JPS6246490Y2 - - Google Patents

Info

Publication number
JPS6246490Y2
JPS6246490Y2 JP6436584U JP6436584U JPS6246490Y2 JP S6246490 Y2 JPS6246490 Y2 JP S6246490Y2 JP 6436584 U JP6436584 U JP 6436584U JP 6436584 U JP6436584 U JP 6436584U JP S6246490 Y2 JPS6246490 Y2 JP S6246490Y2
Authority
JP
Japan
Prior art keywords
chamfer
drill
center
cutting edge
periphery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6436584U
Other languages
Japanese (ja)
Other versions
JPS60175513U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6436584U priority Critical patent/JPS60175513U/en
Publication of JPS60175513U publication Critical patent/JPS60175513U/en
Application granted granted Critical
Publication of JPS6246490Y2 publication Critical patent/JPS6246490Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

〈産業上の利用分野〉 開示技術は鋳鉄、或は、鋼材等の穴明け加工に
用いるドリル、特に、素材に超硬合金を用いたド
リルの構造の技術分野に属する。 〈要旨の概要〉 而して、この考案はドリル本体の先端部の切刃
にすくい面と逃げ面の交叉する部分に該すくい面
から逃げ面にかけて面取りが形成されて超硬合金
の脆さを補強して切刃の強化を図るようにしたド
リル構造に関する考案であり、特に、該面取りの
面取り角がドリル軸線に対して中心面取りで大き
く、周寄りで小さく10゜〜45゜の範囲であり、
又、面取り幅が0.03〜0.3mmの大きさで、しか
も、中心寄りでは大きく、外周寄りでは小さく、
更に、両者の比率を3:1〜2:1に形成されて
耐摩耗性をより向上させるようにしたドリル構造
に係る考案である。 〈従来技術〉 周知の如く、一般の鋼材や鋳鉄製品等の穴明け
作業には従来より高速度剛性のドリルが使用され
てきたが、該種穴明け作業の高能率化が強く要求
されるに至つている最近においてはドリルの回転
数を高めてその要求に応える態様が増えており、
それに伴つて耐摩耗性に優れる超硬合金をドリル
の切刃部分に用いる構造のドリルが用いられるよ
うになつてきた。 例えば、第1,2,3図に示す様なドリル1に
おいては切刃2に超硬合金が用いられており、シ
ンニング3はクロスシンニングであつてチゼル幅
はほとんどゼロに近い形状のものであるが、超硬
合金は脆く、抗折力に劣り、断続切削や、重切削
等のような切刃に集中力が働く場合、小さなチツ
ピング等の欠けが生ずるような虞があり、切刃2
の強化を図るために所謂ネガランド等の面取り4
をすくい面5から逃げ面6にかけて形成させ、一
般には面取り4について面取り角θはドリルの軸
線7に対して10゜〜45゜であつてすくい面5側で
の面取り幅は0.03〜0.3mm程度で、切刃2の全長
に亘つてほぼ一定にした比率であつた。 更に、切削抵抗に関して考えると、このような
刃先処理はその抵抗の増大を招き、したがつて、
可能であれば刃先処理はない方が良く、このよう
な処理は前述の特性への対応上止むを得ないこと
が多い。 〈考案が解決しようとする問題点〉 ところで、超硬合金の切刃を有するドリルによ
る鋼材料に対する穴明け作業を行う場合の特性の
問題には次のようなものがある。 即ち、第一に穴明けする場合の切刃の中心部は
切削速度が低く、したがつて、切削による温度が
それほど上昇せず、又、耐摩耗性はそれほど必要
ではないものの、逆に溶着がし易くなり、溶着部
の生成や脱落の際の切刃自身にも欠けが形成され
る。 一方、外周部は切削速度が高く、それも中心部
から外周部に移るにつれて高くなり、当然耐摩耗
性が要求されることになる。 而して、一般に切刃強化のための上述面取りは
大きいほど当然発熱量が大きくなり、耐摩耗性は
劣ることになる。 したがつて、前述の如く、従来態様の切刃のす
くい面から逃げ面にかけての面取りの形成におい
て、その面取り幅が全長で比率が一定であり、
又、面取り角も一定であることは中心部から外周
部にかけての耐摩耗性を劣化させることになると
いう不具合があつた。 〈考案の目的〉 この考案の目的は上述従来技術に基づく超硬合
金製の切刃を有するドリルの該切刃に於けるすく
い面から逃げ面にかけての面取り形成の問題点を
解決すべき技術的課題とし、ドリルの面取りのす
くい面から中心にかけての形状について超硬合金
による切刃の耐摩耗性を均一にするように処理す
ると共に切削抵抗の観点から、使用条件に合うべ
く最適の刃先処理の大きさにして欠損を防止し、
ドリル全体の寿命を延ばすようにして金属製品製
造産業における機械加工技術利用分野に益する優
れたドリル構造を提供せんとするものである。 〈問題点を解決するための手段・作用〉 上述目的に沿い先述実用新案登録請求の範囲を
要旨とするこの考案の構成は前述問題点を解決す
るために、ドリルの切刃を超硬合金製にし、その
すくい面から逃げ面にかけての交叉する部分に面
取りを形成させ、この場合、面取り角については
ドリル軸線に対して10゜〜45゜の範囲にし、又、
面取り幅についてはすくい面側では0.03〜0.3mm
の大きさにし、中心寄りで面取りが大きく、周寄
りで小さくされ、その比率は中心寄りと周寄りで
3:1〜2:1にし、面取り角についても中心寄
りと周寄りではその比率が同様に3:1〜2:1
であるようにし、切刃の中心寄りから周寄りにか
けて均一な耐摩耗性を付与するようにしてドリル
の寿命が向上するようにした技術的手段を講じた
ものである。 〈実施例−構成〉 次に、この考案の実施例を第4図以下の図面に
基づいて説明すれば以下の通りである。尚、第1
〜3図と同一態様部分は同一符号を用いて説明す
るものとする。 第4〜7図に示す実施例において、1′はこの
考案の要旨の中心を成すドリルであり、その切刃
2は超硬合金製であつて図示態様においてはクロ
スシンニング3が形成されており、チゼル幅はほ
とんどゼロであり、そのすくい面5から逃げ面6
にかけて面取り4′が形成されている。 而して、該面取り4′の面取り角θは中心寄
り、及び、周寄りにかけて一定であつて、θ=25
゜にされており、面取り幅については中心寄りで
広く、周寄りでは狭い構造にされており、数値的
にはドリル直径が10mmのものでは中心寄りで0.2
mm、周寄りで0.07〜0.1mm、又、ドリル直径20mm
のものでは中心寄りで0.3mm、周寄りで0.1〜0.15
mmとその比率はほぼ3:1〜2:1が適当とされ
ている。 〈実施例−作用〉 上述構成において、直径10mm、芯厚2.5mm、溝
幅比1:1、チゼル幅0.1mmのクロスシンニング
で形状が第1,2図のようにされ、材質は超硬合
金P30のサンプルドリルをA,B,C3本用意し、
その切刃処理幅(mm)については次の表の通りに
した。
<Industrial Application Field> The disclosed technology belongs to the technical field of drills used for drilling holes in cast iron, steel, etc., particularly the structure of drills using cemented carbide as a material. <Summary> This invention has a chamfer formed from the rake face to the flank face at the intersection of the rake face and the flank face on the cutting edge of the tip of the drill body to reduce the brittleness of the cemented carbide. This invention relates to a drill structure that aims to strengthen the cutting edge by reinforcing it, and in particular, the chamfer angle is larger at the center chamfer and smaller at the periphery, ranging from 10° to 45° with respect to the drill axis. ,
In addition, the chamfer width is 0.03 to 0.3 mm, and it is large near the center and small near the outer periphery.
Furthermore, this invention relates to a drill structure in which the ratio of the two is formed in a range of 3:1 to 2:1 to further improve wear resistance. <Prior Art> As is well known, high-speed, rigid drills have been used for drilling holes in general steel materials, cast iron products, etc., but as there is a strong demand for higher efficiency in the drilling operations. In recent years, there has been an increase in the number of drills increasing their rotational speed to meet these demands.
Along with this, drills having a structure in which the cutting edge portion of the drill is made of cemented carbide, which has excellent wear resistance, have come into use. For example, in the drill 1 shown in Figures 1, 2, and 3, cemented carbide is used for the cutting edge 2, and the thinning 3 is cross thinning, and the chisel width is almost zero. However, cemented carbide is brittle and has poor transverse rupture strength, and when concentrated force is applied to the cutting edge during interrupted cutting or heavy cutting, there is a risk that small chips or other chips may occur.
Chamfering of so-called negative land etc. 4 in order to strengthen
is formed from the rake face 5 to the flank face 6, and generally the chamfer angle θ for the chamfer 4 is 10° to 45° with respect to the axis 7 of the drill, and the chamfer width on the rake face 5 side is about 0.03 to 0.3 mm. The ratio was kept almost constant over the entire length of the cutting edge 2. Furthermore, when considering the cutting resistance, such cutting edge treatment leads to an increase in the resistance, and therefore,
If possible, it is better not to have a cutting edge treatment, and such treatment is often unavoidable in order to accommodate the above-mentioned characteristics. <Problems to be solved by the invention> By the way, there are the following characteristics problems when drilling a hole in a steel material using a drill having a cemented carbide cutting edge. In other words, the cutting speed at the center of the cutting edge is low when drilling first, so the temperature due to cutting does not rise that much, and although wear resistance is not so necessary, on the contrary, welding is difficult. The cutting edge itself becomes chipped when welds form or fall off. On the other hand, the cutting speed is high at the outer periphery, and it also increases as it moves from the center to the outer periphery, and naturally wear resistance is required. Generally speaking, the larger the chamfer is for strengthening the cutting edge, the greater the amount of heat generated, and the worse the wear resistance. Therefore, as mentioned above, in forming a chamfer from the rake face to the flank face of the cutting edge in the conventional mode, the chamfer width is constant in ratio over the entire length,
Furthermore, if the chamfer angle is constant, there is a problem in that the wear resistance from the center to the outer circumference deteriorates. <Purpose of the invention> The purpose of this invention is to solve the technical problem of forming a chamfer from the rake face to the flank face of the cutting blade of a drill having a cutting blade made of cemented carbide based on the above-mentioned conventional technology. The challenge was to process the shape of the drill chamfer from the rake face to the center to make the wear resistance of the cemented carbide cutting edge uniform, and to find the optimal cutting edge treatment to suit the usage conditions from the perspective of cutting resistance. Increase the size to prevent damage,
It is an object of the present invention to provide an improved drill structure that will benefit machining technology applications in the metal products manufacturing industry by extending the overall life of the drill. <Means/effects for solving the problems> In order to solve the above-mentioned problems, the structure of this invention, which is based on the above-mentioned claims for utility model registration, is to make the cutting edge of the drill made of cemented carbide. and form a chamfer at the intersection between the rake face and the flank face, and in this case, the chamfer angle should be in the range of 10° to 45° with respect to the drill axis, and
The chamfer width is 0.03 to 0.3 mm on the rake face side.
The chamfer is large near the center and small near the periphery, and the ratio is 3:1 to 2:1 between the center and periphery, and the ratio of the chamfer angle is the same between the center and periphery. 3:1 to 2:1
This is a technical measure that improves the life of the drill by imparting uniform wear resistance from the center to the periphery of the cutting edge. <Embodiment - Configuration> Next, an embodiment of this invention will be described as follows based on the drawings from FIG. 4 onwards. Furthermore, the first
3. Components having the same features as those in FIGS. In the embodiment shown in FIGS. 4 to 7, 1' is a drill that forms the center of the gist of this invention, and its cutting edge 2 is made of cemented carbide, and in the illustrated embodiment, a cross thinning 3 is formed. , the chisel width is almost zero, and its rake face 5 to flank face 6
A chamfer 4' is formed throughout. Therefore, the chamfer angle θ of the chamfer 4' is constant toward the center and toward the periphery, and θ=25
The chamfer width is wide at the center and narrow at the periphery, numerically speaking, for a drill with a drill diameter of 10 mm, the chamfer width is 0.2 at the center.
mm, 0.07 to 0.1 mm near the periphery, and drill diameter 20 mm
0.3mm closer to the center and 0.1~0.15 closer to the periphery
mm and its ratio is considered to be approximately 3:1 to 2:1. <Example - Effect> In the above configuration, the shape is made as shown in Figures 1 and 2 by cross thinning with a diameter of 10 mm, a core thickness of 2.5 mm, a groove width ratio of 1:1, and a chisel width of 0.1 mm, and the material is cemented carbide. Prepare three P30 sample drills A, B, and C.
The cutting edge processing width (mm) was as shown in the following table.

【表】 又、面取り角については25゜で一定とした。 そして、板材の穴明けテストについては板材が
S15C HB150であり、切削スピード50m/min、
又、送り速度0.3mm/rev深さ30mmとした。 尚、切削油はエマルジヨンタイプを用いたもの
である。 そして、各サンプルドリルについて中心部が溶
着によつて欠けるまでの穴明け数を各3回反復し
た結果のデータは第12図に示す通りであつて×
印はそれぞれの穴加工時で欠けが発生し、中止し
たものである。 Aドリルでは682,795,886穴目で欠損した。 又、B,Cドリルでは1000穴目まで加工した
が、欠損はなかつた。 そして、第13図は穴数に対する外周部の摩耗
の大きさ(外周逃げ面の最大摩耗)の平均値を示
すが、Aドリルでは650穴目での損耗量0.1mmであ
ることが分る。 当該データから見ても分る通り、面取りについ
ては中心寄りが大きく、周寄りほど狭い方がより
耐摩耗性に優れていることが良く分り、刃先処理
幅が0.1mmと小さく一定であるAドリルは欠けが
起こることが分る。 この原因は被削材質がSISCで低炭素の材料で
あるため、特に低速部である中心部で溶着が多
く、その脱落によつて欠けが生じたものである。 又、第8〜11図に示す実施例においては上述
実施例が面取り角について中心寄りも、周寄りも
同角であり、面取り幅について内側中心寄りほど
広く、周寄に程狭くした態様であるのに対して、
面取り幅については上述実施例同様にし、面取り
角については中心寄りを30゜、周寄りを10゜とし
て中心寄りほど大きく、周寄りほど狭くした態様
であり、同じく穴明け作業において面取りの耐摩
耗性はほぼ一定となり、この考案の実施例が在来
態様のものに比して優れていることが分つた。 尚、この考案の実施態様は上述各実施例に限る
ものでないことは勿論であり、例えば、面取りに
ついて面取り角と面取り幅の双方を中心寄りにつ
いて大きく、周中心で小さくして両者の比率を
各々3:1〜2:1に形成にする等種々の態様が
採用可能である。 そして、中心部の欠けを考慮すると、中心部の
刃先処理が大きければ良いといえるが、第14図
に示す様に、刃先処理幅が広いと、切削抵抗(特
にスラスト)が増大するため、もし、低剛性の機
械で使われた場合には逆に欠けてしまうこともあ
る。 したがつて、全体を均一に大きくするのではな
く、必要な中心部のみを大きくすることは有効な
手段でと言える。 尚、第14図に使用したドリルは直径21.5mm、
芯厚6.4mm、溝幅比0.8:1、チゼル幅0.1mmのクロ
スシンニング、内部給油穴付きで材質P30にTiN
を被覆したものであり、切削条件は、S50Cの被
削材へ回転速度50mm/分、深さ40mmをあけたもの
である。 又、切削油はエマルジヨンタイプを使用した。 〈考案の効果〉 以上、この考案によれば、基本的に切刃素材を
超硬合金製とし、すくい面と逃げ面の交叉する部
分に面取りが形成されているドリルにおいて、面
取り幅をすくい面側において0.03〜0.3mmとし、
而も、中心寄りで大きく、周寄りで小さく、更
に、その比率を3:1〜2:1に形成するように
したことにより、切刃の外周部に於いて切削速度
が大きく、切削温度が上昇しても、発熱が抑えら
れて耐摩耗性が向上するという優れた効果が奏さ
れ、最適設計により、切刃全体に於いて平均した
摩耗が得られ、その結果、ドリルの寿命が著しく
向上するという優れた効果が奏される。 しかも、全体の刃先処理を大きくしたものでな
いために、必要以上の抵抗増につながらないこと
から切削抵抗を起因としたトラブルも防止出来
る。 又、逃げ面の摩耗が少いために、超硬合金製の
切刃の強度が面取り形成によつて強化された度合
が常に保たれるという優れた効果も奏される。
[Table] Also, the chamfer angle was kept constant at 25°. As for the hole drilling test for the board, the board is
S15C H B 150, cutting speed 50m/min,
In addition, the feed rate was set to 0.3 mm/rev depth to 30 mm. Note that the cutting oil used is an emulsion type. For each sample drill, the number of holes drilled until the center part breaks due to welding is repeated three times each, and the data is as shown in Figure 12.
The marks indicate holes that were discontinued due to chipping during drilling. Drill A had defects at holes 682, 795, and 886. Also, with B and C drills, up to the 1000th hole was drilled, but there was no breakage. FIG. 13 shows the average value of the amount of wear on the outer periphery (maximum wear on the outer flank flank) with respect to the number of holes, and it can be seen that the amount of wear at the 650th hole in the A drill is 0.1 mm. As can be seen from the data, it is clear that the chamfer is larger towards the center and narrower towards the periphery, which has better wear resistance. It can be seen that chipping occurs. The cause of this is that because the workpiece material is SISC, a low-carbon material, there is a lot of welding, especially in the center area where the speed is low, and chipping occurs when the welding falls off. Furthermore, in the embodiments shown in FIGS. 8 to 11, the chamfer angle of the above-mentioned embodiment is the same both toward the center and toward the periphery, and the chamfer width is wider toward the inner center and narrower toward the periphery. In contrast,
The chamfer width is the same as in the above example, and the chamfer angle is 30 degrees near the center and 10 degrees near the periphery, making it larger toward the center and narrower toward the periphery. was almost constant, and it was found that the embodiment of this invention is superior to the conventional embodiment. It goes without saying that the embodiment of this invention is not limited to the above-mentioned embodiments. For example, for chamfering, both the chamfer angle and the chamfer width may be made larger near the center and smaller at the center of the periphery, so that the ratio of the two is adjusted respectively. Various embodiments such as formation at a ratio of 3:1 to 2:1 can be adopted. Considering chipping at the center, it can be said that it is better to have a large cutting edge treatment at the center, but as shown in Figure 14, if the cutting edge width is wide, cutting resistance (especially thrust) will increase, so if On the other hand, if it is used in a machine with low rigidity, it may become chipped. Therefore, it can be said that it is an effective means to enlarge only the necessary central part, rather than uniformly enlarging the whole. The drill used in Figure 14 has a diameter of 21.5 mm.
Core thickness 6.4mm, groove width ratio 0.8:1, cross thinning with chisel width 0.1mm, internal oil supply hole made of TiN material P30
The cutting conditions were a rotation speed of 50 mm/min and a depth of 40 mm in the S50C workpiece. Also, emulsion type cutting oil was used. <Effects of the invention> As described above, according to this invention, in a drill in which the cutting blade material is basically made of cemented carbide and a chamfer is formed at the intersection of the rake face and flank face, the chamfer width is set to the rake face. 0.03~0.3mm on the side,
However, by forming the ratio of 3:1 to 2:1, which is larger near the center and smaller near the periphery, the cutting speed is higher and the cutting temperature is lower at the outer periphery of the cutting edge. The excellent effect of suppressing heat generation and improving wear resistance even when the cutting edge is increased is achieved, and the optimal design achieves average wear over the entire cutting edge, resulting in a significantly longer drill life. This produces an excellent effect. Moreover, since the overall cutting edge treatment is not large, it does not lead to an unnecessarily increased resistance, and troubles caused by cutting resistance can be prevented. In addition, since there is little wear on the flank surface, an excellent effect is achieved in that the strength of the cemented carbide cutting blade is always maintained to the extent that it is strengthened by chamfering.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来一般の切刃素材に超硬合金を用い
たドリルの先端上面図、第2図は第1図側面図、
第3図は面取り説明の第2図X−X断面図、第4
図以下はこの考案の実施例の説明図であり、第4
図は1実施例の上面図、第5図は第4図側面図、
第6図は第5図Y−Y断面図、第7図は第5図Z
−Z断面図、第8図は他の実施例の上面図、第9
図は第8図側面図、第10図は第9図Y−Y断面
図、第11図は第9図Z−Z断面図、第12図は
サンプルドリルの加工穴数とその寿命の関係説明
グラフ図第13図は加工穴数と外周逃げ面最大摩
耗関係説明グラフ図、第14図は別の実施例のト
ルクとスラストの送り速度に対する特性グラフ図
である。 2……切刃、5……すくい面、6……逃げ面、
4′,4″……面取り、1′,1″……ドリル、…
…面取り幅、θ……面取り角。
Figure 1 is a top view of the tip of a conventional drill using cemented carbide as the cutting edge material, Figure 2 is a side view of Figure 1,
Figure 3 is a sectional view of Figure 2
The figures below are explanatory diagrams of the embodiment of this invention, and the fourth
The figure is a top view of one embodiment, Figure 5 is a side view of Figure 4,
Figure 6 is a sectional view taken along the Y-Y line in Figure 5, and Figure 7 is a cross-sectional view taken along the line Z in Figure 5.
-Z sectional view, Figure 8 is a top view of another embodiment, Figure 9 is a top view of another embodiment.
The figure is a side view of Fig. 8, Fig. 10 is a Y-Y cross-sectional view of Fig. 9, Fig. 11 is a Z-Z cross-sectional view of Fig. 9, and Fig. 12 is an explanation of the relationship between the number of holes processed by the sample drill and its life Graph diagram FIG. 13 is a graph diagram illustrating the relationship between the number of holes to be machined and the maximum wear on the outer circumferential flank face, and FIG. 14 is a graph diagram illustrating the characteristics of torque and thrust with respect to feed rate in another embodiment. 2... Cutting edge, 5... Rake face, 6... Relief face,
4', 4''...Chamfer, 1', 1''...Drill,...
... Chamfer width, θ... Chamfer angle.

Claims (1)

【実用新案登録請求の範囲】 (1) 切刃素材に超硬合金が用いられすくい面と逃
げ面の交叉する部分に面取りが形成されている
ドリル構造において、面取り角がドリル軸線に
対して10゜〜45゜の範囲であり、面取り幅がす
くい面側で0.03〜0.3mmの大きさで中心寄りで
大きく周寄りで小さくされその比率を3:1〜
2:1に形成されていることを特徴とするドリ
ル構造。 (2) 上記面取り角が中心寄りで大きく、周寄りで
小さく形成されていることを特徴とするドリル
構造。 (3) 上記面取り角の中心寄りと周寄りの比率が
3:1〜2:1にされていることを特徴とする
ドリル構造。
[Scope of claim for utility model registration] (1) In a drill structure in which cemented carbide is used as the cutting edge material and a chamfer is formed at the intersection of the rake face and flank face, the chamfer angle is 10 mm with respect to the drill axis. The chamfer width is in the range of 0.03 to 0.3 mm on the rake face side, larger near the center and smaller near the periphery, with a ratio of 3:1 to 0.3 mm.
A drill structure characterized by being formed at a ratio of 2:1. (2) A drill structure characterized in that the chamfer angle is larger toward the center and smaller toward the periphery. (3) A drill structure characterized in that the ratio of the chamfer angles closer to the center and closer to the periphery is 3:1 to 2:1.
JP6436584U 1984-05-02 1984-05-02 drill structure Granted JPS60175513U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6436584U JPS60175513U (en) 1984-05-02 1984-05-02 drill structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6436584U JPS60175513U (en) 1984-05-02 1984-05-02 drill structure

Publications (2)

Publication Number Publication Date
JPS60175513U JPS60175513U (en) 1985-11-20
JPS6246490Y2 true JPS6246490Y2 (en) 1987-12-16

Family

ID=30595381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6436584U Granted JPS60175513U (en) 1984-05-02 1984-05-02 drill structure

Country Status (1)

Country Link
JP (1) JPS60175513U (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352908A (en) * 1986-08-22 1988-03-07 Toshiba Tungaloy Co Ltd Twist drill
JP2009018360A (en) * 2007-07-10 2009-01-29 Sumitomo Electric Hardmetal Corp Drill for metal working
JP2014193513A (en) * 2013-03-29 2014-10-09 Mitsubishi Materials Corp Drill
JP6611260B2 (en) * 2014-09-19 2019-11-27 住友電工ハードメタル株式会社 drill
JP7082750B2 (en) * 2018-03-22 2022-06-09 株式会社不二越 Drill
JP2022129078A (en) 2021-02-24 2022-09-05 株式会社デンソー rotary tool

Also Published As

Publication number Publication date
JPS60175513U (en) 1985-11-20

Similar Documents

Publication Publication Date Title
US8870498B2 (en) Ball end mill
US4728231A (en) Drill bit structure
EP3444059B1 (en) Small-diameter drill bit
US9352399B2 (en) Drill
JPH08155713A (en) Twist drill
JPS6246490Y2 (en)
JP4125909B2 (en) Square end mill
JPS59175915A (en) End mill
JPH09309020A (en) Three-dimensional machining cemented solid end mill
JP3337804B2 (en) End mill
JP3162309B2 (en) Tomoe type thinning drill with chisel for high-speed heavy cutting
JPH0446690B2 (en)
JP2538864Y2 (en) Hard film coated drill for difficult-to-cut materials
JPH02109620A (en) Straight drill with oil hole
JPH06335816A (en) Minimum diameter end mill
JPS6246491Y2 (en)
JPH05345212A (en) End mill
JPH0524218U (en) Drilling tool
JPH0351057Y2 (en)
CN212793208U (en) Rapid forming center drill bit
JPS6210025Y2 (en)
JPS6250245B2 (en)
JPS6246492Y2 (en)
JP2003039218A (en) Drill for deep hole
JPH0333375Y2 (en)