JPS6246518B2 - - Google Patents

Info

Publication number
JPS6246518B2
JPS6246518B2 JP2944882A JP2944882A JPS6246518B2 JP S6246518 B2 JPS6246518 B2 JP S6246518B2 JP 2944882 A JP2944882 A JP 2944882A JP 2944882 A JP2944882 A JP 2944882A JP S6246518 B2 JPS6246518 B2 JP S6246518B2
Authority
JP
Japan
Prior art keywords
phosphoric acid
powder
acid
hcl
earth metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2944882A
Other languages
Japanese (ja)
Other versions
JPS58181778A (en
Inventor
Teruo Urano
Tsutomu Saegusa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murakashi Lime Industry Co Ltd
Original Assignee
Murakashi Lime Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murakashi Lime Industry Co Ltd filed Critical Murakashi Lime Industry Co Ltd
Priority to JP2944882A priority Critical patent/JPS58181778A/en
Publication of JPS58181778A publication Critical patent/JPS58181778A/en
Publication of JPS6246518B2 publication Critical patent/JPS6246518B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fertilizers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアルカリ土類金属化合物の粉末と可溶
性ケイ酸を含有する物質の粉末との混合物にリン
酸濃度がH3PO4として50〜80重量%(P2O5とし
て36〜58重量%)の濃縮リン酸溶液又は前記濃度
のリン酸溶液と硫酸との混酸溶液を反応させるに
当り、リン酸溶液中のH3PO41モルに対し
HCl0.05〜0.6モルの塩酸を添加して反応させ反応
後の処理物中にく溶性リン酸分又はく溶性リン分
と水溶性リン酸分が併せ含有され、しかも反応後
の処理物は殊更に乾燥工程を経ることなく施肥に
適した粒状物とすることができるリン酸質肥料の
製造方法である。 尚、本発明に使用する濃縮りん酸溶液とはりん
鉱石を鉱酸分解によつて製造するいわゆる湿式法
りん酸液の濃縮物で、硫酸、水、および製造工
程、原料鉱石に伴う少量の不純物を含有する液、
又は乾式法りん酸を水に溶解させたものでも良
い。また本発明に表示する可溶性けい酸、可溶性
石灰、可溶性苦土とは肥料分析法で規定する
0.5M HClの所定量を所定方法で溶解させて得ら
れるけい酸分、石灰分、苦土分を指す。 リン酸質肥料には、過リン酸石灰、重過リン酸
石灰のように主成分のほとんどが水溶性のリン酸
分からなる速効性のリン酸質肥料と、溶成リン肥
のように水溶性のリン酸分を含まないで作物の生
育過程において根部から出る酸に溶解する性質の
く溶性リン酸分を含むものとがある。 水溶性リン酸分は作物の生育初期には必要な働
きをするが、土壌中の鉄分、アルミニウム分など
のために時期の経過とともに難溶化され固定して
しまい速効性を喪失する。一方く溶性リン酸分は
緩効性であるから、このようにリン酸分が固定さ
れやすい土壌では有効であるという特長があり、
特に火山灰土壌のようなリン酸吸収係数の高い土
壌では効果を発揮する。このようなことから土壌
改良用の施肥としてももつぱらく溶性リン酸分を
含有するリン酸質肥料が用いられ、速効的効果を
期待する水溶性のリン酸質肥料と併用している。 また近年水溶性リン酸分とく溶性リン酸分との
両形態を保持しているリン酸質肥料も出現してお
り例えばつぎのようなものが知られている。 (1) 溶成リン肥と過リン酸石灰(または重過リン
酸石灰)とリン酸溶液とから製造したもの。 (2) 溶成リン肥と重過リン酸石灰またはリン酸溶
液とから製造したもの。 (3) フエロニツケルスラグ中のマグネシウムをリ
ン酸と硫酸との混合溶液で加熱分解し、マグネ
シウムをリン酸マグネシウムに変化させて製造
したもの。 本発明は前記のように反応後の処理物に水溶性
リン酸分とく溶性リン酸分との比率を任意に調節
し、造粒性が良好で、しかも特別に乾燥工程を経
ることなく製品とすることができることを特長と
するリン酸質肥料の製造方法である。 カルシウム、マグネシウムのようなアルカリ土
類金属化合物の粉末とリン酸溶液との反応はアル
カリ土類金属化合物を例えば酸化物としてMeO
と表示すればつぎの式で表わされる。 MeO+2H3PO4 →Me(H2PO42・nH2O ……(1) MeO+H3PO4→MeHPO4・nH2O ……(2) (上式中MeはCa,Mgなどのアルカリ土類金
属を示す) すなわち(1)式の反応ではリン酸―石灰、リン酸
―苦土が生成し、これらは水溶性リン酸塩であ
り、また(2)式の反応ではリン酸二石灰、リン酸二
苦土が生成し、これらはく溶性リン酸塩である。 上記(1)式、(2)式の反応は反応系内に多量の水分
が存在する場合、反応速度は速くなり、リン酸の
添加量の如何に拘らず、(2)式の反応が優先し、さ
らに過剰のリン酸分が残存している場合には生成
したく溶性のMeHPO4・nH2Oとリン酸とがさら
に反応し、 MeHPO4・nH2O+H3PO4
→Me(H2PO42・nH2O なる反応機構をとることとなる。 これに対し、反応系に水分の量が少ない場合に
はリン酸の添加量の如何に拘らず(1)式の反応が優
先し、未反応のMeOが残存すると、この残存し
たMeOと生成したMe(H2PO42・nH2Oとが徐々
に反応しMeHPO4・nH2Oを生成する。この第2
段階の反応は使用するアルカリ土類金属化合物の
種類によつて著しく異なる。 例えば石灰石、ドロマイトのような炭酸塩の粉
末を用いた場合には反応は弱く、反応後の処理物
を多量に水分と接触させても反応速度がやや増す
程度であるが、生石灰、軽焼ドロマイト、マグネ
シア、水酸化マグネシウム等の強アルカリ性の化
合物を用いた場合には反応速度は速くなるもので
ある。したがつてドロマイト粉末が未反応として
残存していても、若干の水溶性りん酸分として残
ることもある。 一般にアルカリ土類金属化合物とH3PO4濃度が
50〜80重量%の濃縮リン酸溶液とを反応させ水溶
性のリン酸塩化合物であるMe(H2PO42・nH2O
を生成させれば反応直後の処理生成物は粘稠性が
高くその後時間の経過とともに固結化傾向を帯び
粘稠性はさらに増進する。 本発明はこのような性質を利用し、反応後の処
理生成物をそのままにて施肥に適した形態とな
し、しかも殊更に乾燥工程を経ることなく製品と
することができるようにしたものである。 またアルカリ土類金属化合物のうち炭酸塩は原
料価格が低廉であり、しかも反応に際し炭酸ガス
を放出するために被反応物が発泡し、カサ高な形
態となり、余剰水分が蒸発しやすくなる。 しかしただ単にアルカリ土類金属の炭酸塩に高
濃度のリン酸溶液を反応させたのでは、反応後の
処理生成物の粘稠性が高く、相当の期間熟成しな
ければ固化せず解砕または造粒のための操作が困
難であるばかりか、水溶性りん酸分(W―
P2O5)が徐々に未反応のアルカリ分と反応し、く
溶性成分に変化するため、成分安定性に欠け実用
的ではない。 これに対し本発明の方法のようにH3PO4濃度50
〜80重量%の濃縮リン酸溶液に少量の塩酸を添加
して反応させれば反応後の処理生成物の粘稠性を
著しく低下させることが可能である。このことは
実験により確かめられたものであつて、この場合
塩酸の添加量を適当に調整することによつて反応
後の処理生成物の解砕、造粒性が著しく改善され
るもので、また成分の安定性も良好となる。 さらにアルカリ土類金属化合物の粉末に可溶性
ケイ酸を含有する物質の粉末を加えると、それに
含まれるケイ酸とリン酸溶液との反応によつて生
成するケイ酸ゲルのため反応後の処理生成物の物
性が一層改善され、熟成期間を短縮してなおかつ
反応→解砕→造粒と殆んど連続した工程によつて
製品を得ることができることが認められた。 しかもその連続工程の間に含有水分の一部は反
応熱により蒸発し、又は反応生成物の結晶水とし
て消費されることにより殊更に乾燥工程を経るこ
となく、そのままの状態にて製品とすることがで
きる。 本発明の方法によつて得られるリン酸質肥料に
おいてく溶性リン酸分のうち一定比率の水溶性リ
ン酸分を残したまま保証リン酸成分量を変えた
り、またH3PO4に対し過剰量のMeOが存在した
場合にはさらに硫酸を加えてMeOを硫酸塩とし
て除去したりすることは従来のとおりに行うこと
ができる。しかしこの際硫酸を加えると反応処理
物の粘稠性はさらに高くなり、爾後の工程である
解砕、造粒に悪影響を及ぼすが、このような場合
にも塩酸を添加することにより粘稠性の調整に効
果があることが確かめられた。 本発明における反応条件はつぎの(1),(2),(3),
(4)に示すとおりである。 (H3PO4)/〔(MeO)−{1/2(HCl) +(H2SO4)}〕 モル比=1.0〜2.0 ………(1) ただしMeO:可溶性アルカリ土類金属化合物
(MeOはCaO,MgO)のモル数 反応に用いる酸類のモル比率 (H3PO4)>(H2SO4)+(HCl) ………(2) 塩酸の添加量(硫酸を添加する場合) (HCl)/(H3PO4) モル比=0.05〜0.6
……(3) 硫酸を添加しない場合の塩酸の添加量 (HCl)/(H3PO4) モル比=0.05〜0.3
……(4) 理論的には(H3PO4)/〔(MeO)−{1/2(HCl)
+ (H2SO4)}〕のモル比=1.0で反応させた場合のリ
ン酸とMeOとの化合物はすべてMeHPO4・nH2O
となりく溶性(C−P2O5)を示し、また同じ式の
モル比=2.0の場合のリン酸とMeOとの化合物は
すべてMe(H2PO42・nH2Oとなり水溶性(W−
P2O5)を示す。したがつてモル比=1.0〜2.0の範
囲で任意にW−P2O5/C−P2O5の比率を調整す
ることができる。一方モル比1.0以下ではMeOが
未反応として残存するが原料として炭酸塩を用い
た場合には若干の水溶性りん酸分も残ることがあ
る。 本発明の方法において添加する塩酸の効果はき
わめて著しいものであり、それによる反応後の処
理生成物の粘稠性を低下する作用、効果を検討し
た結果つぎの事柄が確認された。 すなわち先ずリン酸濃度がH3PO4として50〜80
重量%の高濃度リン酸溶液とアルカリ土類金属化
合物とが反応すると前記のようにMe
(H2PO42・nH2Oが生成するが、この生成化合物
の結晶はきわめて微細であつて、水溶性ではあつ
ても粘稠性が甚だ高いものである。一方時間的に
遅れて生成するMeHPO4・nH2Oは結晶性が良好
で結晶のサイズも大きいことから結晶粒子相互の
凝集性が乏しい性質のものである。 さらに添加する塩酸の量を変えて生成物の同定
を粉末X線回析法によつて調べたところ、塩酸の
添加量が増すに従つてMeHPO4・nH2Oの生成量
が増加する傾向が認められた。 このMeHPO4・nH2Oの生成量が増加する傾向
は硫酸を用いた場合にも添加する塩酸の量の増大
に連れて増加の傾向を示すことには別段の変化を
認められなかつた。 本発明のリン酸肥料の製造法の工程系統図は第
1図に示すとおりである。 第1図の工程系透図において、Aは原料のアル
カリ土類金属化合物粉末、Bは同じく可溶性ケイ
酸を含有する物質の粉末、Cは濃度50〜80重量%
の濃縮リン酸溶液、Dは塩酸、Eは硫酸を示す。 また第1図においてMは原料Aと原料Bとの混
合、Nは濃縮リン酸溶液Cと塩酸Eとの添加また
は濃縮リン酸溶液Cと硫酸Eとの混酸溶液と塩酸
Eとの添加、1は反応、2は熟成、3は解砕およ
び回転による造粒、4はふるい分けの各工程、5
は製品を示す。 本発明の方法において原料であるアルカリ土類
金属化合物粉末と可溶性ケイ酸を含有する物質の
粉末との混合比率は後者は前者に対し内割で20〜
60重量%の範囲が望ましい。 本発明の方法によりアルカリ土類金属化合物の
粉末と可溶性ケイ酸を含有する物質の粉末との混
合物に所定の量比関係のもとに濃縮リン酸溶液の
単独または濃縮リン酸溶液と硫酸との混酸溶液に
塩酸を加えて反応させ、反応終了後、熟成を待つ
て反応生成物を軽く解砕し、さらに回転運動を与
えるだけで造粒し、殊更に乾燥することなく、ふ
るい分けのみで施肥に適する粒度の粒状物からな
る製品を得ることができる。 このようにして得た製品であるリン酸質肥料は
水溶性リン酸分とく溶性リン酸分とがともに併せ
て含有されるものである。 本発明に用いる原料粉末は粒度が細かければ細
かい程反応性が良好であるが、通常50〜100メツ
シユ程度の粒度が経済的であり、また使用する濃
縮リン酸溶液の濃度はH3PO4として50〜80重量
%、P2O5として36〜58重量%が最も望ましいこ
とを認めた。 また使用する塩酸は高濃度ものが望ましくHCl
として濃度35%の塩酸が最も適当であることを認
めた。 肥料取締法第三条にもとずく公定規格で含有す
べき成分の保証値として、く溶性リン酸分として
35%程度、うち水溶性リン酸分として10〜20%程
度(水溶性リン酸分については、く溶性リン酸成
分のうち数であり、時間の経過と共に未反応アル
カリ成分と反応しく溶性成分に変化し、水溶性リ
ン酸分は低下する恐れがあるので、実際の製造設
計では、保証成分として相当量の余裕を見込んで
製造することが必要である)をともに含有する製
品を得るためにはことさら硫酸を添加することな
く(H3PO4)/〔(MeO)−{(H2SO4)+1/2 (HCl)}〕モル比=1.0〜2.0(ただしMeOは原料
粉末混合物中の可溶性アルカリ土類金属酸化物の
モル数を示す)となし、しかも濃縮リン酸溶液
(H3PO4)と塩酸(HCl)とのモル比がH3PO4の1
モルに対しHClの0.05〜0.30モルであることが添
加効果が最も良いことが実験により認められた。
0.30モルを超えると反応生成物の粘結性がなくな
り、造粒のために特にバインダー(造粒剤)が必
要となるものであり、0.05モル以下の少量では塩
酸添加の効果が得られない。 また肥料取締法第三条にもとずく公定規格で含
有すべき成分の保証値として、く溶性リン酸分と
して10〜25%程度、水溶性リン酸分として5〜10
%程度(水溶性リン酸分のく溶性リン酸成分への
変化を考慮し、実際の製造設計では、相当量の成
分の余裕を見込んで製造する)をともに含有する
製品を得るためには原料粉末混合物中の可溶性ケ
イ酸を含有する物質の粉末は10〜30重量%程度が
好適であり、(H3PO4)/〔(MeO)−{(H2SO4)+1
/2 (HCl)}のモル比=1.0〜2.0、また(H3PO4
ル)>(H2SO4モル数)+(HClモル数)、HCl/
H3PO4のモル比=0.5〜0.6であり、しかも硫酸使
用量は塩酸の使用量よりも少ない方が得られる製
品の造粒性が良好であることが認められた。 本発明において原料として使用するアルカリ土
類金属化合物の粉末には石灰石、ドロマイト、マ
グネサイト等の粉砕粉末、化学的に合成された炭
酸カルシウム、炭酸マグネシウム、蛇紋岩、かん
らん岩の粉砕粉末およびそれらを焼成して得られ
る生石灰、マグネシア、軽焼ドロマイトの粉末、
消石灰、水酸化マグネシウム、ドロマイトプラス
ター等の水和物、パルプ排液を処理して得られる
マグネシウム含有物質の乾燥粉末、または焼成物
などの単独または2種以上の混合物が含まれる。 また可溶性ケイ酸を含有する物質の粉末には、
鉄、鋼、フエロアロイ、ニツケル、ステンレス
鋼、リン酸などの製造の際に生ずる鉱滓類、セメ
ントダスト、フライアツシユ、微粉炭燃焼灰、凝
灰岩系の天然ゼオライト岩石の粉砕粉末、ALC
(建築用軽量板状成形体)製造の際に副生するケ
イ酸カルシウムを主成分とする物質等の単独また
は2種以上の混合物が含まれる。 本発明の実施例をつぎに記載する。 実施例 1 (H3PO4)/〔MeO)−{1/2(HCl) +(H2SO4)}〕 モル比=1.16 (HCl)/(H3PO4) モル比=0.52 となるように、苦土炭酸カルシウム粉末(0.149
mm標準ふるい全通)、CaO34.1%、MgO17.5%、
アルカリ分58.4%、うち可溶性石灰(S―CaO)
34.1%、可溶性苦土(S―MgO)17.5%)358Kg
と高炉水砕スラグ粉末(0.08mm標準ふるい98%通
過、SiO232.9%、Al2O318.2%、CaO39.4%、
MgO5.7%、Fe2O30.8%、うち可溶性けい酸(S
―SiO2)28.9%、可溶性石灰(S―CaO)39.3
%、可溶性苦土(S―MgO)4.5%)120Kgとを
混合し、原料粉末混合物478Kgを得た。 つぎにH3PO4濃度75%(P2O5濃度55%)のリ
ン酸溶液396KgとHCl35%濃度の塩酸180Kgおよび
H2SO4濃度98%の硫酸135Kgの割合からなる混酸
溶液711Kgを調製した。 原料粉末混合物478Kgに対し上記の混酸溶液711
Kgをそれぞれ粉体定量混合機、定量ポンプによつ
て調節しつつ連続的に分散混合型ミキサー(商品
名、フロージエツトミキサー)に投入し反応させ
た。 反応は激しく速やかに起つた。反応生成物をベ
ルトコンベア上に排出させ、直ちに連続的に解
砕、造粒し1〜4mm程度の粒径を有する粒状リン
酸質肥料1000Kgを得た。 このリン酸質肥料の製造1日後、および温度36
℃、相対湿度90%の恒温恒湿室内に1週間放置後
の成分分析値はつぎのとおりであつた。
The present invention is characterized in that the phosphoric acid concentration is 50 to 80% by weight as H 3 PO 4 (36 to 58% by weight as P 2 O 5 ) in a mixture of powder of an alkaline earth metal compound and powder of a substance containing soluble silicic acid. When reacting a concentrated phosphoric acid solution or a mixed acid solution of phosphoric acid solution and sulfuric acid with the above concentration ,
Hydrochloric acid of 0.05 to 0.6 mol of HCl is added and reacted, and the treated product after the reaction contains a soluble phosphoric acid component or a combination of a soluble phosphorus component and a water-soluble phosphoric acid component, and the treated product after the reaction is particularly This is a method for producing phosphoric acid fertilizer that can be made into granules suitable for fertilization without going through a drying process. The concentrated phosphoric acid solution used in the present invention is a concentrate of the so-called wet method phosphoric acid solution produced by decomposing phosphate ore with mineral acid, and contains sulfuric acid, water, and a small amount of impurities associated with the manufacturing process and raw material ore. a liquid containing
Alternatively, dry process phosphoric acid dissolved in water may be used. In addition, soluble silicic acid, soluble lime, and soluble magnesia indicated in the present invention are defined by the fertilizer analysis method.
Refers to the silicic acid content, lime content, and magnesium content obtained by dissolving a predetermined amount of 0.5M HCl using a predetermined method. Phosphate fertilizers include fast-acting phosphate fertilizers whose main ingredient is mostly water-soluble phosphoric acid, such as superphosphate lime and heavy superphosphate lime, and water-soluble phosphate fertilizers, such as dissolved phosphorus fertilizers. Some crops do not contain phosphoric acid, but contain soluble phosphoric acid, which dissolves in the acid released from the roots during the growth process of crops. Water-soluble phosphoric acid plays a necessary role in the early stages of crop growth, but over time it becomes less soluble and becomes fixed due to the iron and aluminum content in the soil, causing it to lose its fast-acting properties. On the other hand, soluble phosphoric acid is slow-release, so it has the advantage of being effective in soils where phosphoric acid is easily fixed.
It is especially effective in soils with a high phosphate absorption coefficient, such as volcanic ash soil. For this reason, phosphoric acid fertilizers containing highly soluble phosphoric acid are used as fertilizers for soil improvement, and are used in conjunction with water-soluble phosphoric acid fertilizers that are expected to have quick-acting effects. In addition, in recent years, phosphoric acid fertilizers that retain both water-soluble phosphoric acid content and water-soluble phosphoric acid content have appeared, and for example, the following are known. (1) Manufactured from dissolved phosphorus fertilizer, superphosphate lime (or heavy superphosphate lime), and phosphoric acid solution. (2) Manufactured from dissolved phosphorus fertilizer and heavy superphosphate lime or phosphoric acid solution. (3) Manufactured by heating and decomposing magnesium in ferronic acid slag with a mixed solution of phosphoric acid and sulfuric acid, converting the magnesium into magnesium phosphate. As mentioned above, the present invention allows the ratio of the water-soluble phosphoric acid content to the water-soluble phosphoric acid content to be adjusted arbitrarily in the treated product after the reaction, resulting in good granulation properties and the ability to form products without going through a special drying process. This is a method for producing a phosphoric acid fertilizer. The reaction of a powder of an alkaline earth metal compound such as calcium or magnesium with a phosphoric acid solution can produce an alkaline earth metal compound as an oxide, such as MeO.
It is expressed by the following formula. MeO+ 2H3PO4 →Me(H2PO4) 2nH2O …… ( 1 ) MeO+ H3PO4MeHPO4 nH2O ……(2) (In the above formula, Me is an alkali such as Ca or Mg. In other words, in the reaction of equation (1), phosphoric acid-lime and phosphoric acid-magnetic earth are produced, which are water-soluble phosphates, and in the reaction of equation (2), dicalcium phosphate is produced. , dimagnesium phosphate is produced, and these are soluble phosphates. In the reactions of equations (1) and (2) above, when a large amount of water exists in the reaction system, the reaction rate becomes faster, and the reaction of equation (2) takes priority regardless of the amount of phosphoric acid added. However, if an excess of phosphoric acid remains, the soluble MeHPO 4 · nH 2 O to be produced further reacts with the phosphoric acid, resulting in MeHPO 4 · nH 2 O + H 3 PO 4
The reaction mechanism is →Me(H 2 PO 4 ) 2・nH 2 O. On the other hand, when the amount of water in the reaction system is small, the reaction of equation (1) takes priority regardless of the amount of phosphoric acid added, and if unreacted MeO remains, a reaction occurs with this remaining MeO. Me(H 2 PO 4 ) 2 ·nH 2 O gradually reacts to produce MeHPO 4 ·nH 2 O. This second
The reaction of the steps varies significantly depending on the type of alkaline earth metal compound used. For example, when carbonate powder such as limestone or dolomite is used, the reaction is weak, and even if the treated product is brought into contact with a large amount of water after the reaction, the reaction rate only increases slightly. When a strongly alkaline compound such as , magnesia or magnesium hydroxide is used, the reaction rate becomes faster. Therefore, even if dolomite powder remains unreacted, it may remain as a small amount of water-soluble phosphoric acid. In general, alkaline earth metal compounds and H3PO4 concentrations are
A water-soluble phosphate compound, Me( H2PO4 ) 2.nH2O , is produced by reacting with a 50-80% by weight concentrated phosphoric acid solution .
If , the treated product is highly viscous immediately after the reaction, and then tends to solidify with the passage of time, and the viscosity further increases. The present invention makes use of such properties to make the processed product after the reaction into a form suitable for fertilization as it is, and moreover, it is possible to make it into a product without going through a drying process. . Further, among alkaline earth metal compounds, carbonate has a low raw material price, and moreover, it releases carbon dioxide gas during the reaction, so the reactant foams and becomes bulky, making it easier for excess water to evaporate. However, simply reacting alkaline earth metal carbonate with a highly concentrated phosphoric acid solution results in a highly viscous treated product after the reaction, and it will not solidify unless it is aged for a considerable period of time and may be crushed or crushed. Not only is the operation for granulation difficult, but the water-soluble phosphoric acid content (W-
P 2 O 5 ) gradually reacts with unreacted alkali and turns into a soluble component, resulting in poor component stability and impractical. On the other hand, as in the method of the present invention, the H 3 PO 4 concentration is 50
By adding a small amount of hydrochloric acid to a ~80% by weight concentrated phosphoric acid solution and reacting it, it is possible to significantly reduce the viscosity of the treated product after the reaction. This has been confirmed through experiments, and in this case, by appropriately adjusting the amount of hydrochloric acid added, the crushing and granulating properties of the treated product after the reaction are significantly improved. The stability of the components is also improved. Furthermore, when powder of a substance containing soluble silicic acid is added to powder of an alkaline earth metal compound, a silicic acid gel is formed by the reaction between the silicic acid contained therein and the phosphoric acid solution, resulting in a treatment product after the reaction. It was recognized that the physical properties of the product were further improved, and that the product could be obtained by a nearly continuous process of reaction → crushing → granulation, while shortening the aging period. Moreover, during the continuous process, a part of the water content evaporates due to the heat of reaction or is consumed as water of crystallization of the reaction product, so that the product can be made into a product as it is without any additional drying process. Can be done. In the phosphoric acid fertilizer obtained by the method of the present invention, it is possible to change the guaranteed phosphoric acid content while leaving a certain proportion of water-soluble phosphoric acid in the water-soluble phosphoric acid content, or to add excess water to H 3 PO 4 . If a certain amount of MeO is present, further addition of sulfuric acid to remove MeO as sulfate can be carried out in a conventional manner. However, when sulfuric acid is added at this time, the viscosity of the reaction product becomes even higher, which has a negative effect on the subsequent steps of crushing and granulation. It was confirmed that the adjustment was effective. The reaction conditions in the present invention are as follows (1), (2), (3),
As shown in (4). (H 3 PO 4 )/[(MeO) − {1/2 (HCl) + (H 2 SO 4 )}] Molar ratio = 1.0 to 2.0 ………(1) where MeO: soluble alkaline earth metal compound ( MeO is the number of moles of CaO, MgO) Molar ratio of acids used in the reaction (H 3 PO 4 ) > (H 2 SO 4 ) + (HCl) ...... (2) Amount of hydrochloric acid added (when adding sulfuric acid) (HCl)/(H 3 PO 4 ) molar ratio = 0.05 to 0.6
...(3) Amount of hydrochloric acid added when sulfuric acid is not added (HCl)/(H 3 PO 4 ) Molar ratio = 0.05 to 0.3
...(4) Theoretically (H 3 PO 4 )/[(MeO)-{1/2(HCl)
+ (H 2 SO 4 )}] When reacted at a molar ratio of 1.0, all compounds of phosphoric acid and MeO are MeHPO 4・nH 2 O
All compounds of phosphoric acid and MeO in the same formula when the molar ratio = 2.0 become Me(H 2 PO 4 ) 2 ·nH 2 O, and are water-soluble (C-P 2 O 5 ). W-
P 2 O 5 ). Therefore, the ratio of W-P 2 O 5 /C-P 2 O 5 can be arbitrarily adjusted within the range of molar ratio = 1.0 to 2.0. On the other hand, if the molar ratio is less than 1.0, MeO remains unreacted, but if carbonate is used as a raw material, some water-soluble phosphoric acid may also remain. The effect of hydrochloric acid added in the method of the present invention is extremely remarkable, and as a result of examining its effect on reducing the viscosity of the treated product after the reaction, the following was confirmed. That is, first, the phosphoric acid concentration is 50 to 80 as H 3 PO 4 .
When a high concentration phosphoric acid solution (wt%) reacts with an alkaline earth metal compound, Me
(H 2 PO 4 ) 2 ·nH 2 O is produced, but the crystals of this produced compound are extremely fine, and although it is water-soluble, it is extremely viscous. On the other hand, MeHPO 4 .nH 2 O, which is produced with a time delay, has good crystallinity and a large crystal size, and therefore has poor agglomeration among crystal particles. Furthermore, when the amount of added hydrochloric acid was changed and the product identification was examined using powder X-ray diffraction, it was found that as the amount of added hydrochloric acid increased, the amount of MeHPO 4 · nH 2 O produced tended to increase. Admitted. This tendency for the production amount of MeHPO 4 .nH 2 O to increase also showed a tendency to increase as the amount of hydrochloric acid added increased when sulfuric acid was used, and no particular change was observed. A process diagram of the method for producing phosphoric acid fertilizer of the present invention is shown in FIG. In the process diagram in Figure 1, A is the raw material alkaline earth metal compound powder, B is the powder of the substance also containing soluble silicic acid, and C is the concentration of 50 to 80% by weight.
Concentrated phosphoric acid solution, D indicates hydrochloric acid, and E indicates sulfuric acid. In Fig. 1, M is a mixture of raw materials A and B, N is the addition of a concentrated phosphoric acid solution C and hydrochloric acid E, or the addition of a mixed acid solution of concentrated phosphoric acid solution C and sulfuric acid E and hydrochloric acid E; 2 is reaction, 2 is aging, 3 is granulation by crushing and rotation, 4 is sieving steps, 5
indicates the product. In the method of the present invention, the mixing ratio of the alkaline earth metal compound powder and the powder of the substance containing soluble silicic acid, which are the raw materials, is 20 to 20% of the former.
A range of 60% by weight is desirable. By the method of the present invention, a concentrated phosphoric acid solution alone or a concentrated phosphoric acid solution and sulfuric acid is added to a mixture of a powder of an alkaline earth metal compound and a powder of a substance containing soluble silicic acid in a predetermined quantitative ratio. Hydrochloric acid is added to the mixed acid solution to cause the reaction, and after the reaction is completed, the reaction product is lightly crushed after ripening, and then granulated by simply applying rotational motion, and can be fertilized simply by sieving without drying. A product consisting of granules of suitable particle size can be obtained. The phosphoric acid fertilizer thus obtained contains both a water-soluble phosphoric acid component and a water-soluble phosphoric acid component. The finer the particle size of the raw material powder used in the present invention, the better the reactivity, but a particle size of about 50 to 100 mesh is usually economical, and the concentration of the concentrated phosphoric acid solution used is H 3 PO 4 It was recognized that 50-80% by weight as P2O5 and 36-58% by weight as P2O5 is most desirable. In addition, it is desirable that the hydrochloric acid used be of high concentration.
It was found that hydrochloric acid with a concentration of 35% was most suitable. As a guaranteed value of the ingredients that should be contained in the official standards based on Article 3 of the Fertilizer Control Law, soluble phosphoric acid content is
Approximately 35%, of which approximately 10 to 20% is water-soluble phosphoric acid (water-soluble phosphoric acid is the number of soluble phosphoric acid components, and over time it reacts with unreacted alkali components and turns into soluble components) In order to obtain a product containing both phosphoric acid and phosphoric acid, it is necessary to allow a considerable amount of margin as a guaranteed component in the actual manufacturing design. (H 3 PO 4 )/[(MeO)-{(H 2 SO 4 )+1/2 (HCl)}] molar ratio = 1.0 to 2.0 (however, MeO is soluble in the raw powder mixture) without adding sulfuric acid. (indicates the number of moles of alkaline earth metal oxide), and the molar ratio of concentrated phosphoric acid solution (H 3 PO 4 ) to hydrochloric acid (HCl) is 1 of H 3 PO 4
Experiments have shown that the addition effect is best when the amount of HCl is 0.05 to 0.30 mol.
When the amount exceeds 0.30 mol, the reaction product loses its caking properties, and a binder (granulating agent) is particularly required for granulation, and when the amount is less than 0.05 mol, the effect of adding hydrochloric acid cannot be obtained. In addition, the guaranteed values for the ingredients that should be contained in the official standards based on Article 3 of the Fertilizer Control Law are approximately 10-25% for soluble phosphoric acid and 5-10% for water-soluble phosphoric acid.
% (in consideration of the change in water-soluble phosphoric acid to water-soluble phosphoric acid, in actual manufacturing design, a considerable amount of component margin is expected). The powder of the substance containing soluble silicic acid in the powder mixture is preferably about 10 to 30% by weight, and (H 3 PO 4 )/[(MeO)−{(H 2 SO 4 )+1
/2 (HCl)} molar ratio = 1.0 to 2.0, and (H 3 PO 4 mol) > (H 2 SO 4 mol) + (HCl mol), HCl/
It was found that the granulation properties of the resulting product were better when the molar ratio of H 3 PO 4 was 0.5 to 0.6 and the amount of sulfuric acid used was smaller than the amount of hydrochloric acid used. The powder of the alkaline earth metal compound used as a raw material in the present invention includes crushed powder of limestone, dolomite, magnesite, etc., crushed powder of chemically synthesized calcium carbonate, magnesium carbonate, serpentine, peridotite, etc. Quicklime, magnesia, light calcined dolomite powder obtained by calcining
It includes hydrates of slaked lime, magnesium hydroxide, dolomite plaster, etc., dry powders of magnesium-containing substances obtained by treating pulp waste liquid, and sintered products, either singly or in mixtures of two or more. In addition, powders of substances containing soluble silicic acid include
Mineral slag, cement dust, fly ash, pulverized coal combustion ash, pulverized powder of tuff-based natural zeolite rocks, ALC, produced during the production of iron, steel, ferroalloy, nickel, stainless steel, phosphoric acid, etc.
(Lightweight plate-shaped molded article for construction) Contains substances whose main component is calcium silicate, which is produced as a by-product during production, either singly or in a mixture of two or more. Examples of the invention are described below. Example 1 (H 3 PO 4 )/[MeO) − {1/2 (HCl) + (H 2 SO 4 )}] Molar ratio = 1.16 (HCl)/(H 3 PO 4 ) Molar ratio = 0.52 So, magnesia calcium carbonate powder (0.149
mm standard sieve), CaO34.1%, MgO17.5%,
Alkaline content 58.4%, including soluble lime (S-CaO)
34.1%, soluble magnesium (S-MgO) 17.5%) 358Kg
and granulated blast furnace slag powder (98% passing through 0.08mm standard sieve, SiO 2 32.9%, Al 2 O 3 18.2%, CaO 39.4%,
MgO5.7%, Fe 2 O 3 0.8%, including soluble silicic acid (S
-SiO 2 ) 28.9%, soluble lime (S-CaO) 39.3
%, soluble magnesium (S-MgO) 4.5%) was mixed with 120 kg to obtain 478 kg of a raw material powder mixture. Next, 396 kg of phosphoric acid solution with H 3 PO 4 concentration of 75% (P 2 O 5 concentration of 55%), 180 kg of hydrochloric acid with HCl concentration of 35% and
711 Kg of a mixed acid solution consisting of 135 Kg of sulfuric acid with a H 2 SO 4 concentration of 98% was prepared. 711 kg of the above mixed acid solution for 478 kg of raw powder mixture
Kg was adjusted using a powder metering mixer and a metering pump, respectively, and the mixture was continuously charged into a dispersion mixer (trade name: Flowjet Mixer) for reaction. The reaction was violent and rapid. The reaction product was discharged onto a belt conveyor and immediately continuously crushed and granulated to obtain 1000 kg of granular phosphate fertilizer having a particle size of about 1 to 4 mm. One day after the production of this phosphoric acid fertilizer, and at a temperature of 36
After being left in a constant temperature and humidity room at 90% relative humidity for one week, the component analysis values were as follows.

【表】 実施例 2 (H3PO4)/{(MeO)−1/2(HCl)} モル比=1.33 (HCl)/(H3PO4) モル比=0.30 となるように実施例1で用いたのと同一の苦土炭
酸カルシウム粉末5.434Kgとクリノプチロライト
を主成分とする凝灰岩系天然ゼオライトの一種で
ある通称大谷石の100メツシユ篩全通になるよう
な乾燥粉砕粉末6.91Kgを予め混合し12.344Kgの粉
末混合物を得た。 なお使用した大谷石の化学分析値はつぎのとお
りである。 CaO 2.29% MgO 0.30% SiO2 66.42% Al2O3 13.12% Fe2O2 1.90% S―SiO2(可溶性けい酸) 1.70% また肥料分析法で規定する可溶性石灰分および
可溶性苦土分はいずれも0%であつた。 つぎにH3PO4濃度75%(P2O5濃度55%)のリ
ン酸溶液8.08KgにHCl濃度35%の塩酸2.02Kgを混
合し10.10%Kgの混酸溶液を調製した。 粉末混合物を内容積100の混合分散機に投入
し、ついでリン酸―塩酸の混酸溶液を添加し、混
合分散機の撹拌羽根をゆつくり回転し反応させ
た。 内容物は脱炭酸反応が激しく起り発泡する。暫
らくすると発泡現象はおさまる。この段階で混合
分散機の撹拌羽根を数分間連続して回転させなが
ら反応を継続させる。内容物は次第に粘稠となり
混合分散機の負荷が高くなる。ここで一旦撹拌羽
根の回転を停止し、数分間静置したのち、再度混
合分散機の撹拌羽根を回転させることによつて解
砕すると同時に造粒を行い、粒径が1〜4mmの粒
状となつたところで撹拌羽根を停止し内容物を混
合分散機より取り出し、取出後ふるい別けのみに
て、殊更に乾燥することなくそのまま製品20Kgを
得た。 上記のようにして得たリン酸質肥料の製造1日
後および温度35℃、相対湿度90%の恒温、恒湿室
内に1週間放置後の分析値はつぎのとおりであつ
た。
[Table] Example 2 (H 3 PO 4 )/{(MeO)-1/2(HCl)} Molar ratio = 1.33 (HCl)/(H 3 PO 4 ) Example 1 so that the molar ratio = 0.30 5.434 kg of the same magnesian calcium carbonate powder used in , and 6.91 kg of dry pulverized powder that can pass through a 100-mesh sieve, commonly known as Oya stone, which is a type of tuff-based natural zeolite whose main component is clinoptilolite. were mixed in advance to obtain 12.344 kg of powder mixture. The chemical analysis values of the Oya stone used are as follows. CaO 2.29% MgO 0.30% SiO 2 66.42% Al 2 O 3 13.12% Fe 2 O 2 1.90% S-SiO 2 (soluble silicic acid) 1.70% Also, what are the soluble lime content and soluble magnesium content specified in the fertilizer analysis method? It was also 0%. Next, 2.02 kg of hydrochloric acid with an HCl concentration of 35% was mixed with 8.08 kg of a phosphoric acid solution with a H 3 PO 4 concentration of 75% (P 2 O 5 concentration of 55%) to prepare a 10.10% Kg mixed acid solution. The powder mixture was put into a mixing and dispersing machine with an internal volume of 100, and then a mixed acid solution of phosphoric acid and hydrochloric acid was added thereto, and the stirring blade of the mixing and dispersing machine was slowly rotated to cause a reaction. The contents undergo a vigorous decarboxylation reaction and foam. The bubbling phenomenon subsides after a while. At this stage, the reaction is continued while the stirring blade of the mixing/dispersing machine is continuously rotated for several minutes. The contents gradually become viscous and the load on the mixing/dispersing machine increases. At this point, once the rotation of the stirring blade is stopped and the stirring blade is allowed to stand still for several minutes, the stirring blade of the mixing and dispersing machine is rotated again to crush and granulate at the same time. When the temperature reached the temperature, the stirring blade was stopped and the contents were taken out from the mixer and disperser, and after taking out, 20 kg of product was obtained by simply sieving without further drying. The analytical values of the phosphoric acid fertilizer obtained as described above were as follows, one day after production and one week after being left in a constant temperature and constant humidity room at a temperature of 35° C. and a relative humidity of 90%.

【表】 実施例 3 (H3PO4)/{(MeO)−1/2(HCl)} モル比=1.33 (HCl)/(H3PO4) モル比=0.10 となるようにドロマイトプラスター(0.088mm標
準ふるい90%通過、CaO50.00%、MgO26.00%、
うち可溶性石灰(S―CaO)50.00%、可溶性苦
土(S―MgO)26.00%)3.986Kgと実施例1で用
いたのと同一の高炉水滓スラグ粉末2.112Kgとを
予め混合し6.098Kgの粉末混合物を得た。 つぎにH3PO4濃度75%(P2O5濃度55%)のリ
ン酸溶液12.888KgにHCl35%濃度の塩酸1.014Kgを
混合し13.902Kgの混酸溶液を調製した。 以下実施例2と同様に処理して製品20Kgを得
た。 上記のようにして得たリン酸質肥料の製造1日
後および温度35℃、相対湿度90%の恒温、恒湿室
内に1週間放置後の分析値はつぎのとおりであつ
た。
[ Table] Example 3 Dolomite plaster ( 90% passing through 0.088mm standard sieve, CaO50.00%, MgO26.00%,
Of these, 3.986 kg of soluble lime (S-CaO 50.00%, soluble magnesium (S-MgO) 26.00%) and 2.112 kg of the same blast furnace water slag powder used in Example 1 were mixed in advance to produce 6.098 kg. A powder mixture was obtained. Next, 12.888 kg of a phosphoric acid solution with a 75% H 3 PO 4 concentration (55% P 2 O 5 concentration) was mixed with 1.014 kg of hydrochloric acid with a 35% HCl concentration to prepare 13.902 kg of a mixed acid solution. Thereafter, it was treated in the same manner as in Example 2 to obtain 20 kg of product. The analytical values of the phosphoric acid fertilizer obtained as described above were as follows, one day after production and one week after being left in a constant temperature and constant humidity room at a temperature of 35° C. and a relative humidity of 90%.

【表】 実施例 4 (H3PO4)/{(MeO)−1/2(HCl)} モル比=1.33 (HCl)/(H3PO4) モル比=0.10 となるように実施例1で用いたのと同一の苦土炭
酸カルシウム粉末3.134Kgと微粉炭燃焼灰(フラ
イアツシユ)9.822Kgとを予め混合し、12.956Kg
の粉末混合物を得た。 フライアツシユの化学分析値はつぎのとおりで
ある。 CaO 7.83% MgO 2.10% SiO2 48.10% Al2O3 28.63% Fe2O3 6.72% 肥料分析法で規定する可溶性石灰(S―CaO)
5.57%、可溶性苦土(S―MgO)0.97%、可溶性
けい酸(S―SiO2)2.70%であつた。 つぎにH3PO4濃度75%(P2O5濃度55%)のリ
ン酸溶液7.814KgにHCl濃度35%の塩酸0.640Kgを
混合し8.454Kgの混酸溶液を調製した。 以下実施例2と同様に処理して製品20Kgを得
た。 上記のようにして得たリン酸質肥料の製造1日
後および35℃、相対湿度90%の恒温、恒湿室内に
1週間放置後の分析値は、つぎのとおりであつ
た。
[Table] Example 4 (H 3 PO 4 )/{(MeO)-1/2(HCl)} Molar ratio = 1.33 (HCl)/(H 3 PO 4 ) Example 1 so that the molar ratio = 0.10 3.134Kg of the same magnesian calcium carbonate powder used in the above and 9.822Kg of pulverized coal combustion ash (fly ash) were mixed in advance to produce 12.956Kg.
A powder mixture was obtained. The chemical analysis values of the fly ash are as follows. CaO 7.83% MgO 2.10% SiO 2 48.10% Al 2 O 3 28.63% Fe 2 O 3 6.72% Soluble lime (S-CaO) specified by fertilizer analysis method
5.57%, soluble magnesium (S--MgO) 0.97%, and soluble silicic acid (S--SiO 2 ) 2.70%. Next, 0.640 kg of hydrochloric acid with a HCl concentration of 35% was mixed with 7.814 kg of a phosphoric acid solution with a H 3 PO 4 concentration of 75% (P 2 O 5 concentration of 55%) to prepare 8.454 kg of a mixed acid solution. Thereafter, it was treated in the same manner as in Example 2 to obtain 20 kg of product. The analytical values of the phosphoric acid fertilizer obtained as described above after one day of production and after being left in a constant temperature and humidity chamber at 35° C. and 90% relative humidity for one week were as follows.

【表】 実施例 5 (H3PO4)/{MeO−1/2(HCl) +(H2SO4)} モル比=1.54 (HCl)/(H3PO4) モル比=0.05 となるように実施例1で用いたのと同一の苦土炭
酸カルシウム粉末5Kgと溶銑の脱りん工程で生成
する含りん製鋼スラグを粉砕し、0.149mmの標準
ふるいを全通した粉末5Kgとを混合し、合計10Kg
を得た。 本含りん製スラグの化学分析値はつぎの通りで
ある。 T―P2O5 7.74% SiO2 17.1% CaO 52.5% MgO 0.83% T―Fe 6.23% C―P2O5 5.15% 可溶性けい酸(S―SiO2) 15.4% 可溶性石灰(S―CaO) 51.1% 可溶性苦土(S―MgO) 0.69% つぎにH3PO4濃度60%(P2O5換算44.7%)並び
に硫酸をH2SO4で5.70%含むりん鉱石を硫酸で分
解し、濃縮した粗製りん酸液21.8KgにHCl濃度35
%の塩酸700gを混合し22.5Kgの混酸を調製し
た。 以下実施例2と同様に処理し、1〜4mmの製品
27.6Kgを得た。 本製品の製造1日後および35℃、相対湿度90%
の恒湿室内に7日間放置したときの分析値はつぎ
の通りであつた。
[Table] Example 5 (H 3 PO 4 )/{MeO-1/2(HCl) + (H 2 SO 4 )} Molar ratio = 1.54 (HCl)/(H 3 PO 4 ) Molar ratio = 0.05 As shown, 5 kg of the same magnesian calcium carbonate powder used in Example 1 was mixed with 5 kg of powder obtained by crushing phosphorus-containing steelmaking slag produced in the dephosphorization process of hot metal and passing it through a standard sieve of 0.149 mm. , total 10Kg
I got it. The chemical analysis values of this phosphorus-containing slag are as follows. T-P 2 O 5 7.74% SiO 2 17.1% CaO 52.5% MgO 0.83% T-Fe 6.23% C-P 2 O 5 5.15% Soluble silicic acid (S-SiO 2 ) 15.4% Soluble lime (S-CaO) 51.1 % Soluble magnesium (S-MgO) 0.69% Next, phosphate rock containing 60% H 3 PO 4 concentration (44.7% P 2 O 5 equivalent) and 5.70% sulfuric acid with H 2 SO 4 was decomposed with sulfuric acid and concentrated. HCl concentration 35 in crude phosphoric acid solution 21.8Kg
% hydrochloric acid was mixed to prepare 22.5 kg of mixed acid. The following process was carried out in the same manner as in Example 2, and a product with a size of 1 to 4 mm was obtained.
Obtained 27.6Kg. One day after manufacturing this product and at 35℃ and 90% relative humidity.
The analytical values when the sample was left in a constant humidity room for 7 days were as follows.

【表】 実施例 6 (H3PO4)/{(MeO)−1/2(HCl) +(H2SO4)} モル比=1.60 (HCl)/(H3PO4) モル比=0.20 となるように実施例1で用いた苦土炭酸カルシウ
ム粉末並らびに実施例5で用いたのと同一の含り
ん製鋼スラグ粉末の等量混合物10Kgを用意した。 つぎにH3PO4濃度60%(P2O5換算44.7%)並ら
びに硫酸をH2SO4で5.70%含むりん鉱石を硫酸で
分解し、濃縮した粗製りん酸液21.8KgにHCl濃度
35%の塩酸2.70Kgを混合し、24.5Kgの混酸を調製
した。以下実施例2と同様に処理し1〜4mmの製
品29.5Kgを得た。本製品の製造1日後および35
℃、相対湿度90%の恒湿室内に7日間放置したと
きの分析値はつぎの通りであつた。
[Table] Example 6 (H 3 PO 4 )/{(MeO)-1/2(HCl) + (H 2 SO 4 )} Molar ratio = 1.60 (HCl)/(H 3 PO 4 ) Molar ratio = 0.20 10 kg of a mixture of equal amounts of the magnesium calcium carbonate powder used in Example 1 and the same phosphorus-containing steel slag powder as used in Example 5 was prepared. Next, phosphate rock containing 60% H 3 PO 4 concentration (44.7% P 2 O 5 equivalent) and 5.70% sulfuric acid with H 2 SO 4 was decomposed with sulfuric acid, and the HCl concentration was added to 21.8 kg of concentrated crude phosphoric acid solution.
2.70 kg of 35% hydrochloric acid was mixed to prepare 24.5 kg of mixed acid. Thereafter, the same process as in Example 2 was carried out to obtain 29.5 kg of a product with a diameter of 1 to 4 mm. 1 day and 35 days after the manufacture of this product
When the sample was left in a constant humidity room at 90% relative humidity for 7 days, the analytical values were as follows.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のリン酸質肥料の製造法の工程
系統図である。
FIG. 1 is a process flow diagram of the method for producing phosphoric acid fertilizer of the present invention.

Claims (1)

【特許請求の範囲】 1 アルカリ土類金属化合物の粉末と可溶性ケイ
酸を含有する物質の粉末との混合物にリン酸濃度
がH3PO4として50〜80重量%(P2O5として36〜
58重量%)のリン酸溶液または前記濃度のリン酸
溶液と硫酸との混酸溶液を反応させるに当り、
H3PO41モルに対し0.05〜0.6モルの塩酸を添加し
て反応させることを特徴とするリン酸質肥料の製
造方法。 2 アルカリ土類金属化合物が石灰石、ドロマイ
ト、マグネサイトの粉砕物、化学的に合成された
炭酸カルシウム、炭酸マグネシウム、蛇紋岩、か
んらん岩の粉砕物、焼成して得られる生石灰、マ
グネシア、軽焼ドロマイト粉末、消石灰、水酸化
マグネシウム、ドロマイトプラスター等の水和物
粉末、パルプ排液を処理して得られるマグネシウ
ム含有物質の乾燥物または同じく焼成物等のアル
カリ土類金属化合物の粉末の単独または2種以上
の混合物からなることを特徴とする特許請求の範
囲第1項記載のリン酸質肥料の製造方法。 3 可溶性ケイ酸を含有する物質が鉄、鋼、フエ
ロアロイ、ニツケル、ステンレス鋼、マンガン、
マグネシウム、リン酸などの製造の際の鉱滓類、
セメントダスト、フライアツシユ(微粉炭燃焼
灰)、大谷石等の天然ゼオライト含有物質、ALC
(建築用軽量板状成形体)製造の際に副生するケ
イ酸カルシウムを主成分とする物質等の可溶性ケ
イ酸を含有する物質の粉末の単独または2種以上
の混合物からなることを特徴とする特許請求の範
囲第1項記載のリン酸質肥料の製造方法。 4 アルカリ土類金属化合物の粉末と可溶性ケイ
酸を含有する物質の粉末との混合物にリン酸濃度
がH3PO4として50〜80重量%(P2O5として36〜
58重量%)のリン酸溶液または前記濃度のリン酸
溶液と硫酸との混酸溶液を反応させるに当り、
H3PO41モルに対し0.05〜0.6モルの塩酸を添加し
て反応させる方法において、原料中の可溶性アル
カリ土類金属酸化物(MeO)(ただしMeはCaま
たはMg)と混酸溶液(リン酸、硫酸および塩酸
の混酸)と反応させる場合には (H3PO4)/〔(MeO− {1/2(HCl)×(H2SO4)}〕の モル比1.0〜2.0 ………(1) (H3PO4)のモル数>H2SO4の モル数+(HCl)のモル数 ……(2) (HCl)/(H3PO4)の モル比=0.05〜0.6 ……(3) ことさら硫酸を加えずリン酸溶液と塩酸とを反
応させる場合には (H3PO4)/〔(MeO− {1/2(HCl)+(H2SO4)}〕 のモル比=1.0〜2.0 ……(4) (HCl)/(H3PO4)の モル比=0.05〜0.3 ……(5) 上記(1),(2),(3),(4),(5)の条件を満たすモル比
において反応させることを特徴とするリン酸質肥
料の製造方法。 5 アルカリ土類金属化合物が石灰石、ドロマイ
ト、マグネサイトの粉砕物、化学的に合成された
炭酸カルシウム、炭酸マグネシウム、蛇紋岩、か
んらん岩の粉砕物、焼成して得られる生石灰、マ
グネシア、軽焼ドロマイト粉末、消石灰、水酸化
マグネシウム、ドロマイトプラスター等の水和物
粉末、パルプ排液を処理して得られるマグネシウ
ム含有物質の乾燥物または同じく焼成物等のアル
カリ土類金属化合物の粉末の単独または2種以上
の混合物からなることを特徴とする特許請求の範
囲第4項記載のリン酸質肥料の製造方法。 6 可溶性ケイ酸を含有する物質が鉄、鋼、フエ
ロアロイ、ニツケル、ステンレス鋼、マンガン、
マグネシウム、リン酸などの製造の際の鉱滓類、
セメントダスト、フライアツシユ(微粉炭燃焼
灰)、大谷石等の天然ゼオライト含有物質、ALC
(建築用軽量板状成形体)製造の際に副生するケ
イ酸カルシウムを主成分とする物質等の可溶性ケ
イ酸を含有する物質の粉末の単独または2種以上
の混合物からなることを特徴とする特許請求の範
囲第4項記載のリン酸質肥料の製造方法。
[Scope of Claims] 1. A mixture of a powder of an alkaline earth metal compound and a powder of a substance containing soluble silicic acid has a phosphoric acid concentration of 50 to 80% by weight as H 3 PO 4 (36 to 80% by weight as P 2 O 5) .
When reacting a phosphoric acid solution (58% by weight) or a mixed acid solution of a phosphoric acid solution and sulfuric acid with the above concentration,
A method for producing a phosphoric acid fertilizer, which comprises adding 0.05 to 0.6 mol of hydrochloric acid to 1 mol of H 3 PO 4 for reaction. 2. Alkaline earth metal compounds include crushed limestone, dolomite, and magnesite, chemically synthesized calcium carbonate, magnesium carbonate, serpentine, and peridotite, quicklime obtained by firing, magnesia, and light calcined Dolomite powder, slaked lime, magnesium hydroxide, hydrate powder such as dolomite plaster, dried magnesium-containing substance obtained by treating pulp waste liquid, or alkaline earth metal compound powder such as calcined product alone or in combination 2. The method for producing a phosphoric acid fertilizer according to claim 1, which comprises a mixture of more than one species. 3 Substances containing soluble silicic acid include iron, steel, ferroalloy, nickel, stainless steel, manganese,
Mineral slag during the production of magnesium, phosphoric acid, etc.
Cement dust, fly ash (pulverized coal combustion ash), natural zeolite-containing substances such as Oya stone, ALC
(Lightweight plate-shaped molded product for construction) It is characterized by being made of a powder of a substance containing soluble silicic acid, such as a substance mainly composed of calcium silicate, which is a by-product during manufacturing, or a mixture of two or more of them. A method for producing a phosphoric acid fertilizer according to claim 1. 4 A mixture of a powder of an alkaline earth metal compound and a powder of a substance containing soluble silicic acid has a phosphoric acid concentration of 50 to 80% by weight as H 3 PO 4 (36 to 80% as P 2 O 5) .
When reacting a phosphoric acid solution (58% by weight) or a mixed acid solution of a phosphoric acid solution and sulfuric acid with the above concentration,
In the method of reacting by adding 0.05 to 0.6 mol of hydrochloric acid to 1 mol of H 3 PO 4 , a soluble alkaline earth metal oxide (MeO) (Me is Ca or Mg) in the raw material and a mixed acid solution (phosphoric acid , a mixed acid of sulfuric acid and hydrochloric acid), the molar ratio of (H 3 PO 4 )/[(MeO− {1/2(HCl)×(H 2 SO 4 )}] is 1.0 to 2.0. 1) Number of moles of (H 3 PO 4 ) > Number of moles of H 2 SO 4 + Number of moles of (HCl) ……(2) Molar ratio of (HCl)/(H 3 PO 4 ) = 0.05 to 0.6 …… (3) When reacting a phosphoric acid solution with hydrochloric acid without adding sulfuric acid, the molar ratio of (H 3 PO 4 )/[(MeO− {1/2(HCl) + (H 2 SO 4 )}] = 1.0 ~ 2.0 ... (4) Molar ratio of (HCl) / (H 3 PO 4 ) = 0.05 ~ 0.3 ... (5) Above (1), (2), (3), (4), (5) ) A method for producing a phosphoric acid fertilizer, characterized in that the reaction is carried out at a molar ratio that satisfies the conditions of 5. The alkaline earth metal compound is a crushed product of limestone, dolomite, magnesite, chemically synthesized calcium carbonate, Magnesium, serpentine, peridotite crushed products, quicklime obtained by firing, magnesia, lightly calcined dolomite powder, hydrated powder such as slaked lime, magnesium hydroxide, dolomite plaster, etc., obtained by processing pulp waste liquid. The method for producing a phosphoric acid fertilizer according to claim 4, characterized in that it consists of a powder of an alkaline earth metal compound such as a dried magnesium-containing substance or a calcined substance alone or in a mixture of two or more. 6. If the substance containing soluble silicic acid is iron, steel, ferroalloy, nickel, stainless steel, manganese,
Mineral slag during the production of magnesium, phosphoric acid, etc.
Cement dust, fly ash (pulverized coal combustion ash), natural zeolite-containing substances such as Oya stone, ALC
(Lightweight plate-shaped molded product for construction) It is characterized by being made of a powder of a substance containing soluble silicic acid, such as a substance mainly composed of calcium silicate, which is a by-product during manufacturing, or a mixture of two or more of them. A method for producing a phosphoric acid fertilizer according to claim 4.
JP2944882A 1982-02-25 1982-02-25 Manufacture of phosphatic fertilizer Granted JPS58181778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2944882A JPS58181778A (en) 1982-02-25 1982-02-25 Manufacture of phosphatic fertilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2944882A JPS58181778A (en) 1982-02-25 1982-02-25 Manufacture of phosphatic fertilizer

Publications (2)

Publication Number Publication Date
JPS58181778A JPS58181778A (en) 1983-10-24
JPS6246518B2 true JPS6246518B2 (en) 1987-10-02

Family

ID=12276391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2944882A Granted JPS58181778A (en) 1982-02-25 1982-02-25 Manufacture of phosphatic fertilizer

Country Status (1)

Country Link
JP (1) JPS58181778A (en)

Also Published As

Publication number Publication date
JPS58181778A (en) 1983-10-24

Similar Documents

Publication Publication Date Title
US7452398B2 (en) Phosphate and potash(PK)-containing compound fertilizer
US6413291B1 (en) Soil conditioning agglomerates containing calcium
US5264017A (en) Inorganic reactive granulating binder and conditioner
US4410350A (en) Production of pellets and pellet-containing fertilizer composition
US6325836B1 (en) Soil conditioning agglomerates containing calcium
WO1999055643A1 (en) Soil conditioning agglomerates containing calcium
EP2032511A2 (en) Fertilizer granules and manufacturing process thereof
EP2051953B1 (en) Granulated fertilizer containing water soluble forms of nitrogen, magnesium and sulphur, and method of its preparation
CN108473380A (en) NPK fertilizer containing phosphorus potassium nitrogen and the method for being used to prepare the granulated NPK fertilizer containing phosphorus potassium nitrogen
JPS6335598B2 (en)
JPH0159239B2 (en)
JPS6246518B2 (en)
US4101637A (en) Direct granulation process for triple superphosphate
JP3595820B2 (en) Method for producing slow-release fertilizer
JPH0243708B2 (en)
JPS6117795B2 (en)
JP4078111B2 (en) Phosphate fertilizer composition
JPS5891093A (en) Manufacture of phosphatic fertilizer
JP2000095587A (en) Granular magnesium sulfate fertilizer and its production
JPS6016399B2 (en) Method for producing slag phosphate fertilizer that also serves as a soil improvement material
JPH0244791B2 (en)
JPS581718B2 (en) Method for manufacturing granular soil improvement material
JPS5841788A (en) Manufacture of dust-free lime and phosphatic fertilizer
RU2228919C1 (en) Method for preparing ammonium-nitrate fertilizer
SU1150245A1 (en) Method of obtaining superphosphate