JPS624630B2 - - Google Patents

Info

Publication number
JPS624630B2
JPS624630B2 JP17610280A JP17610280A JPS624630B2 JP S624630 B2 JPS624630 B2 JP S624630B2 JP 17610280 A JP17610280 A JP 17610280A JP 17610280 A JP17610280 A JP 17610280A JP S624630 B2 JPS624630 B2 JP S624630B2
Authority
JP
Japan
Prior art keywords
heat
insulating layer
sheet
heat insulating
hot isostatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17610280A
Other languages
Japanese (ja)
Other versions
JPS57101601A (en
Inventor
Takao Fujikawa
Junichi Myanaga
Masato Moritoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP17610280A priority Critical patent/JPS57101601A/en
Publication of JPS57101601A publication Critical patent/JPS57101601A/en
Publication of JPS624630B2 publication Critical patent/JPS624630B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/001Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses
    • B30B11/002Isostatic press chambers; Press stands therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 本発明は、金属粉末セラミツクスあるいはこれ
らの混合物を高温高圧のガス雰囲気下で焼結する
ための熱間静水圧プレス装置(以下、HIP装置と
いう)、特に高圧室内に配置する独熱層の構成に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hot isostatic press apparatus (hereinafter referred to as a HIP apparatus) for sintering metal powder ceramics or a mixture thereof in a high-temperature, high-pressure gas atmosphere, particularly a hot isostatic press apparatus disposed in a high-pressure chamber. This relates to the structure of the self-heating layer.

近年、高温高圧下で種々の材料の処理を行なう
要求が昂まり、そのための装置としてHIP装置が
注目されている。
In recent years, the demand for processing various materials under high temperature and high pressure has increased, and HIP equipment has been attracting attention as a device for this purpose.

このHIP装置によれば、例えば金属粉末,セラ
ミツクス粉末などの粉末材料を高圧下で焼結で
き、しかもこれは大気圧あるいは真空下で焼結さ
れたものに比し、密度が大で、強度も高い等の多
くの長所を有する。また、通常焼結品,鋳造品を
高温高圧処理することも可能で、これらの製品は
一般にその内部に多数の微視的空孔を有し、時に
は肉眼で観測可能な大きな空孔も存在するが、高
温高圧処理によりこれらの空孔を完全に、あるい
は実用上支承のない程度に微細化又は減少させる
ことが可能であり、結果的に強度の向上も可能で
鋳造欠陥の除去,品質の向上に大きな役割を演ず
る。
According to this HIP equipment, powder materials such as metal powders and ceramic powders can be sintered under high pressure, and they have higher density and strength than those sintered under atmospheric pressure or vacuum. It has many advantages such as high In addition, it is also possible to subject sintered products and cast products to high-temperature, high-pressure treatment, and these products generally have many microscopic pores inside, and sometimes large pores that can be observed with the naked eye. However, through high-temperature and high-pressure treatment, it is possible to completely refine or reduce these pores to the point where they are practically unbearable, and as a result, it is possible to improve strength, eliminate casting defects, and improve quality. plays a major role in

これらのHIP装置は基本的には高圧ガスを密に
封入できる高圧容器と、同容器内に配置される断
熱層と、同断熱層内に配設される加熱装置からな
り、同装置内側に被処理体を収容する炉室が構成
されるが、これらの構成要素のうち、HIP装置の
性能を基本的に支配する重要なものは断熱層であ
り、高圧下という特殊条件下であることから通常
の高温炉の断熱層構成とは異つた構成が要求され
る。即ち、この種の装置では、圧力媒体として通
常、アルゴンガス(以下Arガスと略記する)を
用いるが、高温高圧状態にあるArガスは、例え
ば2000Kg/cm2,1450℃では常温常圧のそれに比
し、粘性は約3.8倍に過ぎないが、熱容量は240倍
以上に達するように、熱容量が極めて大きいに拘
らず、流動性に富んでいるため、対流による熱伝
達量は極めて大きく、従つてその断熱層として
は、炉室内の高温ガスの炉室外への流出を有効に
抑止し、熱損失を低く抑えるようにしたものが望
まれ、第1図に示した如き装置が一般に使用され
ている。即ち、同図において、高圧室4は高圧シ
リンダ1と、その上下開口部に突出して密封する
上部プラグ2及び下部プラグ3によつて画成さ
れ、同高圧室4内には円筒状の断熱層5と、その
内側に配置された加熱装置6とによつて囲繞され
る炉室7を形成し、被処理体13は、下部プラグ
3に一体的に取り付けられた断熱座12上に載置
されて炉室7内の高温高圧雰囲気下でHIP処理さ
れるようになつている。
These HIP devices basically consist of a high-pressure container that can tightly seal high-pressure gas, a heat insulating layer placed inside the container, and a heating device placed inside the heat insulating layer. The furnace chamber that houses the processing body is constructed, and among these components, the important one that basically controls the performance of the HIP equipment is the heat insulation layer, which is usually not used because it is under special conditions of high pressure. This requires a different insulation layer configuration from that of high-temperature furnaces. In other words, in this type of equipment, argon gas (hereinafter abbreviated as Ar gas) is normally used as the pressure medium, but Ar gas at high temperature and pressure is, for example, 2000 kg/cm 2 and at 1450°C, it is different from that at normal temperature and pressure. In comparison, the viscosity is only about 3.8 times higher, but the heat capacity is over 240 times higher.Although the heat capacity is extremely large, it is highly fluid, so the amount of heat transfer by convection is extremely large. It is desired that the heat insulating layer effectively prevents the high temperature gas inside the furnace chamber from flowing out to the outside of the furnace chamber and keeps heat loss low, and a device such as the one shown in Figure 1 is generally used. . That is, in the same figure, a high pressure chamber 4 is defined by a high pressure cylinder 1, an upper plug 2 and a lower plug 3 that protrude into the upper and lower openings of the cylinder to seal them, and a cylindrical heat insulating layer is provided in the high pressure chamber 4. 5 and a heating device 6 disposed inside the furnace chamber 7, the object to be processed 13 is placed on a heat insulating seat 12 integrally attached to the lower plug 3. The HIP process is performed under a high temperature and high pressure atmosphere inside the furnace chamber 7.

そして上記装置において断熱層は、全体として
炉室7内のガスが炉室外へ通過しないよう、通気
性を有しないか、あるいはその性質の小さな材料
例えばステンレス鋼板,モリブデン板で作られた
2つ以上の倒立コツプ8,8′または円筒と、そ
の間に充填された対流及び輻射抑止用のセラミツ
クフエルト等の断熱材9とから構成され、上部プ
ラグ2に保持部材14によつて高圧室4内で垂下
される構造となり、これによつて炉室内と炉室外
とは炉室下部の断熱座12の周囲空間のみを介し
て連通され、高温の炉室内ガスが対流により炉室
外に流出するのを防止する構成となつている。
In the above device, the heat insulating layer consists of two or more layers made of a material that does not have air permeability or has low permeability, such as a stainless steel plate or a molybdenum plate, so that the gas in the furnace chamber 7 as a whole does not pass through to the outside of the furnace chamber. It is composed of an inverted top 8, 8' or a cylinder and a heat insulating material 9 such as ceramic felt for convection and radiation suppression filled between them, and is suspended in the high pressure chamber 4 by a holding member 14 on the upper plug 2. As a result, the furnace chamber and the outside of the furnace chamber are communicated only through the space surrounding the heat insulating seat 12 at the bottom of the furnace chamber, and the high temperature gas inside the furnace chamber is prevented from flowing out to the outside of the furnace chamber due to convection. It is structured as follows.

しかしながら、前記の如き断熱層は次の如き欠
点を有する。
However, the above heat insulating layer has the following drawbacks.

(1) 高圧シリンダ等の耐圧部材は非常に高価であ
るので、高圧室の内容積を有効に利用して経済
性を向上することが好ましく、そのためには断
熱層は可及的薄い方が良いが、前記構造の断熱
層では薄肉化に限度がある。
(1) Pressure-resistant members such as high-pressure cylinders are very expensive, so it is preferable to effectively utilize the internal volume of the high-pressure chamber to improve economic efficiency, and for this purpose, it is better to make the insulation layer as thin as possible. However, there is a limit to how thin the heat insulating layer of the above structure can be made.

(2) セラミツクフエルト等の断熱材は性状の経年
変化があり、最期間使用すると、熱絶縁性が劣
化する。
(2) The properties of heat insulating materials such as ceramic felt change over time, and their thermal insulation properties deteriorate after they are used for the maximum period of time.

(3) Ti合金,超合金と比較的活性な元素を含む
被処理体をそのまま処理する場合、炉室内雰囲
気が清浄であることが必要である。セラミツク
フエルト等の断熱材は低温時に水等を吸着し、
高温時に放出して炉室内雰囲気を損なう。
(3) When processing objects containing relatively active elements such as Ti alloys and superalloys, the atmosphere in the furnace must be clean. Insulating materials such as ceramic felt absorb water etc. at low temperatures,
It is released at high temperatures and damages the atmosphere inside the furnace.

そこで、かかる断熱層構造の欠点を補なうもの
として特公昭46―1176号公報,特開昭47―25007
号公報により金属シートを多層に重ね、各層間に
隙間を設けた断熱層が開示された。
Therefore, as a method to compensate for the drawbacks of such a heat insulating layer structure, Japanese Patent Publication No. 1176-1976 and Japanese Patent Application Laid-Open No. 47-25007
The publication discloses a heat insulating layer in which metal sheets are stacked in multiple layers and gaps are provided between each layer.

これらは隙間を形成する手段として、前者では
渦巻状に巻いた細線を利用する方法並びに磁器材
料の粒子を散在させる方法が、又後者では例え
ば、1mm厚の狭い帯金を用いる方法が例示されて
いる。
As means for forming the gap, the former method uses a spirally wound thin wire and the method of scattering particles of porcelain material, and the latter method uses a narrow metal band with a thickness of 1 mm, for example. There is.

しかしながら、これらの断熱層も、例えば磁器
材料の粒子を散在させる方法では施工に溶射など
特殊な技術が必要で、高価なものとなる欠点があ
り、一方、細線又は帯金を用いる方法では、 (1) 細線や帯金を金属シートと共に巻き上げる作
業は非常に煩雑なものとなる。
However, these heat insulating layers also have the disadvantage that, for example, the method of scattering particles of porcelain material requires special techniques such as thermal spraying and is expensive; 1) The work of winding up thin wires and metal bands together with metal sheets is extremely complicated.

(2) 細線や帯金は何らかの方法でシートに固定し
ないと、使用中にずり落ち、隙間が不均一とな
つたり、シート同士が接触したりする。また、
細線は固定が困難であり、帯金ではリベツト止
め等の処置が必要で、リベツト止めの作業は多
大の労力を要する。
(2) If the thin wires and straps are not fixed to the sheet in some way, they will fall off during use, resulting in uneven gaps and sheets touching each other. Also,
Thin wires are difficult to fix, and straps require riveting, which requires a great deal of effort.

(3) 細線や帯金ではシートとの接触部が線状又は
帯状となり、接触面積が大きくなり、この部分
を通じての熱伝導による断熱性の低下を回避で
きない。
(3) With thin wires and metal bands, the contact area with the sheet is linear or band-like, and the contact area becomes large, making it impossible to avoid a decrease in heat insulation due to heat conduction through this area.

(4) 断熱層内部と外部との連通部が少ないので、
内外圧力の急変で変形を起すことがあると共
に、シート間の間隙に制約があり、断熱層の薄
肉化に限度がある。
(4) There are few communication parts between the inside of the insulation layer and the outside, so
Sudden changes in internal and external pressure can cause deformation, and there are restrictions on the gap between the sheets, which limits how thin the insulation layer can be.

などの欠点があり、未だ充分というには至つてい
ない。
There are some drawbacks, and it is still not sufficient.

本発明はかかる従来の断熱層構造の欠点に対処
し、これを排除して、より好適なHIP装置の断熱
層を提供することを目的とするものである。
It is an object of the present invention to address and eliminate the drawbacks of the conventional heat insulating layer structure and provide a more suitable heat insulating layer for a HIP device.

又、本発明は施工が容易で、固定し易く、ずり
落ちる心配もなく、更に接触部の面積を小さくし
て熱伝導による断熱性の低下を招来しないと共に
変形,破壊の恐れのない優れた断熱層を提供する
ことを他の目的とする。
In addition, the present invention provides an excellent heat insulating layer that is easy to install, easy to fix, does not have to worry about falling off, and has a small contact area that does not reduce the heat insulation properties due to heat conduction and does not cause deformation or destruction. for other purposes.

かくして、本発明の終局の目的は時代の趨勢に
即応し、種々の材料を処理するのに有効、かつ効
果的なHIP装置を提供することである。
Thus, the ultimate objective of the present invention is to provide a HIP device that is responsive to the trends of the times and is effective and effective for processing a variety of materials.

しかして上記の如き本発明の目的は実質上、気
体浸透性を有しないシートと、経緯両方向に関連
づけられた金網とを交互に多層重合し、各シート
間に前記金網によつて保持される間隙を形成する
と共に、前記シートの厚さ,金網のメツシユ,線
径,格子間隙と線径との関係比を有効特定範囲に
特定することによつて達成される。
Therefore, the object of the present invention as described above is to alternately polymerize sheets having no gas permeability and wire meshes associated in both warp and warp directions in a multilayer manner, with a gap between each sheet maintained by the wire mesh. This is achieved by forming the thickness of the sheet, the mesh of the wire gauze, the wire diameter, and the relationship ratio between the lattice gap and the wire diameter within specific effective ranges.

以下、更に添付図面にもとづき、本発明の実施
例並びに具体的態様を説明する。しかし、本発明
は添付図面並びに以下の記述によつて何ら制約さ
れるものではなく、その目的を逸脱しない範囲に
おいて適宜、設計的改変を加え得ることは勿論で
ある。
Hereinafter, embodiments and specific aspects of the present invention will be described further based on the accompanying drawings. However, the present invention is not limited in any way by the accompanying drawings and the following description, and it goes without saying that design changes may be made as appropriate within the scope of the invention.

第2図は第1図装置に対応し本発明に係る断熱
層を適用したHIP装置の概要図(加熱装置及び試
料分省略)であり、第3図及び第4図は夫々断熱
層一部を拡大した縦方向及び水平方向断面図であ
る。
FIG. 2 is a schematic diagram of a HIP device (heating device and sample omitted) that corresponds to the device shown in FIG. 1 and to which a heat insulating layer according to the present invention is applied. FIG. 3 is an enlarged longitudinal and horizontal cross-sectional view.

第2図において1,2,3は夫々前記第1図と
同様、高圧シリンダ,上部プラグ,下部プラグを
示し、これらによつて高圧室4が画成されている
ことは第1図の構成と全く同様であるが、円筒状
断熱層は胴部16と、上蓋部17によつて構成さ
れており、このうち、上蓋部17は気体浸透性を
有しない材料からなるキヤツプ18及び断熱材
9′並びに円板19の各部材で形成されている。
一方、胴部16はリング20を介して前記上蓋部
17に気密に結合されているが、この胴部の構成
は本発明において特徴をなす要部で、第3図及び
第4図にその一部(A部)を拡大して示すよう
に、気体浸透性を有しないシート21と、耐熱線
材からなる網材22の重ね合せによつて構成さ
れ、図示例では7層の気体浸透性を有しないシー
ト21と、6層の網材22が示されている。そし
てシート21の各隙間は網材22により所要間隙
に保持され、各隙間にはArガスが第2図におけ
る下部の開口部23を通じて満たされている。
In FIG. 2, 1, 2, and 3 indicate a high pressure cylinder, an upper plug, and a lower plug, respectively, as in FIG. Although completely similar, the cylindrical heat insulating layer is composed of a body part 16 and an upper lid part 17, of which the upper lid part 17 has a cap 18 made of a material that does not have gas permeability and a heat insulating material 9'. and each member of the disc 19.
On the other hand, the body part 16 is airtightly connected to the upper lid part 17 via a ring 20, and the structure of this body part is a main feature of the present invention, and is shown in FIGS. 3 and 4. As shown in the enlarged view of the part (A part), it is constructed by overlapping a sheet 21 that does not have gas permeability and a net material 22 made of heat-resistant wire material, and in the illustrated example, it has seven layers of gas permeability. A non-woven sheet 21 and six layers of net material 22 are shown. Each gap in the sheet 21 is maintained at a required gap by a mesh material 22, and each gap is filled with Ar gas through the opening 23 at the bottom in FIG.

通常、高圧のArガスは熱容量が極めて大きい
に拘らず、粘性は非常に小さいため、対流による
熱伝達量が大きく、従つて前述のように断熱層の
構造は、輻射と共にこの対流伝達による熱の放散
を効率よく抑止できるものであることが必要であ
る。
Normally, although high-pressure Ar gas has an extremely large heat capacity, its viscosity is extremely low, so the amount of heat transferred by convection is large.As mentioned above, the structure of the heat insulating layer is designed to absorb heat from this convective transfer as well as radiation. It is necessary to be able to efficiently suppress dissipation.

一方、高圧のArガス自体の熱伝導率は極めて
小さく、例えば1000Kg/cm2,400℃で1.24×
104cal/cmsec℃とアルミナの僅か1/60にすぎな
い。
On the other hand, the thermal conductivity of high-pressure Ar gas itself is extremely small, for example 1000Kg/cm 2 and 1.24× at 400℃.
10 4 cal/cmsec℃, which is only 1/60 of alumina.

このことから、高圧のArガスを対流を生じさ
せないように狭い空間に閉じ込め、これを更に多
層重ね合わせることは熱絶縁性に優れた断熱層を
得る上に極めて効果的である。
From this, it is extremely effective to confine high-pressure Ar gas in a narrow space so as not to cause convection, and then stack multiple layers of this in order to obtain a heat insulating layer with excellent thermal insulation properties.

なお、前記シート21と網材22との各隙間に
おけるArガスの対流による熱伝達量は、隙間の
間隔,内外シートの温度差とArガスの熱伝導
率,熱膨張係数,密度,粘性等の物性により決ま
るが、任意の圧力,内外シートの温度差に対して
隙間の間隔をある値以下にすることにより、対流
が実質上生じない状態になり、内外シート間の熱
伝達は、Arガス自体の熱伝導率及び輻射熱のみ
になる。内外シート間の間隔は2mm以下、好まし
くは1mm以下とすることにより実用上、充分な熱
絶縁性を得ることができる。
The amount of heat transfer due to the convection of Ar gas in each gap between the sheet 21 and the net material 22 is determined by the gap distance, the temperature difference between the inner and outer sheets, and the thermal conductivity, thermal expansion coefficient, density, viscosity, etc. of the Ar gas. Although it is determined by physical properties, by setting the gap spacing below a certain value for any given pressure and temperature difference between the inner and outer sheets, convection will virtually not occur, and the heat transfer between the inner and outer sheets will be controlled by the Ar gas itself. Only the thermal conductivity and radiant heat will be generated. Practically sufficient thermal insulation can be obtained by setting the distance between the inner and outer sheets to 2 mm or less, preferably 1 mm or less.

前記構成においてシートの厚さは強度を考慮し
つつ出来るだけ薄いものを選択するのが望まし
い。断熱層内の炉内容積を有効に利用するには断
熱層の薄肉化は極めて重要であり、本発明では前
記熱絶縁効果と相俟つて0.05〜2mmの薄板シート
材の使用が好適である。
In the above structure, it is desirable to select the thinnest thickness of the sheet while considering strength. It is extremely important to make the heat insulating layer thin in order to effectively utilize the volume inside the furnace within the heat insulating layer, and in the present invention, it is preferable to use a thin sheet material with a thickness of 0.05 to 2 mm in combination with the above-mentioned thermal insulation effect.

かかる気体浸透性を有しないシートの材料とし
ては、その目的に適合する全てのシートの使用が
可能であるが、一般にはアルミニウム,ステンレ
ス,Ni基超合金,モリブデン等の金属や、可撓
性黒鉛(商標名グラフオイル)等が好適である。
As the material for the sheet that does not have gas permeability, any sheet suitable for the purpose can be used, but in general, metals such as aluminum, stainless steel, Ni-based superalloys, molybdenum, and flexible graphite are used. (trade name Graph Oil) etc. are suitable.

そして、シートの重ね合せによる層数は炉内温
度と、必要とされる熱絶縁性から適宜選択する。
The number of stacked sheets is appropriately selected depending on the furnace temperature and the required thermal insulation.

一方、前記シートの間に介装される網材は必要
とされる前記内外シート間の間隙を維持すると共
に、対流による熱の放散を抑止するためのもので
あり、第3図,第4図の如く細線材22′を経緯
に交叉結合して形成され、厚さは内外シートの保
持間隙により決まるが、内外のシート同士が接触
しない範囲においてメツシユ間隙は出来るだけ大
きいものが良く、100メツシユ以下、好ましくは
60メツシユ以下、更に好ましくは30メツシユ以下
の粗さであることが効率上,並びに取り扱い上、
好適である。余り不必要にメツシユ間隔を細かく
すると材料による熱伝導により熱絶縁性を阻害す
るばかりでなく、徒らに重量が増大するので好ま
しくない。又、線径も余り大きくすると網材自体
の熱伝導により断熱層の見掛けの熱伝導率が増大
し、前記対流抑止効果の点で望ましくなく、満足
できる断熱性が得られないので、0.1〜1mm、好
ましくは0.5〜0.8mm程度が最も効果的である。
On the other hand, the net material interposed between the sheets is used to maintain the required gap between the inner and outer sheets and to suppress heat dissipation due to convection, as shown in FIGS. 3 and 4. It is formed by cross-linking thin wire rods 22' along the warp and warp, and the thickness is determined by the holding gap between the inner and outer sheets, but the mesh gap is preferably as large as possible within the range where the inner and outer sheets do not contact each other, and is 100 mesh or less. ,Preferably
For efficiency and handling, the roughness should be 60 mesh or less, more preferably 30 mesh or less.
suitable. If the mesh spacing is unnecessarily narrow, the heat conduction through the material not only impairs the thermal insulation properties but also unnecessarily increases the weight, which is undesirable. Furthermore, if the wire diameter is too large, the apparent thermal conductivity of the heat insulating layer will increase due to the heat conduction of the net material itself, which is undesirable in terms of the convection suppressing effect, and satisfactory heat insulating properties cannot be obtained. , preferably about 0.5 to 0.8 mm is most effective.

0.1mm以下では余り細くなり実質上、シート間
の間隔を維持するの適当でなく、又、1mm以上に
なればシート間隔は経緯交叉による点からシート
間隔は2mmを超え断熱性が得られない傾向が高ま
る。従つて通常、前記範囲のものが選択使用され
る。
If it is less than 0.1 mm, it will become too thin and it is virtually impossible to maintain the spacing between the sheets, and if it is more than 1 mm, the sheet spacing will exceed 2 mm and insulation properties will not be obtained due to the intersection between the sheets. increases. Therefore, those within the above range are usually selected and used.

この網材の材料としては耐熱を有する線状であ
り、シートと同様な金属材の外、ガラス繊維,セ
ラミツク繊維,カーボン繊維等が挙げられ、適宜
取捨選択される。
The material of this net material is a heat-resistant linear material, and in addition to the same metal material as the sheet, glass fibers, ceramic fibers, carbon fibers, etc. may be used, and they are selected as appropriate.

なお、前記シートと、網材との重ね合わせに際
しては、各々別個に円心円的に重ねることが好ま
しいが、シートと網材とを共に巻いて円筒状に形
成しても実用上、充分な熱絶縁を得ることができ
る。
In addition, when overlapping the sheet and the netting material, it is preferable to overlap each other separately in a circular manner, but it is practically sufficient to roll the sheet and the netting material together to form a cylindrical shape. Thermal insulation can be obtained.

又、大型で、シートの寸法が不足する場合には
上下方向又は円周方向に分割されたシートを順次
重ねることも差支えない。
Further, if the size of the sheet is insufficient due to the large size, it is also possible to sequentially stack sheets divided vertically or circumferentially.

叙上の如き構成により、前記断熱層の胴部にお
ける半径方向の熱の放散は従来の構造になる断熱
層に比し薄肉で、実用上充分抑制することができ
るが、前記のシートと網材を重ね合わせて形成さ
れたままの円筒では上端及び下端部両方が開口し
た状態では下方から上方へ向つてのArガスの流
れが生じ、熱絶縁性が充分に得られない場合や、
円筒上端部が高温になり、高圧シリンダの上部が
昇温することがある。そのため、これを回避すべ
く上端部を第2図に示したリング20に溶接など
の手段によつて気密に結合するか、又は上端部を
開口して下端部を気密にする等の手段を講ずるこ
とが好適である。
With the structure described above, the heat dissipation in the radial direction in the body of the heat insulating layer is thinner than that of the heat insulating layer with a conventional structure, and can be suppressed sufficiently for practical purposes. If the cylinder is still formed by stacking the cylinders with both the upper and lower ends open, Ar gas will flow from the bottom to the top, and sufficient thermal insulation may not be obtained.
The upper end of the cylinder becomes hot, and the upper part of the high-pressure cylinder may rise in temperature. Therefore, in order to avoid this, measures are taken such as airtightly joining the upper end to the ring 20 shown in FIG. 2 by means such as welding, or opening the upper end and making the lower end airtight. It is preferable that

第5図及び第6図は前記重ね合わせ構成による
本発明の断熱層の変形例であり、第5図において
は、円筒状断熱層の最内層に肉厚の大きい気体浸
透性のない円筒23を配置すると同時に、最外層
にも同様の円筒24を配置して真円度を高めてい
る。この場合、内外の円筒23,24は真円度を
保持するに足る補強材であれば良く、シートとの
関係で稍気体浸透性の悪いもので良い。殊に高温
用はアルミナの使用も可能であり、モリブデンの
スケルトンも用いることができる。
FIGS. 5 and 6 show modified examples of the heat insulating layer of the present invention having the overlapping structure, and in FIG. 5, a thick cylinder 23 with no gas permeability is provided as the innermost layer of the cylindrical heat insulating layer. At the same time, a similar cylinder 24 is also placed on the outermost layer to improve roundness. In this case, the inner and outer cylinders 23 and 24 may be made of reinforcing materials sufficient to maintain roundness, and may be made of materials that have a slightly poor gas permeability due to the relationship with the sheet. Especially for high temperature applications, alumina can be used, and a molybdenum skeleton can also be used.

一方、第6図は前記第5図とは異なり、断熱層
を半径方向に複数のブロツクに分割したものであ
る。この場合、分割された各層の上端部には夫々
気体浸透性のない材料からなるキヤツプ25,2
5′が、そして外層に倒立コツプ26がかぶせら
れ、実質的に気密に結合した構造となつている。
この様に分割して各々の上端部を気密に保つこと
により対流による上方向への熱の放散を抑制する
ことができる。
On the other hand, FIG. 6 differs from FIG. 5 in that the heat insulating layer is divided into a plurality of blocks in the radial direction. In this case, caps 25 and 2 made of a gas-impermeable material are provided at the upper ends of each of the divided layers.
5', and an inverted tip 26 is placed over the outer layer to form a substantially airtightly coupled structure.
By dividing in this way and keeping the upper end portions of each airtight, it is possible to suppress upward heat dissipation due to convection.

なお、上記第6図の上部キヤツプ25,25′
又は倒立コツプ26の各層間にも側部円筒壁と同
様な断熱層をそれぞれ複数層配置することも上方
への熱の放散を防止する上で好適である。
In addition, the upper caps 25, 25' shown in FIG.
Alternatively, it is also suitable to arrange a plurality of heat insulating layers similar to those of the side cylindrical walls between each layer of the inverted cup 26 in order to prevent heat from dissipating upward.

又、前記分割された各ブロツク間に間隔27を
設け納応力の吸収を図ることも好ましい態様であ
る。
It is also a preferable embodiment to provide a space 27 between each of the divided blocks to absorb the accommodation stress.

更に本発明における断熱層は上記各変形例の
外、網材をシート間において全面に亘り重合配層
せしめることなく、長手方向に区分し、隣接した
網材同士互いに位置をずらせて夫々、適宜間隔を
おいて配層介在せしめることも良く、これも本発
明の含むところである。
Furthermore, in addition to the above-mentioned modifications, the heat insulating layer of the present invention does not overlap the entire surface of the sheet between the sheets, but divides the net material in the longitudinal direction, shifts the positions of adjacent net materials, and divides them at appropriate intervals. It is also possible to interpose a layer after the addition of a layer, and this is also included in the scope of the present invention.

又、以上の説明は第1図に対応し断熱層内部に
加熱装置を配した場合であるが、第7図の如く試
料台下部に加熱装置6を備えた熱間静水圧プレス
装置においても同様に適用可能であり、同じ効果
が得られる。
Furthermore, although the above explanation corresponds to FIG. 1 and applies to the case where the heating device is arranged inside the heat insulating layer, the same applies to a hot isostatic press device equipped with the heating device 6 at the bottom of the sample stage as shown in FIG. 7. can be applied to achieve the same effect.

以上のように本発明装置は気体浸透性を有しな
いシートと、特定された網材との重ね合せ配層に
なる断熱層構成を有するものであるから、単に重
ねて巻上げるだけでよく、若し幅や長さが不足す
る場合に縫い合わせるだけで継ぎ足しが可能であ
ると共に、シートに小孔を適宜設けてメツシユを
細線で縛り付け固定が容易であるなど施工が極め
て容易であり、しかも前記固定により上端を固定
すればずり落ちの懸念がなく、又、シートと網材
との接触部が点状となり、接触部面積が小さく熱
伝導による断熱性の低下もなく、更には網材使用
により縦方向,水平方向共に開口しているためガ
スの出入りが容易で断熱層内外に圧力がつきにく
く、断熱層の変形,破壊の恐れも少ない点の種々
の利点を有し、熱絶縁性に優れ、かつ薄肉の断熱
層が得られ、高圧室の内容積の有効利用,高圧容
器径の低減が可能となり、装置の小型化や処理の
経済性向上ができるばかりか、経年変化の激しい
セラミツクスフアイバーよりなるブランケツトを
用いないので長期間安定した使用ができ耐用性を
増大させることができる。
As described above, since the device of the present invention has a heat insulating layer structure in which a sheet with no gas permeability and a specified net material are layered together, it is sufficient to simply overlap and wind it up. If the width or length of the mesh is insufficient, it can be added by simply sewing it together, and the construction is extremely easy, as small holes are made in the sheet as appropriate and the mesh can be tied with thin wire to secure it. If the upper end is fixed, there is no risk of it slipping off, and since the contact area between the sheet and the net material is dotted, the contact area is small and there is no reduction in insulation properties due to heat conduction. , It has various advantages such as being open in both horizontal directions, making it easy for gas to pass in and out, preventing pressure from building up inside and outside the insulation layer, and reducing the risk of deformation or destruction of the insulation layer.It has excellent thermal insulation properties, and A thin heat insulating layer can be obtained, making it possible to effectively utilize the internal volume of the high pressure chamber and reducing the diameter of the high pressure vessel, making it possible to downsize the equipment and improve the economic efficiency of processing. Since it does not use , it can be used stably for a long period of time and its durability can be increased.

更に又、前記構成から水分等を吸着,放出し易
いセラミツク材を用いないので炉室内雰囲気の清
浄化が容易となり、活性元素を含むような材料の
処理が可能になるなど、種々の顕著な効果があり
本発明装置は直接,間接を問わず熱間静水圧プレ
ス装置として多大の利益をもたらすものである。
Furthermore, the above structure does not use ceramic materials that tend to adsorb and release water, etc., making it easier to clean the atmosphere inside the furnace, making it possible to process materials containing active elements, and other remarkable effects. Therefore, the apparatus of the present invention brings great benefits as a hot isostatic pressing apparatus, whether directly or indirectly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の熱間静水圧プレス装置を示す縦
断面図、第2図は本発明に係る熱間静水圧プレス
装置の1例を示す縦断面図、第3図及び第4図は
第2図A部における縦方向及び水平方向断面図、
第5図及び第6図は本発明装置における断熱層の
変形例を示す要部断面図である。又、第7図は本
発明に係る断熱層を適用する熱間静水圧プレス装
置の他の型式を示す概要断面図である。 1……高圧シリンダ、2……上部プラグ、3…
…下部プラグ、4……高圧室、5……断熱層、6
……加熱装置、7……炉室、8,8′……倒立コ
ツプ、9,9……断熱材、11……支持具、14
……保持部材、21……気体浸透性を有しないシ
ート、22……網材。
FIG. 1 is a longitudinal sectional view showing a conventional hot isostatic press device, FIG. 2 is a longitudinal sectional view showing an example of a hot isostatic press device according to the present invention, and FIGS. Vertical and horizontal cross-sectional views of part A in Figure 2,
FIGS. 5 and 6 are sectional views of essential parts showing modified examples of the heat insulating layer in the apparatus of the present invention. Moreover, FIG. 7 is a schematic sectional view showing another type of hot isostatic press apparatus to which the heat insulating layer according to the present invention is applied. 1...High pressure cylinder, 2...Upper plug, 3...
...Lower plug, 4...High pressure chamber, 5...Insulation layer, 6
... Heating device, 7 ... Furnace chamber, 8, 8' ... Inverted cup, 9, 9 ... Insulation material, 11 ... Support, 14
... Holding member, 21 ... Sheet without gas permeability, 22 ... Netting material.

Claims (1)

【特許請求の範囲】 1 高圧ガスを封入する高圧容器内に倒立コツプ
状又は筒状の断熱層を配置し、該断熱層内側に加
熱装置を配設してなる高圧装置において、少くと
も前記断熱層の胴部を気体浸透性を有しないシー
トと、耐熱線材を経緯に交叉せしめた網材とを交
互に多層配層せしめて形成し、隣接するシート間
に該網材による所要の間隙を形成すると共に、前
記シートの厚さを0.05〜2mm,前記網材を100メ
ツシユより粗く、かつ構成する線材の線径を0.1
〜1mmとなしたことを特徴とする熱間静水圧プレ
ス装置。 2 断熱層の胴部が半径方向に複数のブロツクに
分割され、各ブロツクに夫々シートと網材からな
る重ね合せ層が複数層配層されている特許請求の
範囲第1項記載の熱間静水圧プレス装置。 3 各ブロツク間に熱応力を吸収する間隙が形成
されている特許請求の範囲第2項記載の熱間静水
圧プレス装置。 4 網材が胴部軸線方向に複数に分割されてシー
ト間に介装されている特許請求の範囲第1項,第
2項又は第3項記載の熱間静水圧プレス装置。 5 隣り合う網材の位相が互いにずれている特許
請求の範囲第4項記載の熱間静水圧プレス装置。 6 断熱層の最内層と、最外層が中間のシートよ
り肉厚の大なる気体浸透性のない円筒である特許
請求の範囲第1項乃至第5項の何れか各項記載の
熱間静水圧プレス装置。 7 気体浸透性を有しないシートがアルミニウ
ム,ステンレス,Ni基超合金,モリブデン等の
金属あるいは可撓性黒鉛から選ばれたシートであ
る特許請求の範囲第1項乃至第6項の何れか各項
記載の熱間静水圧プレス装置。 8 網材を構成する耐熱線材が、アルミニウム,
ステンレス,Ni基超合金,モリブデン等の金属
線あるいはガラス繊維,セラミツクス繊維,カー
ボン繊維から選ばれた線材である特許請求の範囲
第1項乃至第7項の何れか各項記載の熱間静水圧
プレス装置。
[Scope of Claims] 1. A high-pressure device in which an inverted cup-shaped or cylindrical heat-insulating layer is arranged in a high-pressure container that encloses high-pressure gas, and a heating device is disposed inside the heat-insulating layer, at least The body of the layer is formed by alternately layering sheets with no gas permeability and net material made of heat-resistant wires crossed in warp and warp, and forming the required gap between adjacent sheets by the net material. At the same time, the thickness of the sheet is 0.05 to 2 mm, the mesh material is coarser than 100 mesh, and the wire diameter of the constituting wire is 0.1 mm.
A hot isostatic press device characterized in that the thickness is 1 mm. 2. The hot static insulation layer according to claim 1, wherein the body of the heat insulating layer is divided into a plurality of blocks in the radial direction, and each block has a plurality of stacked layers each consisting of a sheet and a net material. Hydraulic press equipment. 3. The hot isostatic press apparatus according to claim 2, wherein a gap is formed between each block to absorb thermal stress. 4. The hot isostatic press apparatus according to claim 1, 2, or 3, wherein the net material is divided into a plurality of pieces in the axial direction of the trunk and interposed between the sheets. 5. The hot isostatic press apparatus according to claim 4, wherein the phases of adjacent net materials are shifted from each other. 6. Hot isostatic pressure according to any one of claims 1 to 5, wherein the innermost layer and the outermost layer of the heat insulating layer are cylinders that are thicker than the intermediate sheet and have no gas permeability. Press equipment. 7. Any one of claims 1 to 6, wherein the sheet having no gas permeability is a sheet selected from metals such as aluminum, stainless steel, Ni-based superalloys, molybdenum, or flexible graphite. The hot isostatic press apparatus described. 8 The heat-resistant wire material constituting the net material is aluminum,
The hot hydrostatic pressure according to any one of claims 1 to 7, which is a wire selected from stainless steel, Ni-based superalloy, molybdenum, etc., or a wire selected from glass fiber, ceramic fiber, and carbon fiber. Press equipment.
JP17610280A 1980-12-13 1980-12-13 Hot hydrostatic press apparatus Granted JPS57101601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17610280A JPS57101601A (en) 1980-12-13 1980-12-13 Hot hydrostatic press apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17610280A JPS57101601A (en) 1980-12-13 1980-12-13 Hot hydrostatic press apparatus

Publications (2)

Publication Number Publication Date
JPS57101601A JPS57101601A (en) 1982-06-24
JPS624630B2 true JPS624630B2 (en) 1987-01-31

Family

ID=16007723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17610280A Granted JPS57101601A (en) 1980-12-13 1980-12-13 Hot hydrostatic press apparatus

Country Status (1)

Country Link
JP (1) JPS57101601A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100389A (en) * 1982-11-30 1984-06-09 三菱重工業株式会社 Heating furnace for hot hydrostatic press device
JPH058474Y2 (en) * 1986-06-21 1993-03-03

Also Published As

Publication number Publication date
JPS57101601A (en) 1982-06-24

Similar Documents

Publication Publication Date Title
US3139206A (en) Thermal insulation
US4168013A (en) High temperature insulating container
JPH01123991A (en) Heat-insulating structure of internal heat type high-temperature high-pressure device
JP3174379B2 (en) Heating equipment
JPH04273990A (en) Heating device
JPS624630B2 (en)
CN113005318A (en) Powder titanium-aluminum alloy step-by-step hot isostatic pressing preparation method
EP0303552A2 (en) Method of making ceramic composite articles and articles made thereby
TW200835805A (en) Method of densifying porous articles
JPH0132917B2 (en)
DE1945191A1 (en) Vertical tube furnace for high working pressure
JP6012897B1 (en) Induction furnace crucible
JPS6229706B2 (en)
JPS58113302A (en) Sintering method for powder molding
JP2021087941A (en) Air filter
JPS5819139Y2 (en) Hot isostatic press equipment
US5382458A (en) Method of making ceramic composite articles and articles made thereby
JPS6243277Y2 (en)
JPH018954Y2 (en)
JP5313630B2 (en) Thermal insulation structure for hot isostatic press
JP2535402B2 (en) Thermal insulation structure for high temperature furnace
EP0277902A1 (en) Assembly for making ceramic composite structures and method of using the same
CA1133248A (en) High temperature insulating container
JPH0256584B2 (en)
JPH0526480Y2 (en)