【発明の詳細な説明】[Detailed description of the invention]
本発明は新規なエステル化方法に関する。詳し
くは有機カルボン酸と脂肪族アルコールとを反応
させてエステルを製造するに際し、触媒として特
定のヘテロポリ酸又はその塩を活性炭に担持させ
た担体付触媒を使用するエステル化方法である。
従来、ヘテロポリ酸及びその塩は種々の反応の
触媒として使用されることが公知である。例えば
ヘテロポリ酸を溶解した均一液相系で反応を行う
場合は、反応後、該ヘテロポリ酸触媒を変質させ
ることなく反応物から該ヘテロポリ酸を分離回収
するために反応生成物、未反応物、溶媒等を蒸留
などの操作で除去し、ヘテロポリ酸を回収する
か、エーテルなどを用いてヘテロポリ酸を不溶性
の錯体に変えて分離する必要があつた。即ち触媒
として使用するヘテロポリ酸を反応物から分離回
収する方法はその操作が複雑であるばかりでな
く、該分離回収の途中で反応生成物が副反応を起
すなど困難な問題があつた。またヘテロポリ酸を
担体に担持させて使用することもいくつかの反応
に試みられているが、ヘテロポリ酸が担体から溶
出することを完全に防ぐことが出来ず実用化され
るに至つていない。従つて、水、アルコール、ケ
トン、エーテル、カルボン酸等のヘテロポリ酸又
はその塩を溶解する媒体の存在下に液相反応或い
は気相反応を行う場合、ヘテロポリ酸又はその塩
からなる触媒をどのような形態で取扱うかは重要
な技術課題である。
一方、酸とアルコールとを反応させてエステル
を製造するエステル化方法は古くから工業的に実
施されている。該エステル化方法に於いては一般
に触媒として硫酸、塩酸、トルエンスルホン酸、
三フツ化ホウ素、酸性イオン交換樹脂等の酸触媒
が使用されて来た。しかしこれらの触媒は前記し
たように触媒の分離回収に難点があつたり、耐熱
性の性質を有しなかつたり等の欠点のため、必ず
しも満足のいくものとは言えなかつた。
本発明者はヘテロポリ酸及びその塩の触媒活性
につき種々の反応を対象に研究を重ねて来た。そ
の結果、酸、アルコール、水などのヘテロポリ酸
又はその塩を溶解する媒体を用いるエステル化反
応に於いても特定の担体付触媒を用いる場合はヘ
テロポリ酸又はその塩の溶出をみることなく連続
的に反応を遂行出来ることを知つた。その後更に
研究を続けた結果、エステル化反応の触媒として
ヘテロポリ酸又はその塩を活性炭に担持させた担
体付触媒を使用すると反応系にヘテロポリ酸又は
その塩の溶出がないだけでなく、アルコールの脱
水によるエーテル等の副生が著しく抑制され好収
率でエステルが生成することを確認し、本発明を
完成させるに至つた。
即ち本発明は有機カルボン酸と脂肪族アルコー
ルとを反応させてエステルを製造するに際し、触
媒としてタングストケイ酸、タングストリン酸、
モリブドケイ酸、モリブドリン酸及びこれらの金
属塩よりなる群から選ばれた少なくとも1種のヘ
テロポリ酸またはその金属塩を活性炭に担持させ
た担体付触媒を使用することを特徴とするエステ
ル化方法である。
本発明の最大の特徴はヘテロポリ酸又はその塩
を活性炭に担持した担持付触媒を使用する点であ
る。該ヘテロポリ酸又はその塩を活性炭に担持さ
せる方法は特に限定されず公知の方法を採用する
ことが出来る。一般に有利な使用される方法は
水、アルコール、エーテル、カルボン酸などのヘ
テロポリ酸又はその塩を溶解する有機溶媒中に所
定量のヘテロポリ酸又はその塩を溶解させ、該溶
媒中に所定量の活性炭を加え、常温又は該溶媒の
沸点下で、必要時間例えば30〜60分十分に撹拌し
ながら活性炭にヘテロポリ酸又はその塩を吸着さ
せる。その後該有機溶媒から活性炭を別し、次
いでヘテロポリ酸又はその塩の溶出が認められな
くなるまで、常温又は沸点下の溶媒で洗浄又は抽
出し、必要に応じて乾燥すると本発明の担体付触
媒となる。活性炭に担持されて且つ対象反応中に
溶出しない条件のヘテロポリ酸又はその塩の担持
量はヘテロポリ酸の種類、活性炭の性状等によつ
て異なり一概に限定出来ないが一般には20(重
量)%以下とするのが好適である。担持量が多い
場合はエーテル等の副生物が増大するだけでな
く、触媒調製時の洗浄又は抽出に長時間を要し、
一定量の担持量まで減少したり、或いは反応の途
中でヘテロポリ酸が溶出する場合があるので、予
め担持量の最大量をテストしておくと好適であ
る。一般に最も広く使用されるヘテロポリ酸又は
その塩の担持量は5〜20(重量)%好ましくは10
〜15(重量)%の転囲である。
本発明で使用する活性炭は特に限定されず公知
のもの、市販のものをそのまま、必要に応じて硝
酸処理を行い或いは他の賦活を行つて使用すれば
よい。また本発明で使用するヘテロポリ酸又はそ
の塩はタングストケイ酸、タングストリン酸、モ
リブドケイ酸、モリブドリン酸及びこれらの金属
塩よりなる群から選ばれた少なくとも1種のもの
である。好適に使用される代表的なものを例示す
ると、12−モリブドリン酸、12−タングストリン
酸、12−モリブドケイ酸、12−タングストケイ
酸、12−タングストホウ酸、12−タングストゲル
マン酸、11−モリブドリン酸及びこれらの塩例え
ば同期律表、族、族、族、族等の金属塩
等である。
前記ヘテロポリ酸又はその塩を活性炭に担持さ
せた担体付触媒はヘテロポリ酸又はその塩を溶解
しうる媒体が存在する反応系に於いても該媒体中
に触媒成分が溶出することはなく、長期間の使用
に良好な触媒活性を発揮する。これらの効果が活
性炭或いはヘテロポリ酸又はその塩の単独又は組
合せでどのように機能して発揮されるのか現在な
お明確ではないが、活性炭と言う特定の担体に担
持されたヘテロポリ酸又はその塩は可溶性媒体で
あつても溶出されない点から極めて強固な吸着を
されているか、何らかの化学的な結合によつて結
ばれていることが想定され、極めて特殊な現象と
言える。
本発明の担体付触媒が関与する対象反応は有機
カルボン酸と脂肪族アルコールとが反応し水がと
れてエステルが生成する反応である。最も一般的
に応用されるエステル化反応はギ酸、酢酸、プロ
ピオン酸、アクリル酸、フタル酸等の有機カルボ
ン酸とメチルアルコール、エチルアルコール、プ
ロピルアルコール等の脂肪族アルコールとの反応
である。該エステル化反応に前記担体付触媒を使
用する場合は触媒活性が極めて良好に発揮される
ので液相反応だけでなく気相反応に対しても良好
な固体酸触媒としての機能を発揮する。従つて一
般には低温から高温まで広い温度範囲で使用され
るが最も好ましくは反応系の沸点或いは沸点近く
に加熱するか気相反応を行う場合であろう。
前記したように本発明の対象反応に於いては担
体付触媒から触媒成分が溶出することがないの
で、固体酸触媒として使用することが出来、反応
生成物、未反応原料等と触媒との分離が極めて容
易で、工程的に簡単な操作で実施出来る利点も有
している。
本発明を更に具体的に説明するため以下実施例
及び比較例を挙げて説明するが本発明はこれらの
実施例に限定されるものではない。
実施例 1
カルゴン社製活性炭(F−300)を35〜60メツ
シユに粉砕し、十分に水洗した後、100℃で6時
間乾燥した。12−タングストケイ酸を水100c.c.に
溶解し、これに上記乾燥活性炭5.0gを加え、1
時間還流しながら、12−タングストケイ酸を活性
炭に吸着させた。冷却後該活性炭を別し、常温
で200mlの水で洗浄した後、ソツクスレー抽出器
を用いて、抽出液中に、12−タングストケイ酸が
検出されなくなるまで、水の沸点下に抽出操作を
行つた。その結果12−タングストケイ酸が検出さ
れなくなるまでの抽出時間は30時間であり、活性
炭への12−タングストケイ酸の担持量は上記抽出
処理前が18(重量)%であり、抽出処理後は10.8
(重量)%であつた。
このようにして得た12−タングストケイ酸を
10.8(重量)%担持した活性炭1.0mlを、内径1.5
cm、長さ30cmのパイレツクス製ガラス反応管の中
央部に充填し、エタノールと酢酸との混合物(エ
タノール:酢酸モル比2.5:1)を150℃、LHSV
=0.9h-1で通した。その結果、酢酸の転化率96
%、酢酸の選択率100%、エタノールの選択率
99.9%で酢酸エチルが得られた。その後7時間連
続的に反応を行つた結果、転化率及び選択率共に
全く変化はなかつた。また反応生成物中に触媒成
分である12−タングストケイ酸は全く検出されな
かつた。比較のため12−タングストケイ酸を担持
していない活性炭のみを用いて前記同様の操作で
反応を行つた結果、酢酸の転化率は20%にすぎな
かつた。
さらに比較のため、シリカゲル(ワコー、Q−
22)に12−タングストケイ酸10.8(重量)%を担
持したものを触媒として用い、同様の反応操作及
び条件で反応を行なつた結果、酢酸の転化率93
%、酢酸の選択率100%で酢酸エチルが得られた
が、エタノールの酢酸エチルへの選択率は71%で
大量のジエチルエーテルが副生した。
実施例 2
実施例1で用いた12−タングストケイ酸及び反
応原料に代り、第1表に示すものを選んだ以外は
実施例1と同様にして触媒を調製し、アルコー
ル:酸のモル比2.5:1で実施例1と同様の反応
条件でエステル化反応を実施した。その結果は第
1表に示す通りであつた。いずれの場合も、エー
テルの副生は認められなかつた。
The present invention relates to a novel esterification method. Specifically, it is an esterification method that uses a supported catalyst in which a specific heteropolyacid or its salt is supported on activated carbon as a catalyst when producing an ester by reacting an organic carboxylic acid and an aliphatic alcohol. It has been known that heteropolyacids and their salts are used as catalysts for various reactions. For example, when a reaction is carried out in a homogeneous liquid phase system in which a heteropolyacid is dissolved, in order to separate and recover the heteropolyacid from the reactants without denaturing the heteropolyacid catalyst after the reaction, the reaction products, unreacted materials, and solvent are removed. It was necessary to remove such substances by distillation or other operations to recover the heteropolyacid, or to convert the heteropolyacid into an insoluble complex using ether and the like to separate it. That is, the method of separating and recovering a heteropolyacid used as a catalyst from a reactant is not only complicated in operation, but also has difficult problems such as side reactions occurring in the reaction product during the separation and recovery. In addition, attempts have been made to use a heteropolyacid supported on a carrier in some reactions, but this has not been put to practical use because it has not been possible to completely prevent the heteropolyacid from eluting from the carrier. Therefore, when carrying out a liquid phase reaction or gas phase reaction in the presence of a medium that dissolves a heteropolyacid or its salt, such as water, alcohol, ketone, ether, or carboxylic acid, how should the catalyst consisting of the heteropolyacid or its salt be used? How to handle it in a suitable format is an important technical issue. On the other hand, esterification methods for producing esters by reacting acids and alcohols have been practiced industrially for a long time. In the esterification method, sulfuric acid, hydrochloric acid, toluenesulfonic acid,
Acid catalysts such as boron trifluoride and acidic ion exchange resins have been used. However, these catalysts were not necessarily satisfactory due to drawbacks such as difficulty in separating and recovering the catalyst and lack of heat resistance as described above. The present inventor has repeatedly conducted research on the catalytic activity of heteropolyacids and their salts in various reactions. As a result, even in esterification reactions using media that dissolve heteropolyacids or their salts, such as acids, alcohols, and water, when specific supported catalysts are used, the heteropolyacids or their salts can be continuously dissolved without elution. I learned that it is possible to carry out a reaction. As a result of further research, we found that using a supported catalyst in which a heteropolyacid or its salt is supported on activated carbon as a catalyst for the esterification reaction not only eliminates the elution of the heteropolyacid or its salt in the reaction system, but also dehydrates the alcohol. It was confirmed that by-products such as ether were significantly suppressed and esters were produced in good yields, leading to the completion of the present invention. That is, the present invention uses tungstosilicic acid, tungstophosphoric acid,
This esterification method is characterized by using a supported catalyst in which at least one heteropolyacid selected from the group consisting of molybdosilicic acid, molybdophosphoric acid, and metal salts thereof or a metal salt thereof is supported on activated carbon. The most important feature of the present invention is the use of a supported catalyst in which a heteropolyacid or its salt is supported on activated carbon. The method for supporting the heteropolyacid or its salt on activated carbon is not particularly limited, and any known method can be employed. A generally advantageous method used is to dissolve a predetermined amount of a heteropolyacid or its salt in an organic solvent such as water, an alcohol, an ether, a carboxylic acid, etc., in which the heteropolyacid or its salt is dissolved, and in which a predetermined amount of activated carbon is dissolved. is added, and the heteropolyacid or its salt is adsorbed onto the activated carbon while sufficiently stirring at room temperature or below the boiling point of the solvent for a necessary period of time, for example, 30 to 60 minutes. Thereafter, the activated carbon is separated from the organic solvent, and then washed or extracted with a solvent at room temperature or below the boiling point until no elution of the heteropolyacid or its salt is observed, and if necessary, dried to obtain the supported catalyst of the present invention. . The amount of heteropolyacid or its salt supported on activated carbon under conditions such that it does not elute during the target reaction varies depending on the type of heteropolyacid, the properties of activated carbon, etc., and cannot be absolutely limited, but is generally 20% (by weight) or less. It is preferable that If the supported amount is large, not only will by-products such as ether increase, but it will also take a long time to wash or extract the catalyst during catalyst preparation.
Since the supported amount may decrease to a certain level or the heteropolyacid may elute during the reaction, it is preferable to test the maximum supported amount in advance. Generally, the supported amount of the most widely used heteropolyacid or its salt is 5 to 20% (by weight), preferably 10%.
~15% (by weight) dislocation. The activated carbon used in the present invention is not particularly limited, and any known or commercially available carbon may be used as is, after being treated with nitric acid or otherwise activated as required. The heteropolyacid or its salt used in the present invention is at least one selected from the group consisting of tungstosilicic acid, tungstophosphoric acid, molybdosilicic acid, molybdophosphoric acid, and metal salts thereof. Typical examples that are preferably used include 12-molybdophosphoric acid, 12-tungstophosphoric acid, 12-molybdosilicic acid, 12-tungstosilicic acid, 12-tungstoboric acid, 12-tungstogermanic acid, and 11-molybdophosphoric acid. and salts thereof, such as metal salts of synchronous table, group, group, group, group, etc. The supported catalyst, in which the heteropolyacid or its salt is supported on activated carbon, does not elute the catalyst component into the medium even in a reaction system where a medium capable of dissolving the heteropolyacid or its salt exists, and can be used for a long period of time. It exhibits good catalytic activity when used in Although it is still unclear how these effects are exerted by activated carbon, heteropolyacids, or their salts alone or in combination, it is clear that heteropolyacids or their salts supported on a specific carrier called activated carbon are soluble. Since it is not eluted even in the medium, it is assumed that it is extremely strongly adsorbed, or that it is bound by some kind of chemical bond, so it can be said to be a very special phenomenon. The target reaction involving the supported catalyst of the present invention is a reaction in which an organic carboxylic acid and an aliphatic alcohol react to remove water and produce an ester. The most commonly applied esterification reaction is the reaction of organic carboxylic acids such as formic acid, acetic acid, propionic acid, acrylic acid, and phthalic acid with aliphatic alcohols such as methyl alcohol, ethyl alcohol, and propyl alcohol. When the supported catalyst is used in the esterification reaction, it exhibits extremely good catalytic activity, and therefore functions as a solid acid catalyst not only in liquid phase reactions but also in gas phase reactions. Therefore, it is generally used in a wide temperature range from low to high temperatures, but most preferably it is heated to or near the boiling point of the reaction system, or when a gas phase reaction is carried out. As mentioned above, in the target reaction of the present invention, catalyst components do not elute from the supported catalyst, so it can be used as a solid acid catalyst, and it is possible to separate reaction products, unreacted raw materials, etc. from the catalyst. It also has the advantage that it is extremely easy to carry out and can be carried out with simple operations in terms of process. EXAMPLES In order to explain the present invention more specifically, Examples and Comparative Examples will be described below, but the present invention is not limited to these Examples. Example 1 Activated carbon (F-300) manufactured by Calgon was pulverized into 35 to 60 meshes, thoroughly washed with water, and then dried at 100°C for 6 hours. 12-Tungstosilicic acid was dissolved in 100 c.c. of water, 5.0 g of the above dry activated carbon was added, and 1
12-tungstosilicic acid was adsorbed onto activated carbon while refluxing for a period of time. After cooling, the activated carbon was separated, washed with 200 ml of water at room temperature, and extracted using a Soxhlet extractor at a temperature below the boiling point of water until no 12-tungstosilicic acid was detected in the extract. . As a result, the extraction time until 12-tungstosilicic acid was no longer detected was 30 hours, and the amount of 12-tungstosilicic acid supported on activated carbon was 18% (by weight) before the above extraction process, and 10.8% after the extraction process.
(weight)%. The 12-tungstosilicic acid obtained in this way is
1.0 ml of activated carbon loaded with 10.8 (weight)%, inner diameter 1.5
Fill the center of a Pyrex glass reaction tube with a length of 30 cm and a mixture of ethanol and acetic acid (ethanol:acetic acid molar ratio 2.5:1) at 150℃, LHSV.
= 0.9h -1 passed. As a result, the conversion rate of acetic acid was 96
%, acetic acid selectivity 100%, ethanol selectivity
Ethyl acetate was obtained in 99.9%. After that, the reaction was carried out continuously for 7 hours, and as a result, there was no change at all in the conversion rate and selectivity. Further, 12-tungstosilicic acid, which is a catalyst component, was not detected at all in the reaction product. For comparison, a reaction was carried out in the same manner as described above using only activated carbon not carrying 12-tungstosilicic acid, and as a result, the conversion rate of acetic acid was only 20%. For further comparison, silica gel (Wako, Q-
22) with 10.8% (by weight) of 12-tungstosilicic acid supported as a catalyst, and the reaction was carried out under the same reaction operation and conditions. As a result, the conversion rate of acetic acid was 93.
%, and ethyl acetate was obtained with acetic acid selectivity of 100%, but the selectivity of ethanol to ethyl acetate was 71%, and a large amount of diethyl ether was produced as a by-product. Example 2 A catalyst was prepared in the same manner as in Example 1, except that the 12-tungstosilicic acid and reaction raw materials used in Example 1 were replaced with those shown in Table 1, and the alcohol:acid molar ratio was 2.5: In Example 1, an esterification reaction was carried out under the same reaction conditions as in Example 1. The results were as shown in Table 1. In either case, no ether by-product was observed.
【表】
実施例 3
実施例1において水の代りにメタノールを用い
て触媒を調製した。その結果、12−タングストケ
イ酸が検出されなくなるまでの抽出時間は5時間
であり、活性炭への12−タングストケイ酸の担持
量は上記抽出処理前が9.3(重量)%であり、抽
出処理後は8.4(重量)%であつた。
このようにして得た12−タングストケイ酸を
8.4(重量)%担持した活性炭1.0mlと、メタノー
ル10ml、無水フタル酸3.7gを混合し、撹拌しな
がらメタノール沸点下で2時間反応させた。その
結果、仕込み無水フタル酸の55%がフタル酸ジメ
チルに転化した。触媒からの12−タングストケイ
酸の溶出は全く認められなかつた。[Table] Example 3 A catalyst was prepared in Example 1 using methanol instead of water. As a result, the extraction time until 12-tungstosilicic acid was no longer detected was 5 hours, and the amount of 12-tungstosilicic acid supported on activated carbon was 9.3% (by weight) before the above extraction process, and 8.4% after the extraction process. (weight)%. The 12-tungstosilicic acid obtained in this way is
1.0 ml of activated carbon carrying 8.4% (by weight), 10 ml of methanol, and 3.7 g of phthalic anhydride were mixed and reacted for 2 hours at the boiling point of methanol while stirring. As a result, 55% of the charged phthalic anhydride was converted to dimethyl phthalate. No elution of 12-tungstosilicic acid from the catalyst was observed.