JPS6246648B2 - - Google Patents

Info

Publication number
JPS6246648B2
JPS6246648B2 JP6164581A JP6164581A JPS6246648B2 JP S6246648 B2 JPS6246648 B2 JP S6246648B2 JP 6164581 A JP6164581 A JP 6164581A JP 6164581 A JP6164581 A JP 6164581A JP S6246648 B2 JPS6246648 B2 JP S6246648B2
Authority
JP
Japan
Prior art keywords
phosphorus
oxidized
fibers
oxidation treatment
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6164581A
Other languages
Japanese (ja)
Other versions
JPS57176220A (en
Inventor
Shigeru Ikegami
Minoru Hirai
Kenji Shimazaki
Kazuo Izumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP6164581A priority Critical patent/JPS57176220A/en
Publication of JPS57176220A publication Critical patent/JPS57176220A/en
Publication of JPS6246648B2 publication Critical patent/JPS6246648B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、アクリル系繊維を酸化処理して酸化
繊維を得るに際し、短時間で且つ均一に酸化処理
する方法に関するものである。 従来、アクリル系繊維の酸化性雰囲気中、200
〜400℃で処理することによつて酸化繊維が得ら
れ、そして酸化条件を変えて曝られた種々の性質
の酸化繊維が、そのままで耐炎性を有する繊維と
して用いられ、また炭素繊維用、又は繊維状活性
炭用の原料繊維として用いられることが知られて
いる。この酸化繊維を製造するための酸化処理は
長時間を要し、短時間で処理しようとすると、酸
化が不均一化し、また、繊維の膠着、燃焼切断等
の問題が生ずる。このため、酸化処理工程におけ
る処理時間を短縮するとともに、均一に酸化処理
することは、酸化繊維を経済的に得る上での重要
な課題となつている。 本発明は、このようなアクリル系繊維の酸化処
理工程を改良し、短時間で高品質の酸化繊維を得
る方法を提供するものである。 すなわち、本発明はリン又は(及び)ホウ素に
換算して0.01〜0.3%(重量)のリン又は(及
び)ホウ素の化合物を含むアクリル系繊維を酸化
性雰囲気中200〜400℃で酸素結合量5〜8%まで
酸化処理し、次いでリン又は(及び)ホウ素に換
算して0.02〜0.3%のリン又は(及び)ホウ素の
化合物を追加添着し、250〜400℃で酸素結合量15
%以上、コア率8%以下になるまで酸化処理する
ことによる酸化繊維の製造法である。 以上の如き方法によつてアクリル系繊維を酸化
処理すると、短時間で内部まで均一に酸化が行わ
れると共に繊維相互の膠着のない酸化繊維を得る
ことができる。 特に本発明方法は、アクリル系繊維のうち、ト
ウ状のアクリル系繊維の酸化処理に適している。
これは、このよう構成本数の多いトウを酸化する
場合酸化処理時温度の調整が困難であり、酸化処
理の不均一化、繊維の膠着、酸化処理中の燃焼を
生じ易いためである。本発明方法で得られた酸化
繊維は、そのままで耐炎性繊維として利用できる
と共に不活性雰囲気中焼成し、炭素繊維とするこ
ともできるが、特にこの酸化繊維は、繊維状活性
炭の原料として優れ、高温下活性ガス中で賦活処
理することによつて、高収率でしかも取扱い性の
優れた繊維状活性炭とすることができる。ここで
酸素結合量は、CHNコーダーにより測定し、次
式により求められる。 酸素結合量(%)=試料総重量−灰分−CHN合計量/試料総重量−灰分×100 CHNコーダー:柳本高速CHNコーダーMT−2
型 また繊維のコア率は、酸化繊維の断面スキン・
コア顕微鏡写真(倍率400倍)の測定結果より、
次式にて検体数20の平均値で示されるものを意味
する。 コア率(%)=(コア部断面積)/(繊維断面積)×100=(コアの直径/繊維直径)×100 本発明で使用されるアクリル系繊維としては、
アクリロニトリルを少なくとも85重量%以上、好
ましくは、90〜98重量%を含む重合体又は共重合
体より得られた繊維である。この場合コモノマー
としては、アクリル酸、メタクリル酸、アリルス
ルホン酸、又はこれらの塩類、エステル類、酸ク
ロライド類、酸アミド類、ビニルアミドのn−置
換誘導体、塩化ビニリデン、α−クロロアクリロ
ニトリル、ビニルピリジン類、ビニルベンゼンス
ルホン酸、ビニルスルホン酸及びそのアルカリ土
類金属塩等がある。またアクリロニトリル重合体
の変成重合体、アクリロニトリル重合体及び共重
合体同志の混合物から得られる繊維も使用され
る。 アクリル系繊維の繊度は特に制限されないが、
1.0〜15d、特に2〜5dのものが好ましい。1.0dよ
り細くなると繊維強力が低く繊維の切断が起り易
く、逆に15dより太くなると、酸化速度が遅く、
また炭素繊維とした場合も強度、弾性が低くな
り、繊維状活性炭とした場合賦活収率も低下す
る。 リン又は(及び)ホウ素の存在は本発明の製造
工程を通じて重要であるが、酸化工程においてリ
ン等は特にコア率を減少させ、繊維の膠着を防止
する効果を有する。 出発原料のアクリル系繊維は酸化処理に供する
前の段階でリン又は(及び)ホウ素を0.01〜0.3
%、好ましくは0.02〜0.1%(重量)含有するこ
とが必要である。リン等の含有量が0.01%未満の
場合、コア率の高い酸化繊維しか得られず、また
逆に0.3%を越える場合、酸化処理時に繊維の一
部が膠着し、また酸化速度が著しく減少して工業
的生産が困難となる。繊維に対するリン又は(及
び)ホウ素の添加はリン又はホウ素化合物の状態
で行われる。リン化合物としてはリン酸、メタリ
ン酸、ピロリン酸、亜リン酸、ホスフイン酸、若
しくはこれらの塩類等の無機リン化合物又はアル
キル若しくはアリールホスフオネート、同ホスフ
エート、同ホスフアイト等の有機リン化合物であ
る。ホウ素化合物としてはホウ酸、メタホウ酸あ
るいはこれらの塩類が使用される。 これ等のリン化合物、ホウ素化合物等は、それ
ぞれ1種又は2種以上で用いられ、リン化合物と
ホウ素化合物とを併用することもできる。リンと
ホウ素は効果上特に差異はなく、所要量が均一に
添着していれば問題がない。また、鉄塩等を併用
することにより酸化処理時の膠着が抑制されるた
め好ましい結果を得ることができる。 リン化合物等の添着を均一に行うために、アニ
オン系、カチオン系、ノニオン系の分散剤を併用
すると一層効果的である。 出発原料のアクリル系繊維に、0.01〜0.3%
(重量)リン等を含有せしめる方法として下記が
あるが、リン等を均一に繊維の芯まで浸透させる
意味で(1)の方法が最も効果的である。 (1) 紡糸工程中の延伸前のゲル状態にてリン化合
物等を浴中又はスプレーで含有せしめる方法 (2) 延伸後、乾燥前の工程にて浴中浸漬又はスプ
レーする方法 (3) 酸化処理直前で浴中浸漬又はスプレーする方
法 酸化性雰囲気の媒体としては空気、酸素、塩化
水素、亜硫酸ガス等の単独ガス若しくは混合ガス
又はこれらのガスと不活性ガスとの混合ガスが用
いられるが、主として空気及び空気と窒素との混
合ガスが経済性、工程の安定性の点から最適であ
る。 酸化処理における酸化性雰囲気の酸素濃度は、
0.5〜35容量%の範囲の媒体、特に2〜25%の範
囲が最も効果的である。前段の酸化は酸素濃度20
〜35容量%の媒体中で、後段の酸化は、酸素濃度
0.2〜9%(容量)の媒体中で行うのが好まし
い。酸素濃度が低いと高温酸化が可能となり、こ
のため酸化時間が短縮され、コア率も低くなる。
酸化処理は、得られた酸化繊維の用途によつて、
その程度が異なり、繊維状活性炭製造用とする場
合は、酸素結合量が16.5%以上となるまで処理す
るのが好ましい。酸素結合量は23〜25%程度まで
高めることができる。 酸素処理温度は、200〜400℃で行われ、最適温
度は、酸化媒体の種類及びリンやホウ素の添着状
況により多少異なるが、225〜350℃の範囲であ
る。 酸化処理時、繊維に与える張力は、酸化温度で
の収縮が、酸化処理中、その温度における自由収
縮率の70〜90%になるようにするのがよく、70%
より低いとトウの切断を招き易く90%以上の場
合、繊維が脆弱化し易く加工性を有する繊維とな
り難い。 本発明において酸化処理は2段階に分けて行わ
れる。第1段の酸化処理は、酸化処理によつて、
アクリル系繊維の酸素結合量が5〜8%となるま
で酸化性雰囲気中で行われる。第2段の酸化処理
は、第1段の酸化処理を経た、酸素結合量5〜8
%の繊維を、酸化性雰囲気中、酸素結合量15%以
上でコア率8%以下となるまで酸化処理する。こ
の際、第1段の酸化処理と第2段の酸化処理との
間でリン化合物等の追加添着が行われる。 第1段の酸化処理では、所要量のリン等を含む
アクリル系繊維を酸化性雰囲気中200〜400℃で酸
素結合量5〜8%まで酸化処理する。このときの
酸化性雰囲気媒体の酸素濃度は20〜35%(容量)
程度のものが使用され、特に好ましくは25〜30%
(容量)の媒体が好ましく、一般的には空気を使
用するのがよい。 第2段の酸化処理は、第1段の酸化処理よりも
高い温度でしかも酸化性雰囲気の媒体中の酸素濃
度を低くして行うのが好ましい。酸化温度は250
〜400℃、特に好ましくは300〜350℃で酸素濃度
0.2〜9%(容量)の媒体中で行うのがよい。不
活性ガスとしては例えば窒素、炭酸ガス、燃焼ガ
ス、アルゴン、ヘリウムが使用される。 この酸化処理において、雰囲気媒体として酸素
濃度20〜25容量%の例えば空気を使用することも
できるが、酸素濃度0.2〜9%の低濃度酸素雰囲
気中で行うと高温での酸化処理が可能となり酸化
時間を短縮するのに有効である。 第1段酸化処理と第2段酸化処理の間において
リン化合物等が、繊維に対し、リン又は(及び)
ホウ素換算で0.02〜0.3%(重量)追加添着され
る。添着は被処理繊維をリン化合物等を含む溶液
に浸漬するか、繊維にスプレーするなどの方法に
よつて行われる。 添加されるリン化合物等の量がリン等の換算量
で0.3%を越えると酸化繊維の膠着を招き繊維が
脆弱化する。 一方0.02%より少ないと、繊維が燃焼し易く、
酸化処理の安定性に欠け、不均一酸化され易くな
りコア率も高くなる。好ましい範囲は0.04〜0.1
%である。 本発明方法とリン等を一時に加える方法等との
効果について示すと次の通りである。 すなわち、アクリロニトリル92.0%、アクリル
酸メチル4.5%、アクリルアミド3.5%のアクリル
系繊維からなる9万デニールのトウ(単糸繊維
3d)にリン〔P〕及び(又は)ホウ素〔B〕を
含ませることにより酸化処理工程前に第1回の添
着を行い更に酸化処理工程中に第2回の添着を行
つて酸化処理を続行する本発明方法(No.1〜
4)、並びに、比較例として同一トウについて酸
化処理前及び酸化処理工程中を通じリン又はホウ
素を全く添着しない場合(No.5)、酸化処理前に
のみリン又は(及び)ホウ素を加えるが酸化処理
工程中には追加添着しない場合(No.8〜13)及び
酸化処理工程前に過量のリンを添加し酸化処理し
酸化処理工程中にもリンを追加添着した場合(No.
14)について、夫々酸化速度、酸化繊維のコア率
及び酸素結合量を測定した結果を次表に示す。ま
た、第2段(後段)の酸化処理の酸素濃度5%の
窒素雰囲気中で行う本発明方法(No.6)、及び酸
素濃度2%の窒素雰囲気中で行う本発明方法(No.
7)についても次表に示す。
The present invention relates to a method for uniformly oxidizing acrylic fibers in a short time to obtain oxidized fibers. Conventionally, acrylic fibers were oxidized at 200
Oxidized fibers are obtained by processing at ~400°C, and oxidized fibers with various properties exposed to different oxidation conditions can be used as they are as flame-resistant fibers, and can also be used for carbon fibers, or It is known to be used as a raw material fiber for fibrous activated carbon. The oxidation treatment for producing oxidized fibers takes a long time, and if the treatment is attempted in a short time, the oxidation becomes uneven and problems such as fiber sticking and combustion breakage occur. Therefore, shortening the treatment time in the oxidation treatment step and performing the oxidation treatment uniformly are important issues in obtaining oxidized fibers economically. The present invention improves the oxidation treatment process for acrylic fibers and provides a method for obtaining high-quality oxidized fibers in a short time. That is, the present invention provides an acrylic fiber containing a phosphorus or (and) boron compound of 0.01 to 0.3% (weight) in terms of phosphorus or (and) boron at 200 to 400°C in an oxidizing atmosphere with an oxygen bond amount of 5. Oxidation treatment is carried out to ~8%, then additionally impregnated with 0.02~0.3% of phosphorus or (and) boron compound in terms of phosphorus or (and) boron, and the amount of oxygen bonded is 15 at 250~400℃.
This is a method for producing oxidized fibers by performing oxidation treatment until the core ratio is 8% or higher. When acrylic fibers are oxidized by the method described above, oxidation is uniformly carried out to the inside in a short time, and oxidized fibers can be obtained in which the fibers do not stick to each other. In particular, the method of the present invention is suitable for oxidizing tow-like acrylic fibers among acrylic fibers.
This is because when oxidizing a tow with such a large number of fibers, it is difficult to adjust the temperature during the oxidation treatment, which tends to cause unevenness of the oxidation treatment, fiber sticking, and combustion during the oxidation treatment. The oxidized fibers obtained by the method of the present invention can be used as flame-resistant fibers as they are, and can also be made into carbon fibers by firing in an inert atmosphere, but these oxidized fibers are particularly excellent as raw materials for fibrous activated carbon. By performing the activation treatment in an activated gas at high temperatures, fibrous activated carbon with high yield and excellent handling properties can be obtained. Here, the amount of oxygen bonding is measured using a CHN coder and calculated using the following formula. Oxygen binding amount (%) = Sample total weight - Ash content - CHN total amount / Sample total weight - Ash content x 100 CHN coder: Yanagimoto High Speed CHN Coder MT-2
Also, the core ratio of the fiber is the cross-sectional skin of the oxidized fiber.
From the measurement results of the core micrograph (400x magnification),
It means the average value of 20 samples in the following formula. Core ratio (%) = (core section cross-sectional area) / (fiber cross-sectional area) × 100 = (core diameter / fiber diameter) 2 × 100 The acrylic fiber used in the present invention is
The fiber is obtained from a polymer or copolymer containing at least 85% by weight of acrylonitrile, preferably 90 to 98% by weight. In this case, comonomers include acrylic acid, methacrylic acid, allylsulfonic acid, or their salts, esters, acid chlorides, acid amides, n-substituted derivatives of vinylamide, vinylidene chloride, α-chloroacrylonitrile, vinylpyridine. , vinylbenzenesulfonic acid, vinylsulfonic acid and its alkaline earth metal salts. Also used are fibers obtained from modified polymers of acrylonitrile polymers and mixtures of acrylonitrile polymers and copolymers. The fineness of the acrylic fiber is not particularly limited, but
1.0 to 15 d, especially 2 to 5 d are preferred. If it is thinner than 1.0d, the fiber strength will be low and fiber breakage will occur easily, and if it is thicker than 15d, the oxidation rate will be slow.
Further, when carbon fibers are used, the strength and elasticity are lowered, and when fibrous activated carbon is used, the activation yield is also lowered. The presence of phosphorus and/or boron is important throughout the manufacturing process of the present invention, and phosphorus and the like particularly have the effect of reducing the core ratio and preventing fiber sticking during the oxidation process. The starting material, acrylic fiber, is treated with 0.01 to 0.3 phosphorus or (and) boron before being subjected to oxidation treatment.
%, preferably 0.02 to 0.1% (by weight). If the content of phosphorus, etc. is less than 0.01%, only oxidized fibers with a high core ratio can be obtained, and conversely, if it exceeds 0.3%, some of the fibers will stick together during the oxidation treatment, and the oxidation rate will decrease significantly. This makes industrial production difficult. The addition of phosphorus and/or boron to the fibers is carried out in the form of phosphorus or boron compounds. Examples of the phosphorus compound include inorganic phosphorus compounds such as phosphoric acid, metaphosphoric acid, pyrophosphoric acid, phosphorous acid, phosphinic acid, or salts thereof, or organic phosphorus compounds such as alkyl or aryl phosphonates, phosphates, and phosphites. As the boron compound, boric acid, metaboric acid, or salts thereof are used. These phosphorus compounds, boron compounds, etc. can be used alone or in combination of two or more, and the phosphorus compound and boron compound can also be used in combination. There is no particular difference in effectiveness between phosphorus and boron, and there is no problem as long as the required amounts are uniformly attached. Further, by using iron salt or the like in combination, agglutination during oxidation treatment can be suppressed, so that favorable results can be obtained. In order to uniformly impregnate the phosphorus compound, etc., it is more effective to use an anionic, cationic, or nonionic dispersant in combination. 0.01-0.3% to the starting material acrylic fiber
(Weight) There are the following methods for incorporating phosphorus, etc., but method (1) is the most effective in terms of uniformly penetrating the phosphorus to the core of the fiber. (1) A method in which a phosphorus compound, etc. is contained in a bath or sprayed in a gel state before stretching during the spinning process. (2) A method in which phosphorus compounds are immersed in a bath or sprayed in a process after stretching and before drying. (3) Oxidation treatment. Method of immersing or spraying in a bath immediately before use Air, oxygen, hydrogen chloride, sulfur dioxide, or other gases or mixtures, or mixtures of these gases and inert gases are used as the medium for the oxidizing atmosphere, but mainly Air and a mixed gas of air and nitrogen are optimal in terms of economy and process stability. The oxygen concentration in the oxidizing atmosphere during oxidation treatment is
Media in the range 0.5-35% by volume are most effective, especially in the range 2-25%. Oxidation in the first stage has an oxygen concentration of 20
In a medium of ~35% by volume, the subsequent oxidation is carried out at an oxygen concentration of
Preferably it is carried out in a medium of 0.2-9% (by volume). Lower oxygen concentrations allow higher temperature oxidation, which reduces oxidation time and lowers core fraction.
The oxidation treatment depends on the use of the obtained oxidized fiber.
The extent of this differs, and when used for producing fibrous activated carbon, it is preferable to process until the amount of oxygen bonding reaches 16.5% or more. The amount of oxygen binding can be increased to about 23-25%. The oxygen treatment temperature is 200 to 400°C, and the optimum temperature is in the range of 225 to 350°C, although it varies somewhat depending on the type of oxidizing medium and the state of impregnation of phosphorus and boron. During oxidation treatment, the tension applied to the fibers is preferably such that the shrinkage at the oxidation temperature is 70 to 90% of the free shrinkage rate at that temperature, and 70%.
If it is lower than this, the tow tends to break, and if it is more than 90%, the fiber tends to become brittle and difficult to form into a fiber with workability. In the present invention, the oxidation treatment is performed in two stages. In the first stage oxidation treatment, by oxidation treatment,
The process is carried out in an oxidizing atmosphere until the amount of oxygen bonding in the acrylic fibers reaches 5 to 8%. The second stage oxidation treatment is performed using the oxygen bond amount 5 to 8, which has undergone the first stage oxidation treatment.
% fibers are oxidized in an oxidizing atmosphere until the amount of oxygen bonding is 15% or more and the core ratio is 8% or less. At this time, additional impregnation of a phosphorus compound or the like is performed between the first stage oxidation treatment and the second stage oxidation treatment. In the first stage of oxidation treatment, acrylic fibers containing a required amount of phosphorus, etc. are oxidized at 200 to 400° C. in an oxidizing atmosphere until the amount of oxygen binding is 5 to 8%. At this time, the oxygen concentration of the oxidizing atmosphere medium is 20 to 35% (by volume)
A certain amount is used, particularly preferably 25 to 30%.
(volume) of medium is preferred, and air is generally preferred. The second stage oxidation treatment is preferably performed at a higher temperature than the first stage oxidation treatment and at a lower oxygen concentration in the oxidizing atmosphere medium. Oxidation temperature is 250
Oxygen concentration at ~400℃, especially preferably 300-350℃
It is better to carry out in a medium of 0.2 to 9% (by volume). Examples of inert gases used include nitrogen, carbon dioxide, combustion gas, argon, and helium. In this oxidation treatment, for example, air with an oxygen concentration of 20 to 25% by volume can be used as the atmospheric medium, but if carried out in a low concentration oxygen atmosphere with an oxygen concentration of 0.2 to 9%, oxidation treatment at high temperatures becomes possible. This is effective in reducing time. Between the first stage oxidation treatment and the second stage oxidation treatment, phosphorus compounds etc.
An additional 0.02 to 0.3% (weight) of boron is attached. The impregnation is carried out by immersing the fibers to be treated in a solution containing a phosphorus compound or the like, or by spraying the fibers with the solution. If the amount of added phosphorus compounds exceeds 0.3% in terms of phosphorus, etc., the oxidized fibers will stick together and the fibers will become brittle. On the other hand, if it is less than 0.02%, the fibers will easily burn,
It lacks stability in oxidation treatment, tends to be unevenly oxidized, and has a high core ratio. The preferred range is 0.04-0.1
%. The effects of the method of the present invention and the method of adding phosphorus etc. all at once are as follows. That is, a 90,000 denier tow (single fiber) made of acrylic fibers containing 92.0% acrylonitrile, 4.5% methyl acrylate, and 3.5% acrylamide.
By incorporating phosphorus [P] and/or boron [B] into 3d), the first impregnation is performed before the oxidation treatment process, and the second impregnation is performed during the oxidation treatment process to continue the oxidation treatment. The method of the present invention (No. 1 to
4), and as a comparative example, when the same tow is not impregnated with phosphorus or boron at all before and during the oxidation treatment (No. 5), phosphorus or (and) boron is added only before the oxidation treatment, but the oxidation treatment Cases in which no additional impregnation is done during the process (Nos. 8 to 13) and cases in which an excess amount of phosphorus is added before the oxidation treatment process and phosphorus is additionally impregnated during the oxidation treatment process (No.
14), the results of measuring the oxidation rate, core ratio of oxidized fibers, and amount of oxygen bonding are shown in the following table. In addition, the method of the present invention (No. 6) in which the second stage (latter stage) oxidation treatment is performed in a nitrogen atmosphere with an oxygen concentration of 5%, and the method of the present invention (No. 6) in which the second stage (second stage) oxidation treatment is performed in a nitrogen atmosphere with an oxygen concentration of 2%.
7) is also shown in the table below.

【表】 以上の結果より明らかな通り、本発明の如く被
処理繊維中に適正量のリン、ホウ素等を含ませ、
更に追加添着して2段階の酸化処理をすることに
よつて、他の場合と比較し、コア率を所定量以下
に減少させることができ、また酸化処理速度をは
やめて処理時間を短縮することができる。 本発明により酸化処理して得られた酸化繊維
は、そのままで耐炎性繊維として有効に利用する
ことができる。更に、このものは、均一に芯まで
酸化されているため、高温短時間で水蒸気、二酸
化炭素、窒素等にて賦活することにより高収率で
繊維状活性炭にすることができ、繊維が中空化す
ることもない。また、この繊維状活性炭は、糸、
織物、フエルト、不織布等への加工性にも富んで
いる。 次に本発明を実施例によつて説明する。例中P
とあるはリンをBとあるはホウ素を意味する。 実施例 1 アクリロニトリル94.0重量%、アクリル酸メチ
ル6.0重量%の共重合組成の繊維からなる54万デ
ニールのトウ(単糸繊度3d)をリン酸二アンモ
ニウム水溶液で処理し、Pとして0.07重量%含有
せしめた後、空気中で240℃、2時間、収縮率が
自由収縮率の75〜80%になるような張力で、酸化
し、酸素結合量6.8重量%の酸化繊維を得た。更
にこの酸化途中の繊維をリン酸二アンモニウム水
溶液にて処理し、Pとして0.24重量%添着せしめ
た後、更に空気中で270℃、0.5時間、収縮率が自
由収縮率の75〜80%になるような張力で、酸化処
理したところ、酸素結合量16.8重量%、コア率
0.5%の酸化繊維を得た。この酸化繊維は強度32
Kg/mm2、伸度18%であつた。 実施例 2 実施例1と同じ組成の重合体を紡糸工程中、ゲ
ルトウの状態の時に、n−ブチル−ビス−(2−
クロロエチル)ホスフエートにて処理し、Pとし
て0.12重量%含有せしめ、54万デニールのトウ
(単糸繊度3d)とした。このトウを空気中で240
℃、2時間、自由収縮率が75〜80%になるような
張力で酸化処理したところ、この時の酸化繊維の
酸素結合量は7.4重量%であつた。更にこの酸化
処理途中の繊維をホウ酸水で処理し、Bとして
0.28重量%添着せしめた後、更に270℃にて空気
中で、収縮率が自由収縮率の75〜80%になるよう
な張力で0.5時間酸化処理したところ、酸素結合
量17.0重量%、コア率1.1%の酸化繊維を得た。
この繊維は強度34Kg/mm2、伸度19%であつた。 実施例 3 アクリロニトリル92.4重量%、メタクリル酸メ
チル7.6%の共重合組成からなる45万デニール
(単糸繊度1.5d)のトウをホウ酸水溶液にて処理
し、Bとして0.2重量%含有せしめた後、空気中
で250℃、2時間、収縮率が自由収縮率の75〜80
%になるような張力のもと酸化処理したところ、
酸素結合量が7.9重量%であつた。更にこの酸化
途中の繊維をホウ酸水溶液にて処理し、Bとして
0.21重量%添着した後、270℃、0.5時間空気中
で、収縮率が自由収縮率の75〜80%になるような
張力のもと酸化処理したところ、酸素結合量18.4
重量%、コア率1.5%の酸化繊維(強度35Kg/
mm2、伸度20%)を得た。 なお、この繊維を賦活温度1100℃にて、内圧
0.015Kg/cm2、賦活ガス(H2O/CO2=4/1)
にて3.5分間処理したところ、比表面積980m2
g、強度48.2Kg/mm2、ベンゼン吸着量51.0%の繊
維状活性炭を収率30.4%で得た。 実施例 4 実施例3と同じ組成の繊維を、PとBが2:1
の組成比のリン酸アンモニウムとホウ酸の混合水
溶液にて処理し、P0.2、B0.1重量%含有せしめた
後、空気中で250℃、15時間、収縮率が自由収縮
率の75〜80%になるような張力のもと、酸化処理
したところ、酸素結合量7.1重量%の酸化繊維を
得た。更にこの繊維をホウ酸水溶液にて処理し、
Bとして0.18重量%添着した後、更に空気中で
270℃、30分間、収縮率が自由収縮率の75〜80%
になるような張力のもと、酸化処理し、酸素結合
量が18.9重量%、コア率が0.9%の酸化繊維を得
た。 なお、この繊維をリン酸二アンモニウム水溶液
にて処理し、P及びBの含有量をそれぞれ0.30、
0.28重量%に調整した後、賦活温度1200℃にて、
内圧0.015Kg/cm2、賦活ガス(H2O/N2(Val)=
4/1)のもと、1分30秒間処理したところ、比
表面積1250m2/g、強度39.7Kg/mm2、ベンゼン吸
着量58.7%の繊維状活性炭を収率28.4%で得た。 実施例 5 アクリロニトリル90.0重量%、塩化ビニリデン
10重量%の共重合体組成よりなる9万デニール
(単糸繊度3d)を、ピロリン酸水溶液にて処理
し、Pを0.11重量%含有せしめた後、更に塩化第
二鉄水溶液にて処理し、鉄として0.02重量%含有
せしめた後、空気中255℃で、1時間、収縮率が
自由収縮率の75〜80%になるような張力のもと
で、酸化処理した。この時酸化処理糸の酸素結合
量は7.5重量%であつた。更にこの繊維を、ピロ
リン酸水溶液にて処理しPの含有量を、0.14重量
%添着した後、酸素濃度が5.5重量%よりなる空
気と窒素の混合ガス中で、290℃、20分間、収縮
率が自由収縮率の75〜80%になるような張力のも
と酸化処理した。この時の酸素結合量は19.5重量
%、コア率0.1%であつた。 なお、この繊維を賦活温度1150℃、内圧0.11
Kg/cm2で、賦活ガス(H2O/N2(Val)=4/
1)の混合ガス中で、処理したところ、比表面積
1250m2/g、強度41.9Kg/mm2、ベンゼン吸着量
57.4%の繊維状活性炭を収率29.9%で得た。
[Table] As is clear from the above results, by incorporating appropriate amounts of phosphorus, boron, etc. into the fibers to be treated as in the present invention,
Furthermore, by additionally impregnating and performing two-stage oxidation treatment, the core ratio can be reduced to a predetermined amount or less compared to other cases, and the oxidation treatment speed can be reduced to shorten the treatment time. Can be done. The oxidized fibers obtained by the oxidation treatment according to the present invention can be effectively used as flame-resistant fibers as they are. Furthermore, since this product is uniformly oxidized to the core, it can be made into fibrous activated carbon at a high yield by activating it with steam, carbon dioxide, nitrogen, etc. at high temperatures and in a short time, and the fibers become hollow. There's nothing to do. In addition, this fibrous activated carbon can be used as yarn,
It is also highly processable into fabrics, felts, non-woven fabrics, etc. Next, the present invention will be explained with reference to examples. P in example
"B" means phosphorus and "B" means boron. Example 1 A 540,000 denier tow (single yarn fineness 3d) made of fibers with a copolymerization composition of 94.0% by weight of acrylonitrile and 6.0% by weight of methyl acrylate was treated with a diammonium phosphate aqueous solution to contain 0.07% by weight of P. After that, the fibers were oxidized in air at 240° C. for 2 hours under a tension such that the shrinkage rate was 75 to 80% of the free shrinkage rate to obtain oxidized fibers with an oxygen bond amount of 6.8% by weight. Furthermore, the fibers in the middle of oxidation are treated with a diammonium phosphate aqueous solution to impregnate 0.24% by weight of P, and the shrinkage rate becomes 75-80% of the free shrinkage rate in air at 270°C for 0.5 hours. When subjected to oxidation treatment under the same tension, the amount of oxygen bonded was 16.8% by weight, and the core ratio was
0.5% oxidized fiber was obtained. This oxidized fiber has a strength of 32
Kg/mm 2 and elongation was 18%. Example 2 A polymer having the same composition as in Example 1 was mixed with n-butyl-bis-(2-
It was treated with (chloroethyl) phosphate to contain 0.12% by weight of P, resulting in a tow of 540,000 denier (single yarn fineness 3d). 240 this tow in the air
When the fibers were oxidized for 2 hours at a temperature of 75% to 80% under tension, the amount of oxygen bonded in the oxidized fibers was 7.4% by weight. Furthermore, the fibers in the middle of the oxidation treatment were treated with boric acid water to obtain B.
After impregnating 0.28% by weight, oxidation treatment was performed for 0.5 hours in air at 270°C under tension such that the shrinkage rate was 75 to 80% of the free shrinkage rate, resulting in an oxygen bond amount of 17.0% by weight and a core percentage. 1.1% oxidized fiber was obtained.
This fiber had a strength of 34 kg/mm 2 and an elongation of 19%. Example 3 A tow of 450,000 denier (single yarn fineness 1.5 d) consisting of a copolymer composition of 92.4% by weight of acrylonitrile and 7.6% of methyl methacrylate was treated with an aqueous boric acid solution to contain 0.2% by weight of B. In air at 250℃ for 2 hours, the shrinkage rate is 75 to 80 of the free shrinkage rate.
When oxidized under tension such that
The amount of oxygen bonded was 7.9% by weight. Furthermore, this oxidized fiber was treated with a boric acid aqueous solution to obtain B.
After impregnating 0.21% by weight, oxidation treatment was performed in air at 270°C for 0.5 hours under tension such that the shrinkage rate was 75 to 80% of the free shrinkage rate, and the amount of oxygen bonded was 18.4%.
Weight%, core rate 1.5% oxidized fiber (strength 35Kg/
mm 2 , elongation 20%). In addition, this fiber was activated at an activation temperature of 1100℃ and an internal pressure
0.015Kg/cm 2 , activating gas (H 2 O/CO 2 = 4/1)
When treated for 3.5 minutes, the specific surface area was 980m 2 /
Fibrous activated carbon having a strength of 48.2 kg/mm 2 and a benzene adsorption amount of 51.0% was obtained in a yield of 30.4%. Example 4 Fibers with the same composition as Example 3 were used with P and B ratios of 2:1.
After treatment with a mixed aqueous solution of ammonium phosphate and boric acid with a composition ratio of 0.2% and 0.1% by weight of B, the shrinkage rate was 75 to 75% of the free shrinkage rate in air at 250℃ for 15 hours. When the fibers were oxidized under a tension of 80%, an oxidized fiber with an oxygen bond content of 7.1% by weight was obtained. Furthermore, this fiber is treated with a boric acid aqueous solution,
After impregnating 0.18% by weight as B, further in air.
270℃, 30 minutes, shrinkage rate is 75-80% of free shrinkage rate
The fibers were oxidized under a tension such that the amount of oxygen bonded was 18.9% by weight and the core percentage was 0.9%. In addition, this fiber was treated with diammonium phosphate aqueous solution to reduce the P and B contents to 0.30 and 0.30, respectively.
After adjusting to 0.28% by weight, at an activation temperature of 1200℃,
Internal pressure 0.015Kg/cm 2 , activation gas (H 2 O/N 2 (Val) =
4/1) for 1 minute and 30 seconds, fibrous activated carbon with a specific surface area of 1250 m 2 /g, strength of 39.7 Kg/mm 2 and benzene adsorption amount of 58.7% was obtained in a yield of 28.4%. Example 5 Acrylonitrile 90.0% by weight, vinylidene chloride
90,000 denier (single yarn fineness 3d) consisting of a copolymer composition of 10% by weight was treated with an aqueous pyrophosphoric acid solution to contain 0.11% by weight of P, and then further treated with an aqueous ferric chloride solution, After containing 0.02% by weight of iron, it was oxidized in air at 255°C for 1 hour under tension such that the shrinkage rate was 75 to 80% of the free shrinkage rate. At this time, the amount of oxygen bonded in the oxidized yarn was 7.5% by weight. Furthermore, this fiber was treated with a pyrophosphoric acid aqueous solution to impregnate the P content to 0.14% by weight, and then the shrinkage rate was increased at 290°C for 20 minutes in a mixed gas of air and nitrogen with an oxygen concentration of 5.5% by weight. The material was oxidized under tension such that the shrinkage rate was 75 to 80% of the free shrinkage rate. At this time, the amount of oxygen bonded was 19.5% by weight, and the core ratio was 0.1%. In addition, this fiber was activated at a temperature of 1150℃ and an internal pressure of 0.11.
Kg/cm 2 , activating gas (H 2 O/N 2 (Val) = 4/
When treated in the mixed gas of 1), the specific surface area
1250m 2 /g, strength 41.9Kg/mm 2 , benzene adsorption amount
57.4% fibrous activated carbon was obtained with a yield of 29.9%.

Claims (1)

【特許請求の範囲】 1 リン又は(及び)ホウ素に換算して0.01〜
0.3%(重量)のリン又は(及び)ホウ素の化合
物を含むアクリル系繊維を200〜400℃の酸化性雰
囲気中、酸素結合量5〜8%まで酸化処理し、次
いでリン又は(及び)ホウ素に換算して0.02〜
0.3%のリン又は(及び)ホウ素の化合物を追加
添着し、更に250〜400℃で酸素結合量15%以上、
コア率8%以下になるまで酸化処理することを特
徴とするアクリル系繊維の酸化方法。 2 リン又は(及び)ホウ素に換算して0.01〜
0.3%(重量)のリン又は(及び)ホウ素の化合
物を含むアクリル系繊維を200〜400℃の酸化性雰
囲気中、酸素結合量5〜8%まで酸化処理し、次
いでリン又は(及び)ホウ素に換算して0.02〜
0.3%のリン又は(及び)ホウ素の化合物を追加
添着し、更に酸素含有量0.2〜9%(容量)の不
活性ガス中250〜400℃で酸素結合量15%以上、コ
ア率8%以下になるまで酸化処理することを特徴
とする特許請求の範囲1の酸化方法。
[Claims] 1 0.01 to 0.01 in terms of phosphorus or (and) boron
Acrylic fibers containing 0.3% (by weight) of phosphorus or (and) boron compounds are oxidized in an oxidizing atmosphere at 200 to 400°C to an oxygen bond content of 5 to 8%, and then oxidized to phosphorus or (and) boron. Converted to 0.02~
Add 0.3% of phosphorus or (and) boron compound, and further increase the oxygen binding amount to 15% or more at 250 to 400℃.
A method for oxidizing acrylic fibers, characterized by oxidizing the fibers until the core ratio is 8% or less. 2 0.01~ in terms of phosphorus or (and) boron
Acrylic fibers containing 0.3% (by weight) of phosphorus or (and) boron compounds are oxidized in an oxidizing atmosphere at 200 to 400°C to an oxygen bond content of 5 to 8%, and then oxidized to phosphorus or (and) boron. Converted to 0.02~
Addition of 0.3% phosphorus or (and) boron compound, and further increase the oxygen bond amount to 15% or more and the core ratio to 8% or less at 250 to 400℃ in an inert gas with an oxygen content of 0.2 to 9% (by volume). The oxidation method according to claim 1, characterized in that the oxidation treatment is performed until the oxidation treatment becomes oxidized.
JP6164581A 1981-04-23 1981-04-23 Oxidizing method of acrylic fiber Granted JPS57176220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6164581A JPS57176220A (en) 1981-04-23 1981-04-23 Oxidizing method of acrylic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6164581A JPS57176220A (en) 1981-04-23 1981-04-23 Oxidizing method of acrylic fiber

Publications (2)

Publication Number Publication Date
JPS57176220A JPS57176220A (en) 1982-10-29
JPS6246648B2 true JPS6246648B2 (en) 1987-10-03

Family

ID=13177158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6164581A Granted JPS57176220A (en) 1981-04-23 1981-04-23 Oxidizing method of acrylic fiber

Country Status (1)

Country Link
JP (1) JPS57176220A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191328A (en) * 1981-05-13 1982-11-25 Toho Rayon Co Ltd Preparation of fibrous active carbon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191328A (en) * 1981-05-13 1982-11-25 Toho Rayon Co Ltd Preparation of fibrous active carbon

Also Published As

Publication number Publication date
JPS57176220A (en) 1982-10-29

Similar Documents

Publication Publication Date Title
US4412937A (en) Method for manufacture of activated carbon fiber
CA1095206A (en) Process for producing carbon fibers
CA1159810A (en) Process for the production of fibrous activated carbon
US4520623A (en) Activated carbon fiber spun yarn
US5292822A (en) High moisture-absorbing and releasing fibers and process for producing the same
US4284615A (en) Process for the production of carbon fibers
US4080417A (en) Process for producing carbon fibers having excellent properties
US4349523A (en) Process for producing carbon fiber of improved oxidation resistance
GB2168966A (en) High-strength carbonaceous fiber
FR2522697A1 (en) ACRYLONITRILE FIBERS, METHOD FOR MANUFACTURING ACRYLONITRILE FIBER, AND MANUFACTURE OF PREOXIDIZED FIBER, FIBROUS ACTIVE CARBON, OR CARBON FIBER THEREFROM
US4661336A (en) Pretreatment of pan fiber
JPS6246648B2 (en)
US4526770A (en) Method of producing carbon fiber and product thereof
FR2471427A1 (en) PROCESS FOR PRODUCING POLYACRYLONITRILE PREOXIDE FIBER YARNS
US4830845A (en) Precursor for production of preoxidized fibers or carbon fibers
US3972984A (en) Process for the preparation of carbon fiber
CA1109616A (en) Carbon fiber having improved thermal oxidation resistance and process for producing same
JPS61282430A (en) Production of activated carbon fiber
JPS6242048B2 (en)
JPS6245719A (en) Fiber and yarn comprising aromatic polyamide mixture
KR100206488B1 (en) The manufacture method of the active carbon fiber
US3776994A (en) Method of manufacturing polyvinyl alcohol fiber of improved property
JPH0376869A (en) Method for treating surface of carbon fiber in vapor phase
US2897102A (en) Oxidation resistant graphite and method for making the same
JPS6347808B2 (en)