JPS6246422Y2 - - Google Patents

Info

Publication number
JPS6246422Y2
JPS6246422Y2 JP15732183U JP15732183U JPS6246422Y2 JP S6246422 Y2 JPS6246422 Y2 JP S6246422Y2 JP 15732183 U JP15732183 U JP 15732183U JP 15732183 U JP15732183 U JP 15732183U JP S6246422 Y2 JPS6246422 Y2 JP S6246422Y2
Authority
JP
Japan
Prior art keywords
oxidation
slurry
tower
oxidation tower
supernatant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15732183U
Other languages
Japanese (ja)
Other versions
JPS6067131U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15732183U priority Critical patent/JPS6067131U/en
Publication of JPS6067131U publication Critical patent/JPS6067131U/en
Application granted granted Critical
Publication of JPS6246422Y2 publication Critical patent/JPS6246422Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Description

【考案の詳細な説明】 本考案はイオウ酸化物を含有する排ガスを、石
灰などの吸収剤スラリーを用いて湿式洗浄する湿
式排煙脱硫装置に係り、特に吸収塔でイオウ酸化
物を吸収したりスラリーを空気酸化する酸化塔の
改良に関するものである。
[Detailed description of the invention] The present invention relates to a wet flue gas desulfurization equipment that wet-cleans flue gas containing sulfur oxides using an absorbent slurry such as lime. This invention relates to an improvement in an oxidation tower for air oxidizing slurry.

湿式排煙脱硫は、イオウ酸化物を含む排ガスを
吸収塔内に導入し、吸収塔内で石灰などの吸収剤
のスラリーと接触させ、排ガス中のイオウ酸化物
をスラリーに吸収させて脱硫するものであり、イ
オウ酸化物を吸収したスラリーは、酸化塔に導入
して空気酸化して石こう化し、それをシツクナー
などで濃縮したのち遠心脱水し、副生品として石
こうを回収するものである。
Wet flue gas desulfurization is a method in which flue gas containing sulfur oxides is introduced into an absorption tower, where it is brought into contact with a slurry of absorbent such as lime, and the sulfur oxides in the flue gas are absorbed by the slurry and desulfurized. The slurry that has absorbed sulfur oxides is introduced into an oxidation tower and oxidized in the air to turn it into gypsum, which is then concentrated using a thickener, etc., and then centrifugally dehydrated to recover gypsum as a byproduct.

これを第1図により説明すると、ボイラなどか
らイオウ酸化物を含有する排ガスがダクト1を通
して吸収塔2内に導入される。吸収塔2には夫々
供給ライン3,4から工水及び石灰などの吸収剤
が供給され混合されてスラリー5として吸収塔2
の下部に溜められ、循環ポンプ6よりパイプ7を
通じて塔1内の上部に設けられたスプレー接合管
8より噴射される。このスラリー5と吸収塔2内
を上昇する排ガスとが気液接触し、排ガス中のイ
オウ酸化物がスラリー5に吸収除去される。脱硫
後の排ガスはミストエリミネータ9を通つてミス
ト分が分離されたのち、出口10よりクリーンな
ガスとなつて排出される。排ガス中のイオウ酸化
物とスラリーとの吸収反応を下式に示す。
To explain this with reference to FIG. 1, exhaust gas containing sulfur oxides is introduced into an absorption tower 2 through a duct 1 from a boiler or the like. Industrial water and an absorbent such as lime are supplied to the absorption tower 2 from supply lines 3 and 4, respectively, and mixed as a slurry 5 to the absorption tower 2.
It is stored in the lower part of the tower 1 and is sprayed from the spray joint pipe 8 provided at the upper part of the tower 1 through a pipe 7 from a circulation pump 6. This slurry 5 and the exhaust gas rising in the absorption tower 2 come into gas-liquid contact, and sulfur oxides in the exhaust gas are absorbed and removed by the slurry 5. The exhaust gas after desulfurization passes through a mist eliminator 9 to separate the mist, and then is discharged from an outlet 10 as a clean gas. The absorption reaction between the sulfur oxide in the exhaust gas and the slurry is shown in the equation below.

SO2+CaCO3+1/2H2O →CaSO3・1/2H2O+CO2↑ イオウ酸化物を吸収し亜硫酸カルシウムとなつ
たスラリーは移送パイプ11より酸化塔12に移
送され、酸化塔12の下部の空気供給管13から
塔12内に供給される空気により酸化され、石こ
う化される。この反応式を下式に示す。
SO 2 + CaCO 3 + 1/2H 2 O → CaSO 3 1/2H 2 O + CO 2 ↑ The slurry that has absorbed sulfur oxide and turned into calcium sulfite is transferred to the oxidation tower 12 through the transfer pipe 11, and is placed in the lower part of the oxidation tower 12. The air supplied into the tower 12 from the air supply pipe 13 oxidizes and turns into gypsum. This reaction formula is shown below.

CaSO3・1/2H2O+1/2O2+3/2H2O →CaSO4・2H2O 酸化後のスラリーは移送ポンプ14から移送パ
イプ15を通じてシツクナー16に供給され、シ
ツクナー16で濃縮されたのち、ポンプ17より
脱水機18に送られ遠心脱水されて石こう19が
回収される。またシツクナー16の上澄液は母液
タンク20に一旦貯蔵され、ポンプ21より母液
戻しパイプ22を通して吸収塔2内に戻され、ス
ラリー5の母液として使用される。この場合図に
は示していないが母液の一部はミストエリミネー
タ9の洗浄水としても使用される。
CaSO 3 · 1/2H 2 O + 1/2O 2 + 3/2H 2 O → CaSO 4 · 2H 2 O The slurry after oxidation is supplied from the transfer pump 14 to the thickener 16 through the transfer pipe 15, and after being concentrated in the thickener 16, The gypsum 19 is sent from the pump 17 to the dehydrator 18 where it is centrifugally dehydrated and recovered. Further, the supernatant liquid of the thickener 16 is temporarily stored in a mother liquid tank 20, and is returned to the absorption tower 2 from a pump 21 through a mother liquid return pipe 22, and is used as the mother liquid of the slurry 5. In this case, although not shown in the figure, a portion of the mother liquor is also used as washing water for the mist eliminator 9.

この湿式排煙脱硫装置において、石灰などの吸
収剤の溶解のため及びミストエリミネータの洗浄
のためには、母液の量をある程度確保する必要が
あり、そのためスラリー濃度は約10%までしか濃
くできない。一方、脱水機18への供給液の濃度
は20%程度の液が必要であるため、酸化塔12か
ら取り出したスラリーをシツクナー16に送りそ
こでスラリー濃度を約10%から約20%まで濃縮す
る必要がある。このため、プロセスが復雑とな
り、シツクナー16等の設置スペースも広くとら
なければならず、建設費が高くつくという問題が
あつた。
In this wet flue gas desulfurization equipment, it is necessary to secure a certain amount of mother liquor in order to dissolve the absorbent such as lime and to clean the mist eliminator, so the slurry concentration can only be increased to about 10%. On the other hand, since the concentration of the liquid supplied to the dehydrator 18 needs to be about 20%, the slurry taken out from the oxidation tower 12 needs to be sent to the thickener 16 and concentrated there from about 10% to about 20%. There is. As a result, the process becomes complicated, the installation space for the thickener 16, etc. must be large, and the construction cost becomes high.

本考案の目的は、シツクナーなどで、濃縮する
ことなく酸化塔でスラリーを濃縮でき、それを直
接脱水機に供給できる酸化濃縮装置を提供するも
のである。
The object of the present invention is to provide an oxidation/concentration device that can concentrate slurry in an oxidation tower without concentrating it using a thickener or the like, and can directly supply the slurry to a dehydrator.

本考案は排煙脱硫装置の吸収塔に接続され、か
つイオウ酸化物を吸収したスラリーを空気酸化す
る酸化塔において、酸化塔の上部外周に酸化塔の
下部と連通する上澄槽を設けたことを特徴とする
ものであり、これにより酸化塔内に導入されたス
ラリー中の液分を上澄槽に導入させて酸化塔内の
スラリー濃度を高め、それを空気酸化したのち、
脱水機へ直接移送して遠心脱水が行なえるように
したものである。これにより、従来のシツクナー
やシツクナーからの上澄液を溜める母液タンクが
不要となり、脱硫装置が簡単になると共に設置ス
ペースを少なくすることができる。
The present invention is an oxidation tower that is connected to an absorption tower of a flue gas desulfurization equipment and air-oxidizes slurry that has absorbed sulfur oxides, and a supernatant tank that communicates with the lower part of the oxidation tower is provided on the outer periphery of the upper part of the oxidation tower. This is characterized by the fact that the liquid content in the slurry introduced into the oxidation tower is introduced into the supernatant tank to increase the concentration of the slurry in the oxidation tower, and after air oxidation,
It is designed so that centrifugal dehydration can be performed by directly transferring it to a dehydrator. This eliminates the need for a conventional thickener or a mother liquor tank for storing supernatant liquid from the thickener, which simplifies the desulfurization device and reduces installation space.

以下本考案に係る酸化濃縮装置の好適一実施例
を添付図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the oxidation concentration apparatus according to the present invention will be described below with reference to the accompanying drawings.

第2図は本考案の酸化濃縮装置を示すもので、
竪型円筒状の酸化塔22の底部に塔22内に空気
を吹き込むアトマイザー23が設けられ、アトマ
イザー23に空気供給管24が接続される。酸化
塔22の頂部には酸化後の空気の出口ノズル25
が接続され、上部側面には亜硫酸カルシウムを含
むスラリーの入口ノズル26が設けられ、下部側
面には酸化後のスラリーの出口ノズル27が設け
られる。
Figure 2 shows the oxidation concentration device of the present invention.
An atomizer 23 for blowing air into the tower 22 is provided at the bottom of the vertical cylindrical oxidation tower 22, and an air supply pipe 24 is connected to the atomizer 23. At the top of the oxidation tower 22, there is an outlet nozzle 25 for air after oxidation.
An inlet nozzle 26 for the slurry containing calcium sulfite is provided on the upper side, and an outlet nozzle 27 for the slurry after oxidation is provided on the lower side.

この酸化塔22の上部外周には矩形断面を有す
る円環状の上澄槽28が設けられる。上澄槽28
は上澄液(母液)分離用ノズル管29にて酸化塔
22の下部と連通する。このノズル管29は酸化
塔22の側面下部の出口ノズル27の上方で、酸
化塔22の内周方向に複数本設けられ、そこから
斜目上方に放射状に延出させて上澄槽28の底部
に接続される。上澄槽28の側面には上澄液取出
用ノズル30が設けられ、このノズル30から上
澄液が抜きだされる。
An annular supernatant tank 28 having a rectangular cross section is provided on the upper outer periphery of the oxidation tower 22 . Supernatant tank 28
communicates with the lower part of the oxidation tower 22 through a nozzle pipe 29 for supernatant liquid (mother liquid) separation. A plurality of nozzle pipes 29 are provided in the inner circumferential direction of the oxidation tower 22 above the outlet nozzle 27 at the lower side of the oxidation tower 22, and extend radially diagonally upward from there to the bottom of the skimming tank 28. connected to. A supernatant liquid extraction nozzle 30 is provided on the side surface of the supernatant tank 28, and the supernatant liquid is extracted from this nozzle 30.

次に本考案の酸化濃縮装置Aを湿式排煙脱硫装
置に組み込む例を第3図により説明する。
Next, an example in which the oxidation concentration device A of the present invention is incorporated into a wet flue gas desulfurization device will be explained with reference to FIG.

第1図で説明したように2は吸収塔、18は脱
水機であり、この吸収塔2と脱水機18との間に
酸化濃縮装置Aが組み込まれる。
As explained in FIG. 1, 2 is an absorption tower, 18 is a dehydrator, and the oxidation concentration device A is installed between the absorption tower 2 and the dehydrator 18.

即ち、酸化塔22の上部側面の入口ノズル26
は、吸収塔2内で排ガス中のイオウ酸化物を吸収
したスラリーを移送する移送パイプ11に接続さ
れ、下部側面の出口ノズル26は移送ポンプ14
を介して脱水機18に接続され、上澄槽28の上
澄液取出用ノズル30は母液戻しポンプ31及び
母液戻しパイプ32を介して吸収塔2に接続され
る。この場合母液戻しパイプ32の母液の一部は
エリミネータ9を洗浄する洗浄パイプ33に供給
される。また、脱水機18で分離された母液はパ
イプ34を通じて酸化塔22の上部にもどされ
る。
That is, the inlet nozzle 26 on the upper side of the oxidation tower 22
is connected to the transfer pipe 11 that transfers the slurry that has absorbed sulfur oxides in the exhaust gas in the absorption tower 2, and the outlet nozzle 26 on the lower side is connected to the transfer pump 14.
The supernatant liquid extraction nozzle 30 of the supernatant tank 28 is connected to the absorption tower 2 via a mother liquid return pump 31 and a mother liquid return pipe 32. In this case, part of the mother liquor in the mother liquor return pipe 32 is supplied to a cleaning pipe 33 for cleaning the eliminator 9. Further, the mother liquor separated by the dehydrator 18 is returned to the upper part of the oxidation tower 22 through the pipe 34.

以上において、吸収塔2内でイオウ酸化物を吸
収し、亜硫酸カルシウムとなつたスラリーは、移
送パイプ11、入口ノズル26を介して酸化塔2
2内に導入され、酸化塔22の底部のアトマイザ
ー23から吹き込まれた空気で酸化され石こう化
される。酸化塔22には上澄液分離用ノズル管2
9を介して上澄槽28が設けられており、このノ
ズル管29内には酸化空気が入り込まないためノ
ズル管29内に流入したスラリー中の固形物(石
こう)は沈降して酸化塔22内に戻り、上澄液
(母液)分のみがノズル管29内を上昇し、上澄
槽28内に溜まる。然してこの上澄槽28内の母
液を母液戻しポンプ31により抜き出し、吸収塔
2内に戻す。この母液の戻し量を入口ノズル26
から導入されるスラリー量に応じて調節すること
により酸化塔22内のスラリー濃度を自在に高め
ることが可能となる。酸化塔22内で濃縮された
スラリーは適宜出口ノズル27から移送ポンプ1
4を介して脱水機18に供給され、遠心分離され
て石こう19が回収される。
In the above process, the slurry that has absorbed sulfur oxides and turned into calcium sulfite in the absorption tower 2 is transferred to the oxidation tower 2 through the transfer pipe 11 and the inlet nozzle 26.
2 and is oxidized and turned into gypsum by air blown from the atomizer 23 at the bottom of the oxidation tower 22. The oxidation tower 22 has a nozzle pipe 2 for supernatant liquid separation.
A supernatant tank 28 is provided through the nozzle pipe 29 , and since oxidizing air does not enter the nozzle pipe 29 , solid matter (gypsum) in the slurry that flows into the nozzle pipe 29 settles and flows into the oxidation tower 22 . Returning to , only the supernatant liquid (mother liquid) rises in the nozzle pipe 29 and accumulates in the supernatant tank 28 . The mother liquor in this supernatant tank 28 is then extracted by a mother liquor return pump 31 and returned to the absorption tower 2. The amount of this mother liquor returned is determined by the inlet nozzle 26.
By adjusting the amount of slurry introduced from the oxidizing tower 22, it is possible to freely increase the slurry concentration in the oxidizing tower 22. The slurry concentrated in the oxidation tower 22 is transferred from the outlet nozzle 27 to the transfer pump 1 as appropriate.
4 to a dehydrator 18, and is centrifuged to recover gypsum 19.

第4図は本考案の酸化濃縮装置の他の実施例を
示すもので、酸化塔22の下部に逆円錐状の分離
板34を設け、その分離板34の下部の酸化塔2
2の側面にスラリー導入口35を形成し、分離板
34の上部に上澄槽28を形成したものである。
この場合においても分離板34内は酸化塔22と
仕切られており、分離板34内に酸化空気が入ら
ないため、分離板34内に導入されたスラリー中
の固形分は沈降し、液分と固形分とに分離される
ために母液のみが上澄槽28に溜められることに
なり、これを適宜抜きだすことにより酸化塔22
内のスラリー濃度を高めることができる。
FIG. 4 shows another embodiment of the oxidation and concentration apparatus of the present invention, in which an inverted conical separation plate 34 is provided at the bottom of the oxidation tower 22, and the oxidation tower 22 is placed under the separation plate 34.
A slurry inlet 35 is formed on the side surface of 2, and a supernatant tank 28 is formed above the separation plate 34.
In this case as well, the inside of the separation plate 34 is separated from the oxidation tower 22, and oxidizing air does not enter into the separation plate 34, so the solid content in the slurry introduced into the separation plate 34 settles and becomes liquid. Only the mother liquor is stored in the supernatant tank 28 because it is separated from the solid content, and by appropriately extracting it, the mother liquor is transferred to the oxidation tower 22.
It is possible to increase the concentration of the slurry inside.

以上詳述してきたことから明らかなように本考
案によれば次のごとき優れた効果を発揮する。
As is clear from what has been described in detail above, the present invention provides the following excellent effects.

(1) 酸化塔の上部外周に酸化塔の下部と連通する
上澄槽を設けたので、酸化塔内に導入されたス
ラリー中の液分のみを上澄槽に導くことがで
き、酸化塔内のスラリー濃度を高めることがで
きる。
(1) Since a supernatant tank is provided on the outer periphery of the upper part of the oxidation tower, which communicates with the lower part of the oxidation tower, only the liquid content in the slurry introduced into the oxidation tower can be led to the supernatant tank. slurry concentration can be increased.

(2) 空気酸化と石こうスラリーの濃縮とが同時に
行なえ、従来の如くシツクナーやシツクナーか
らの上澄液を貯蔵する母液タンクを必要とせ
ず、その分設置スペース、建設費、ポンプなど
の動力費が少なくてすむ。
(2) Air oxidation and concentration of gypsum slurry can be performed at the same time, eliminating the need for a thickener or a mother liquor tank to store the supernatant liquid from the thickener, which is required in the past, reducing installation space, construction costs, and power costs for pumps, etc. Less is needed.

(3) 上澄槽からの上澄液の取り出し量を調節する
ことにより酸化塔内のスラリー濃度を調整する
ことができるのでその制御が簡単に行なえる。
(3) The slurry concentration in the oxidation tower can be adjusted by adjusting the amount of supernatant liquid taken out from the supernatant tank, so it can be easily controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の湿式排煙脱硫装置のフローシー
トを示す図、第2図は本考案に係る酸化濃縮装置
の一実施例を示す正面断面図、第3図は本考案の
酸化濃縮装置を湿式排煙脱硫装置に組み込んだフ
ロシートを示す図、第4図は本考案に係る酸化濃
縮装置の他の実施例を示す正面断面図である。 図中、2は吸収塔、22は酸化塔、28は上澄
槽である。
Fig. 1 is a diagram showing a flow sheet of a conventional wet flue gas desulfurization equipment, Fig. 2 is a front sectional view showing an embodiment of an oxidation concentrator according to the present invention, and Fig. 3 is a diagram showing an oxidation concentrator according to the present invention. FIG. 4 is a front sectional view showing another embodiment of the oxidation concentration device according to the present invention. In the figure, 2 is an absorption tower, 22 is an oxidation tower, and 28 is a supernatant tank.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 排煙脱硫装置の吸収塔に接続され、かつイオウ
酸化物を吸収したスラリーを空気酸化する酸化塔
において、酸化塔の上部外周に酸化塔の下部と連
通する上澄槽を設けたことを特徴とする酸化濃縮
装置。
The oxidation tower is connected to the absorption tower of the flue gas desulfurization equipment and air-oxidizes the slurry that has absorbed sulfur oxides, and is characterized by having a supernatant tank connected to the lower part of the oxidation tower on the outer periphery of the upper part of the oxidation tower. Oxidation concentration equipment.
JP15732183U 1983-10-13 1983-10-13 oxidation concentrator Granted JPS6067131U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15732183U JPS6067131U (en) 1983-10-13 1983-10-13 oxidation concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15732183U JPS6067131U (en) 1983-10-13 1983-10-13 oxidation concentrator

Publications (2)

Publication Number Publication Date
JPS6067131U JPS6067131U (en) 1985-05-13
JPS6246422Y2 true JPS6246422Y2 (en) 1987-12-15

Family

ID=30346881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15732183U Granted JPS6067131U (en) 1983-10-13 1983-10-13 oxidation concentrator

Country Status (1)

Country Link
JP (1) JPS6067131U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117751054A (en) 2021-08-02 2024-03-22 Agc株式会社 Bracket and information acquisition module

Also Published As

Publication number Publication date
JPS6067131U (en) 1985-05-13

Similar Documents

Publication Publication Date Title
US4687649A (en) Flue gas desulfurization process
US6214097B1 (en) Flue gas scrubbing apparatus
US3520649A (en) System for removal of so2 and fly ash from power plant flue gases
KR920002062B1 (en) Waste gas disposal method
US4762686A (en) Flue gas scrubber system
JPH0536085B2 (en)
US4533522A (en) Apparatus for the desulfurization of flue gases
EP0923978B1 (en) Flue gas treating process
US20020110511A1 (en) Horizontal scrubber system
CN206652377U (en) Ammonia fertilizer method desulphurization system
US4986966A (en) Retrofit flue gas scrubber system
US4853195A (en) Flue gas scrubber system
JPH078748A (en) Wet process flue gas desulfurization and device using desulfurization method
CN105983307A (en) Alkali-water desulphurization dust removal technology
CN104607010B (en) Flue gas dust removal desulfurization tower and flue gas desulfurization method
JPS6246422Y2 (en)
CN205886585U (en) Desulfidation dedusting system
CN201132104Y (en) Desulfurizing device via method for oxidizing lime/carbide mud residue -gypsum out of the tower
US6068822A (en) Desulforization method and desulfurization apparatus in geothermal power plant
CN104607019B (en) Two-way Cycle flue-gas dust-removing and desulfurization reactor and fume desulphurization method
JPS6246421Y2 (en)
US4102657A (en) Centrifugal gas scrubber
CN1213580A (en) Flue gas desulfurizing tech. and appts. for by-product gypsum
CN2430209Y (en) Low resistance recovery method smoke desuphurizing device
JP2001079339A (en) Method and device for separating solid content of wet stack gas desulfurization device