINGO SHORIKAIRO

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997666U (en) * 1972-12-15 1974-08-22

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492565A (en) * 1972-03-13 1974-01-10
JPS501698A (en) * 1973-05-04 1975-01-09
JPS5154392A (en) * 1974-11-06 1976-05-13 Mitsubishi Electric Corp SHINGO SHORIKAIRO

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63187783U (en) * 1987-05-26 1988-12-01
JP2014102195A (en) * 2012-11-21 2014-06-05 Nec Corp Radar device and radar device monitoring method

Also Published As

Publication number Publication date
JPS5432292A (en) 1979-03-09

Similar Documents

Publication Publication Date Title
EP1570295B1 (en) Frequency shift keying radar with ambiguity detection
JP3964362B2 (en) Radio wave radar device and inter-vehicle distance control device
JPH03502363A (en) Vehicle collision prevention radar device for driving in fog
JPS5825990B2 (en) Simultaneous distance and relative velocity measurement device using reflection method
JPH08189965A (en) Radar apparatus for vehicle
WO2002063336A1 (en) Fm-cw rader apparatus
US3898653A (en) Automotive radar sensor
US2532221A (en) Pulse modulated echo ranging system
CN100470257C (en) Method for detecting peripheral obstacle for motor vehicle
JP3746370B2 (en) Radar transceiver
US4065768A (en) Radar apparatus
JP3230016B2 (en) FM-CW radar
JPS624669B2 (en)
JP3587444B2 (en) Radar equipment
EP0154054A2 (en) HF arrangement for coherent pulse radar
JP2001183449A (en) Collision alarm
JP2932210B2 (en) Automotive radar system
US2977589A (en) Electromagnetic detecting and tracking devices
US3913106A (en) Radar detection apparatus for preventing vehicular collisions
JP2006317456A (en) Radio-wave radar system and adaptive cruise control system
US3546695A (en) Radar transpondor system
US3222674A (en) Radio detection and automatic tracking equipment
US3333266A (en) Dual spectrum radar ranging
JPH0128915B2 (en)
JPH0221551B2 (en)