JPS624631A - Rotating method and mechanism of tricycle - Google Patents

Rotating method and mechanism of tricycle

Info

Publication number
JPS624631A
JPS624631A JP14504185A JP14504185A JPS624631A JP S624631 A JPS624631 A JP S624631A JP 14504185 A JP14504185 A JP 14504185A JP 14504185 A JP14504185 A JP 14504185A JP S624631 A JPS624631 A JP S624631A
Authority
JP
Japan
Prior art keywords
wheels
axles
tricycle
wheel
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14504185A
Other languages
Japanese (ja)
Inventor
Yojiro Kondo
陽二郎 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14504185A priority Critical patent/JPS624631A/en
Publication of JPS624631A publication Critical patent/JPS624631A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

PURPOSE:To make it possible to change direction in a narrow space, by making the axle of a wheel turn at 90 deg. and axles of the other two wheels at less than 90 deg. linking each other, in a horizontal plane, and turning the body of the tricycle around the intersection of the three axes of the axles. CONSTITUTION:Three wheels can rotate around the axes 10a-10c which are square to axles 17a-17c respectively, and the rotation center 14 is in a triangle including 10a, 10b, and 10c as the three apexes, keeping the rotation angle between the axles 17a and 17b at an angle theta less than 90 deg.. When the tricycle changes direction, the axis 11c is turned 90 deg. from the running direction, while the axles 17a and 17b are inclined theta to the rotation center 14, and then the tricycle is driven to direct a desired direction. In this way of movement, the change of direction can be performed in a minimum space specified by a maximum radius of the outline of the body from the rotation center 14.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は車の自転方法とその機構に関する。更に述べれ
ば、簡単な構造で狭い場所での車の方向転換を可能とす
る車の自転方法とその機構に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of rotating a car and its mechanism. More specifically, the present invention relates to a method and mechanism for rotating a vehicle that allows the vehicle to change direction in a narrow space with a simple structure.

〔従来の技術〕[Conventional technology]

近年、車の発達により、車による人や物の移動は著しく
盛んになったことは周知のとうりである。
It is well known that in recent years, with the development of automobiles, the movement of people and goods by automobile has become extremely popular.

特K、産業界においては物の搬送には、各種の車。Special K: In the industrial world, various types of vehicles are used to transport goods.

例えばフォークリフト、無人搬送車等が開発され実用に
供されている。そして産業用の車は、特に狭い場所での
走行が要求され、例えば車輪の数は三輪、四輪、六輪等
のように種々のものが用いられ、またそれに伴なって操
舵や駆動機構も各種のものが提案されてきた。これらの
従来技術として。
For example, forklifts, automatic guided vehicles, etc. have been developed and put into practical use. Industrial vehicles are required to drive in particularly narrow spaces, and various types of wheels are used, such as three, four, and six wheels, and accordingly, various types of steering and drive mechanisms are used. have been proposed. As these conventional techniques.

例えば高野美音監修「自動搬送技術」(トリケラジス発
行)に述べられているように、車体の構成によって走行
機能は異なることはよく知られている。三輪の構成例を
第4図(a) 、 (b)に示す。同図(a)は回転輪
(前輪)4を操舵モータ2で図示矢印方向に回転して操
舵し、固定輪3をデ7レンシャルギア5を介して駆動モ
ータ1で駆動し、走行力を得るものである。また同図伽
)は、回転輪4に操舵モータ2と駆動モータ1とが直結
され、操舵と駆動を同一車輪で行なうものである。同図
(a)は、同図か)における回転輪4を回転軸8を中心
に回転する2つの車輪に分けたものであシ、基本的には
同図(b)の形式に属する。このような三輪構成の車は
、周知のように、簡単な構成であシ、しかも操舵の安定
性が優れている。
For example, it is well known that driving functions differ depending on the configuration of the vehicle body, as stated in ``Automatic Transport Technology'' (published by Trikerazis) supervised by Mion Takano. An example of the configuration of the three wheels is shown in FIGS. 4(a) and 4(b). Figure (a) shows a system in which a rotating wheel (front wheel) 4 is rotated and steered in the direction of the arrow shown by a steering motor 2, and a fixed wheel 3 is driven by a drive motor 1 via a differential gear 5 to obtain running power. It is. Also, in FIG. 3), a steering motor 2 and a drive motor 1 are directly connected to a rotating wheel 4, and steering and driving are performed by the same wheel. FIG. 3(a) shows the rotating wheel 4 in FIG. 1 divided into two wheels rotating around a rotating shaft 8, and basically belongs to the format shown in FIG. 1(b). As is well known, such a three-wheeled vehicle has a simple structure and excellent steering stability.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし欠点として前進時と後進時との走行特性が異なシ
、また旋回半径をあまシ小さくできない。
However, the drawbacks are that the driving characteristics are different when moving forward and when going backwards, and the turning radius cannot be made very small.

例えば荷役用無人搬送車に望まれるような前進から後進
への切換(またはその逆)は、走行軌跡が異なるため無
人操舵の制御を変える必要があシ、制御回路が不必要に
複雑となる欠点をもつ。このように三輪構成は前後進の
切替え走行を不得意とするので、例えば行き止まシのよ
うな場所では、180度の方向転換を行なうことになる
。即ち第5図(、)に示すように、先ず回転輪4を、直
進走行時(矢印50の方向)よシ、90度回転させる(
矢印51)。次に駆動輪を駆動し、2つの固定輪3の中
点に位置する車体の回転中心9を中心として矢印52の
方向に自転を行ない、180度の方向転換を行う。ここ
では駆動輪は特に指定していないが、例えば回転輪4に
駆動モータが設けてあったり、あるいは、2つの固定輪
3に夫々設けである独立の駆動モータをそれぞれ逆方向
に回転させ自転させることが一般に行なわれている。
For example, switching from forward to reverse (or vice versa), which is desired for automatic guided vehicles for cargo handling, requires changing the control of the unmanned steering because the travel trajectories are different, and the control circuit is unnecessarily complicated. have. As described above, the three-wheeled configuration is not good at switching between forward and forward travel, so at a place such as a dead end, for example, a 180-degree direction change is required. That is, as shown in FIG. 5(,), first, the rotary wheel 4 is rotated 90 degrees from when traveling straight (in the direction of arrow 50).
arrow 51). Next, the driving wheels are driven to rotate in the direction of arrow 52 about the rotation center 9 of the vehicle body located at the midpoint of the two fixed wheels 3, thereby changing direction by 180 degrees. Although the drive wheels are not specifically specified here, for example, the rotating wheel 4 is provided with a drive motor, or the two fixed wheels 3 are each provided with independent drive motors that rotate in opposite directions and rotate on their own axis. This is commonly done.

明らかなようK、自転時には車体は半径Rの回転をする
。このことは、方向転換時には、少なくとも半径Rの空
間を必要とし、直進走行時に必要とする車体巾Wより、
より広い場所がなければ、方向転換することができない
As is clear, when the car rotates on its axis, it rotates with radius R. This means that when changing direction, a space of at least radius R is required, and the width of the vehicle body W required when driving straight ahead is
Unless there is more space, you cannot turn around.

一方、四輪の構成を第4図(d) 、 (6) 、 (
f)に例示する。これらは、少なくとも2つの独立した
駆動輪をもち、その構成から明らかなように、前進時と
後進時との走行軌跡は同様なものと々る。従って無人搬
送を行危うときの走行制御も前後進時共に同じ制御で良
い利点をもつ。また、180度の方向転換においても、
三輪構成のものとは異なシ、回転中心が車体の中心にな
るので、いわゆるスピンターンが可能であり、よシ狭い
場所での方向転換ができる。例えば第4図(d)の構成
を例にとシ、方向転換の様子を第5図(b) (c) 
K示す。回転輪4′は、スピンターンをスムーズに行な
わせるために、第5図(b)に示すように、車軸と回転
軸8とを距離dだけ離し、オフセットをもたせることが
一般に行なわれている。同図(b)では、矢印53の方
向に固定輪3vi−同一方向(図示回転方向)に駆動し
て直進する。そのとき回転輪4′はオフセットの効果に
よシ同図(b)に図示したような位置となる。180度
の方向転換を行なうときには、駆動輪である固定輪3を
夫々逆方向に回転させ、第5図(c)の矢印52のよう
に回転中心9を中心としてスピンターンする。このよう
に四輪構成は、スピンターンが可能であり、最小限の空
間で、方向転換することができる利点を有するが、操舵
モータを具備していない回転輪が、その走行を乱す欠点
を有してぃた。例えば、第4図(d) 、 (a)の操
舵モータを具備しない回転輪4′が前述のオフセラトラ
持っていないとき(d=0)には、スピンターン時には
、ソノ車軸に並行(もしくはほぼ並行)な方向に回転力
が加わるため、回転輪4′の車輪は回転できずむしろス
ピンターンを妨げる要因として働く。またオフセットを
もたせ、スピンターンに支障の無いようKすると前進、
後進の切替え走行開始直後に走行の不安定性を生じる。
On the other hand, the configuration of the four wheels is shown in Figure 4 (d), (6), (
Example f). These have at least two independent drive wheels, and as is clear from their configuration, the traveling trajectory is the same when traveling forward and when traveling backward. Therefore, when unmanned transportation is in danger, the traveling control is the same for both forward and backward movement, which has a good advantage. Also, even when changing direction by 180 degrees,
Unlike the three-wheel configuration, the center of rotation is the center of the vehicle body, so it is possible to perform so-called spin turns, making it possible to change direction in tight spaces. For example, taking the configuration shown in Figure 4(d) as an example, the change of direction is shown in Figures 5(b) and (c).
Show K. In order to smoothly spin and turn the rotating wheel 4', the axle and the rotating shaft 8 are generally separated by a distance d to provide an offset, as shown in FIG. 5(b). In the same figure (b), the fixed wheels 3vi are driven in the direction of the arrow 53 in the same direction (rotation direction as shown) and move straight. At that time, the rotary wheel 4' is in the position shown in FIG. 2(b) due to the offset effect. When performing a 180 degree direction change, the fixed wheels 3, which are drive wheels, are rotated in opposite directions, and a spin turn is made about the rotation center 9 as shown by the arrow 52 in FIG. 5(c). Although the four-wheel configuration has the advantage of being able to spin and turn and change direction in a minimal amount of space, it has the disadvantage that the rotating wheels, which are not equipped with a steering motor, disturb the running. I did it. For example, when the rotating wheel 4' that is not equipped with a steering motor as shown in FIGS. 4(d) and (a) does not have the above-mentioned off-serator (d=0), it is parallel (or almost parallel) to the sono-axle during a spin turn. ), the wheels of the rotary wheel 4' cannot rotate, and rather serve as a factor that prevents spin-turns. Also, if you add an offset and K so that it does not interfere with the spin turn, you will move forward.
Immediately after switching to reverse and starting driving, instability occurs.

例えば第5図(b)ItC例示した回転輪4′は矢印5
3の方向に走行するときの安定位置であるが、逆方向の
矢印54方向には、最も不安定な位置となシ、通常、矢
印54方向に走行・開始直後に、回転軸8を中心として
180度回転する。従りてこのとき車体は直進走行にも
拘らず、オフセラ)dに相幽する幅で左右に振れ、短時
間ではあるが不安定な走行となる。
For example, the rotating wheel 4' shown in FIG. 5(b) is indicated by the arrow 5.
This is the stable position when traveling in the direction of arrow 3, but it is the most unstable position when traveling in the opposite direction of arrow 54. Normally, immediately after starting traveling in the direction of arrow 54, the position is the most unstable position when traveling in the direction of arrow 54. Rotate 180 degrees. Therefore, at this time, even though the vehicle is traveling straight, the vehicle swings left and right by a width comparable to that of Off-Sera) d, resulting in unstable travel, albeit for a short period of time.

以上のように回転輪に操舵モータを具備させていないと
走行に悪影響を及ぼすため、第4図(f)に例示するよ
うに全ての車輪に操舵モータを具備させることも従来技
術として知られている。しかし、構成かよシ複雑になシ
、高価なものとなる欠点を有した。
As mentioned above, if the rotating wheels are not equipped with steering motors, it will have a negative effect on the running, so it is also known as a prior art to equip all the wheels with steering motors as shown in FIG. 4(f). There is. However, it has the drawbacks of being complicated and expensive.

以上従来技術を述べたが、要するに、三輪構成では、自
転するのに比較的大きな空間を必要とし、また四輪構成
では、スピンターンによる自転が可能なようにすると、
走行が不安定になったりあるいは車体の構成が複雑にな
る欠点を有していた。
The conventional technology has been described above, but in short, a three-wheel configuration requires a relatively large space for rotation, and a four-wheel configuration requires rotation by spin-turn.
This had the disadvantage that running became unstable and the structure of the vehicle body became complicated.

本発明はこのような従来の欠点を除去し、簡単な構成で
かつ狭い場所での方向転換が可能な三輪車の自転方法と
その機構を提供することVC:tt)る。
The present invention eliminates these conventional drawbacks and provides a method and mechanism for rotating a tricycle that has a simple configuration and can change direction in a narrow space.VC:tt)

〔間亀点を解決する念めの手段〕[A precautionary measure to resolve the gap]

本発明は、三輪車の車体に備えた三輪の各車軸を直線走
行時の平行姿勢から水平面内で一つの輪の車軸を90°
、他の二つの輪の車軸と互いに連動させて90°以下の
角度で転回させ、各車輪の枢支点を頂点とした三角形内
の一点に向けて車軸の姿勢を転換し、各車軸の軸線が交
わる点を回転中心として車体を転回させることを特徴と
する三輪車の自転方法、および、三輪車の車体に、各々
水平面で回転可能に枢支された三つの輪を備え、三輪の
内の二輪の車軸を同一軸線上から一定の角度範囲にわた
って傾動可能に連結し、両車輪の枢支点間を結ぶ軸線の
中点を通り、これに直交する直線上の位置に他の一輪を
枢支させたことを特徴とする三輪車の自転機構である。
The present invention aims at rotating the axles of one wheel at an angle of 90° in a horizontal plane from the parallel position when traveling in a straight line.
, rotate the axles of the other two wheels at an angle of 90 degrees or less, and change the attitude of the axles toward a point within a triangle with the pivot point of each wheel as the apex, so that the axis of each axle is A method for rotating a tricycle characterized by rotating the vehicle body around an intersection point as a center of rotation, and a method for rotating a tricycle, the vehicle body of the tricycle having three wheels each rotatably supported in a horizontal plane, and an axle for two of the three wheels. are connected so that they can tilt over a certain angle range from the same axis, and the other wheel is pivoted at a position on a straight line that passes through the midpoint of the axis connecting the pivot points of both wheels and is perpendicular to this. This is the tricycle's rotating mechanism.

本発明の概念図を第1図に示す。同図(、)は三輪がい
ずれも向き18a (tたは18b)の方向に向いた状
態を示す。即ち基本的に三つの車輪11m t nb。
A conceptual diagram of the present invention is shown in FIG. The figure (,) shows a state in which all three wheels are oriented in the direction 18a (t or 18b). That is basically three wheels 11m t nb.

11cで車体(図示せず)は支持され、各車輪は車軸1
7m 、 17b 、 17cに垂直な方向に設けられ
たそれぞれの回転軸10m 、 10b 、 10c 
f中心として回転できるようになっている。(尚、同図
では車輪ixa # llb +t−二つの車輪で夫々
図示しであるが、車軸および回転軸を該二つの車輪で共
有しており、周知のように基本的には一輪で構成したも
のと同様とみなすことができる。)また回転中心14は
、3つの回転軸10a s 10b = 1Oc を頂
点とする三角形内にあり、2つの車軸17m * 17
bは、回転中心14に対して90″以下の角度θをなし
ている。同図(、)に示した各車輪の方向から分るよう
に、この場合の車の走行方向は矢印18息(″または1
8b)で示される直進走行である。操舵は例えば回転輪
lieを回転軸10cを中心として適当な角度に回転す
ることにより行なえばよい。また、従来技術で述べたよ
うに三輪車は前進と後進との走行軌跡が異なる。矢印1
8mあるいは矢印18bのうち、いずれを前進方向に選
ぶのも自由である。所望の方向を前進方向に選び、過当
な操舵制御を行なう。
The vehicle body (not shown) is supported by 11c, and each wheel is attached to an axle 1
Rotating shafts 10m, 10b, 10c provided in a direction perpendicular to 7m, 17b, 17c, respectively
It is designed to be able to rotate around f. (Although the figure shows two wheels (ixa # llb + t), the two wheels share the axle and rotating shaft, and as is well known, the wheel is basically composed of one wheel. ) The center of rotation 14 is located within a triangle with three rotational axes 10a s 10b = 1Oc as vertices, and two axles 17m * 17
b makes an angle θ of 90″ or less with respect to the center of rotation 14.As can be seen from the direction of each wheel shown in the figure (,), the running direction of the car in this case is indicated by the arrow 18 (). ″ or 1
8b) is straight-line driving. Steering may be performed, for example, by rotating the rotating wheel lie at an appropriate angle about the rotating shaft 10c. Further, as described in the related art, the tricycle has different traveling trajectories when traveling forward and when traveling backward. Arrow 1
8m or the arrow 18b, it is free to choose whichever is the forward direction. The desired direction is selected as the forward direction and excessive steering control is performed.

同図(b)は、方向転換を行なうときの車輪状態を示す
。回転輪lie ft直進走行時よシ角度で90度回転
し、他の二輪11a 、 llbの車軸17a y 1
7b t90c′以下の角度θだけ傾け、該二つの車軸
の方向を回転中心14に向ける。この後、駆動モータを
具備した車輪(ここでは特定しないが三輪のうちのいず
れかもしくは二輪もしくは三輪の全て)を駆動し、自転
走行を行ない、適当な方向へ向けることができる。この
ような自転方法により、車体中心14を回転中心として
車体を矢印19のようにスピンターン(その場回転)す
ることができる。このように、本発明によって三輪車に
おいても、スピンターンが可能となり、回転中心14か
ら見て車体外形の最大半径で規定される最小限の空間で
方向転換2行なうことが可能となる。
FIG. 6(b) shows the state of the wheels when changing direction. The rotating wheel 11a rotates 90 degrees when driving straight, and the axles 17a y 1 of the other two wheels 11a and llb
7b Tilt by an angle θ less than or equal to t90c', and orient the two axles toward the center of rotation 14. Thereafter, the wheels equipped with drive motors (one of the three wheels, two wheels, or all of the three wheels, although not specified here) are driven to allow the vehicle to rotate and point in an appropriate direction. By such a rotation method, the vehicle body can be spin-turned (rotated on the spot) as shown by the arrow 19 with the vehicle body center 14 as the rotation center. In this manner, the present invention enables a tricycle to perform a spin turn, and to perform two direction changes in the minimum space defined by the maximum radius of the vehicle body as viewed from the center of rotation 14.

〔実施例〕〔Example〕

以下に本発明の実施例を示す。 Examples of the present invention are shown below.

(実施例1) 第2図(a) 、 (b)に自転機構の第一の実施例を
示す。
(Embodiment 1) A first embodiment of the rotation mechanism is shown in FIGS. 2(a) and 2(b).

三輪のうちの二輪11a m llbは連結部21で連
結されている。どこでは、該連結部に設けた2つの弧状
の溝22にそれぞれの車軸17m 、 17bの一端が
係止されている。同図(、)は直進状態の車輪金示す。
Two of the three wheels 11 a m llb are connected by a connecting portion 21 . One end of each axle 17m, 17b is locked in two arcuate grooves 22 provided in the connecting portion. The figure (,) shows the wheels in a straight-ahead state.

同図(b)はスピンターン時の車輪を示す。即ち、車輪
11cは直進状態より90度回転し、また他の二輪11
a e llbは、連結部21ヲ矢印28mの向きに、
直線的に移動することにより、それぞれの車軸17a。
Figure (b) shows the wheels during a spin turn. That is, the wheel 11c rotates 90 degrees from the straight-ahead state, and the other two wheels 11
aellb, the connecting portion 21 is in the direction of the arrow 28m,
By moving in a straight line, each axle 17a.

17bの一端が溝22に沿って引っばられ、該2つの車
軸は角度θにそれぞれ傾けられ、回転中心14の方向に
向く。この車輪状態にした後、スピンターンを行なう。
One end of 17b is pulled along the groove 22, and the two axles are each tilted at an angle θ and directed towards the center of rotation 14. After this wheel state is achieved, a spin turn is performed.

適当な向きに方向転換した後、連結部21ヲ矢印28b
の方向に平行移動させることにより、該二輪11a e
 llbは同図(、)の状態に戻る。
After changing the direction to an appropriate direction, move the connecting portion 21 to the arrow 28b.
By moving the two wheels in parallel in the direction of
llb returns to the state shown in (,) in the same figure.

尚、スピンターン中や直進走行中に、不必要に車軸が動
くことのないように、例えば電磁歴等で作動するストク
/4’を設け、連結部21を不要に動かぬよう固定する
ことも考えられる。
In addition, in order to prevent the axle from moving unnecessarily during spin-turns or straight-ahead driving, it is also possible to provide a stock/4' that operates by electromagnetic history, etc., and to fix the connecting portion 21 so that it does not move unnecessarily. Conceivable.

このように本実施例においては、二輪を連結し、その連
結部21を、車体中心14を通る方向に直線的に往復−
移動可能な機構となる。
In this embodiment, the two wheels are connected, and the connecting portion 21 is reciprocated linearly in the direction passing through the vehicle body center 14.
It becomes a movable mechanism.

(実施例2) 第3図(a) # (b)に本発明による第二の実施例
を示す。本実施例では、二輪11a 、 llbの連結
は、回転機構で連結され、かつ該回転機構を回転させる
ことにより、該二輪の向きを直進状態だしたシスピンタ
ーン状態にする。ここでは回転機構として歯車を用い、
同一半径の歯車31m s 31bはそれぞれ車輪11
m 、 llbに固定され、該車輪の回転軸10a s
 10b を中心とした回転によシ、同様に回転する。
(Example 2) A second example according to the present invention is shown in FIGS. 3(a) and 3(b). In this embodiment, the two wheels 11a and 11b are connected by a rotation mechanism, and by rotating the rotation mechanism, the two wheels are turned into a cis-spin turn state in which they are traveling straight. Here, gears are used as the rotation mechanism,
The gears 31m and 31b with the same radius are the wheels 11, respectively.
m, llb, and the rotating shaft 10a s of the wheel
10b, it rotates in the same way.

これら2つの歯車31a 、 31bはさらに同一半径
を有する2つの歯車30m 、 30bで連結している
。歯車30m 、 30bの中心は、車体に固定されて
いる。同図(、)は直進状態を示し、同図(b)はスピ
ンターン状態を示す。4つの歯車30m 、30b e
 31m +31bのいずnか1つ、例えば歯車30&
ヲモータ(図示せず)で、時計方向に回転させると歯車
31龜は反時計方向に回転し、それに伴なって車輪11
mも反時計方向に回転する。そして車軸を角度θに傾け
ることによシ、該車軸方向を回転中心14に向ける。そ
れと同時に車輪11bは歯車30b。
These two gears 31a and 31b are further connected by two gears 30m and 30b having the same radius. The centers of the gears 30m and 30b are fixed to the vehicle body. The figure (,) shows the straight traveling state, and the figure (b) shows the spin turn state. 4 gears 30m, 30b e
31m + 31b, for example, gear 30&
When the gear 31 is rotated clockwise by a motor (not shown), the gear 31 rotates counterclockwise, and the wheel 11 rotates accordingly.
m also rotates counterclockwise. By tilting the axle at an angle θ, the direction of the axle is directed toward the center of rotation 14. At the same time, the wheel 11b is a gear 30b.

31bにより時計方向だ回転し、同様に回転中心にその
車軸を向ける。このようにしてスピンターン可能な車輪
状態となる。本実施例では歯車4個を用いているが、2
個以上の偶数個数で構成しても良いことは自明である。
31b causes it to rotate clockwise, and similarly directs its axle to the center of rotation. In this way, the wheel is in a state where it can spin and turn. In this example, four gears are used, but two
It is obvious that the configuration may be an even number greater than or equal to 1.

また歯車30a y 30bの中心は、同図では、2つ
の回転軸10m 、 10bを結ぶ直線上だ設けたもの
を示したが、他の位置に設けても本実施例と同様な効果
を得ることができるのは勿論である。
Further, although the center of the gears 30a and 30b is shown as being placed on the straight line connecting the two rotation axes 10m and 10b in the figure, the same effect as in this embodiment can be obtained even if the center is placed in another position. Of course, it is possible to do so.

また歯車30m 、 30b 、 31m 、 31b
の半径(r、。
Also gears 30m, 30b, 31m, 31b
radius (r,.

r2 # r3 # r4 )は通常知られているよう
に車軸を回転するのに必要なモーメントLと歯車を回転
させる駆動モータ出力とからその半径比を決めればよい
。また、必要以上に、例えば角度0以上に車輪が回転し
ないようにしておくことは勿論であシ、例えばいずれか
の歯車の回転角度をエンコーダ等で検出したシすること
は勿論である。
As is generally known, the radius ratio of r2 # r3 # r4 may be determined from the moment L required to rotate the axle and the output of the drive motor that rotates the gear. Furthermore, it is of course not necessary to prevent the wheels from rotating more than necessary, for example, by an angle of 0 or more, and it goes without saying that, for example, the rotation angle of one of the gears should be detected by an encoder or the like.

また本実施例では歯車のみを用いた構成であったが、他
の回転機構例えばベルトを用いても同様な効果が得られ
るのは自明である。
Further, although this embodiment uses only gears, it is obvious that similar effects can be obtained by using other rotating mechanisms such as belts.

走行駆動モータの取付は位置に関しては規定していない
が、これは従来技術を用いればよいからにすぎない。
The mounting position of the travel drive motor is not specified, but this is only because conventional techniques can be used.

〔発明の効果〕〔Effect of the invention〕

本発明は以上のように狭い場所での三輪車の方向転換を
可能としたもので、特に車体形状を、上から見た時に円
形に近い形としかつ、車体の回転中心をその円の中心に
一致させることKよシ、方向転換の際に余分な空間を必
要とせずに方向転換を行うことができる。
The present invention makes it possible to change the direction of a tricycle in a narrow space as described above.In particular, the shape of the vehicle body is close to a circle when viewed from above, and the center of rotation of the vehicle body is aligned with the center of the circle. It is possible to change direction without requiring extra space when changing direction.

従って、本発明によるときには方向転換する場所が限定
されず、走行路上のいかなる場所でも可能となシ、その
利用範囲を拡大できる。
Therefore, according to the present invention, the place where the vehicle can change direction is not limited, and the vehicle can change direction at any place on the road, thereby expanding its range of use.

例えば本発明を無人搬送車に適用したときには構造が簡
単で安定な走行やスピンターンが可能なことから、超小
型化することが容易であり、狭い場所例えば一般に見ら
れる事務所の机の間のような通路に沿って複数台を縦横
に自由に走行させることができる。また本発明によると
きには無人搬送車に必要とする各種センサ等の部品点数
を減らすことが可能となる。即ち、従来は、狭い場所で
も走行できるよう機動性をもたせるために方向転換せず
に前後進が可能な車体構成をとっていたが、そのために
は車体の前後に各種センサ等を設ける必要がある。例え
ば、走行用ガイドを検知するセンサや走行方向前方の障
害物を検知するセンサ等を車体の前後に設けなければな
らない。
For example, when the present invention is applied to an automatic guided vehicle, it has a simple structure and is capable of stable running and spin turns, so it can be easily miniaturized, and it can be used in narrow spaces, such as between desks in offices commonly seen. Multiple vehicles can be freely run vertically and horizontally along such a path. Furthermore, according to the present invention, it is possible to reduce the number of parts such as various sensors required for an automatic guided vehicle. In other words, in the past, vehicles were configured to allow for forward and backward movement without changing direction in order to provide maneuverability so that they could travel in narrow spaces, but to do so, it was necessary to install various sensors at the front and rear of the vehicle body. . For example, sensors for detecting a driving guide, sensors for detecting obstacles in front of the vehicle in the direction of travel, etc. must be provided at the front and rear of the vehicle body.

従ってそれらのセンサを取り付けのために小型化が妨げ
られ、また高価にならざるを得なかったが、本発明によ
シこれらの問題を一挙に解消し、機動性を高め、ひいて
は作業能率の向上を図ることができる効果を有するもの
である。
Therefore, the installation of these sensors hinders miniaturization and makes them expensive, but the present invention solves these problems all at once, increases mobility, and improves work efficiency. This has the effect of making it possible to achieve this goal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の概念図であシ、第2図、第3図は本発
明の実施例の略示図で6)は直進状態、(b)はスピン
ターンの状態を示す。第4図(、)〜(f)、第5図(
a) 、(b) e (c)は従来技術を示す図である
。 1・・・駆動モータ、2・・・操舵モータ、3・・・固
定輪、4e4 、 lla * llb r llc 
””回転輪、8 e 10m 。 10b 、 10e−回転軸、9.14・・・回転中心
、17a。 17b * 17c ”・車軸、21−・・連結部、2
2−・・溝、 30m。 30b t 31m 、 31b ”・歯車特許出願人
  日本電気株式会社 (cL) Cb) 第1図 (a) Cb) 第3図 (θ)             (f)第4図
FIG. 1 is a conceptual diagram of the present invention, and FIGS. 2 and 3 are schematic diagrams of embodiments of the present invention, where 6) shows a straight traveling state and (b) shows a spin turn state. Figures 4(,) to (f), Figure 5(
a), (b), e, and (c) are diagrams showing the prior art. 1... Drive motor, 2... Steering motor, 3... Fixed wheel, 4e4, lla * llb r llc
””Rotating wheel, 8 e 10m. 10b, 10e-rotation axis, 9.14...rotation center, 17a. 17b * 17c ”・Axle, 21-・Connection part, 2
2--Ditch, 30m. 30b t 31m, 31b''・Gear patent applicant NEC Corporation (cL) Cb) Figure 1 (a) Cb) Figure 3 (θ) (f) Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)三輪車の車体に備えた三輪の各車軸を直線走行時
の平行姿勢から水平面内で一つの輪の車軸を90°、他
の二つの輪の車軸を互いに連動させて90°以下の角度
で転回させ、各車輪の枢支点を頂点とした三角形内の一
点に向けて車軸の姿勢を転換し、各車軸の軸線が交わる
点を回転中心として車体を転回させることを特徴とする
三輪車の自転方法。
(1) The axles of the three wheels on the tricycle body are set at an angle of 90° or less when the axles of one wheel are interlocked with each other and the axles of the other two wheels are interlocked with each other in a horizontal plane from the parallel position when traveling in a straight line. The rotation of a tricycle is characterized by rotating the vehicle at a point where the axes of each axle intersect as a center of rotation, changing the attitude of the axle toward a point within a triangle with the pivot point of each wheel as the apex, and rotating the vehicle body around the point where the axes of each axle intersect. Method.
(2)三輪車の車体に、各々水平面で回転可能に枢支さ
れた三つの輪を備え、三輪の内の二輪の車軸を同一軸線
上から一定の角度範囲にわたって傾動可能に連結し、両
車輪の枢支点間を結ぶ軸線の中点を通り、これに直交す
る直線上の位置に他の一輪を枢支させたことを特徴とす
る三輪車の自転機構。
(2) The body of the tricycle is equipped with three wheels that are each rotatably supported on a horizontal plane, and the axles of two of the three wheels are connected so that they can tilt over a certain angular range from the same axis. A rotation mechanism for a tricycle, characterized in that one wheel is pivoted at a position on a straight line that passes through the midpoint of an axis connecting between pivot points and is perpendicular to the midpoint.
JP14504185A 1985-07-01 1985-07-01 Rotating method and mechanism of tricycle Pending JPS624631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14504185A JPS624631A (en) 1985-07-01 1985-07-01 Rotating method and mechanism of tricycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14504185A JPS624631A (en) 1985-07-01 1985-07-01 Rotating method and mechanism of tricycle

Publications (1)

Publication Number Publication Date
JPS624631A true JPS624631A (en) 1987-01-10

Family

ID=15376023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14504185A Pending JPS624631A (en) 1985-07-01 1985-07-01 Rotating method and mechanism of tricycle

Country Status (1)

Country Link
JP (1) JPS624631A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011002003A1 (en) * 2009-07-01 2012-12-13 株式会社Ecomo Electric vehicle structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011002003A1 (en) * 2009-07-01 2012-12-13 株式会社Ecomo Electric vehicle structure
JP5165112B2 (en) * 2009-07-01 2013-03-21 株式会社ecomo Electric vehicle structure

Similar Documents

Publication Publication Date Title
US4683973A (en) Omnidirectional vehicle
US5924512A (en) Omnidirectional vehicle and method of controlling the same
JPH0214974A (en) Steering mechanism, vehicle provided with same and controlling system for same
US5311957A (en) Steering linkage
WO2013054357A2 (en) Mechanism for omni-directional steering using mechanical logic gate synchronizers
JP3560403B2 (en) Omnidirectional vehicle and control method thereof
CN101817362A (en) Steering system of motor vehicle
CN115571036A (en) Motion control method for low-speed dispensing robot
JPS63153089A (en) Running toy
CN101817366A (en) Steering method of four-wheel motor vehicle
JPS624631A (en) Rotating method and mechanism of tricycle
JPH0137294B2 (en)
JP2021519243A (en) Transport vehicle
JPS5992262A (en) All-direction movable vehicle
CN111674463B (en) Wheel steering hierarchical control method and wheel steering system
CN101417676B (en) Intelligent vehicle
CN204871173U (en) A vehicle that is used for a steering system of vehicle and has it
Shah et al. Design and Fabrication of a Four-Wheel Steering System Model
CN216684581U (en) Steering wheel structure and automatic transfer robot
CN116215659A (en) Steering wheel structure and automatic transfer robot
JPH0622620Y2 (en) All-wheel steering system
JPS5981272A (en) 4-wheel steering device of vehicle
JPH1120756A (en) Traveling vehicle
JPS5977970A (en) Four-wheel steering gear for vehicle
SU958202A1 (en) Vehicle