JPS6245834B2 - - Google Patents

Info

Publication number
JPS6245834B2
JPS6245834B2 JP3782981A JP3782981A JPS6245834B2 JP S6245834 B2 JPS6245834 B2 JP S6245834B2 JP 3782981 A JP3782981 A JP 3782981A JP 3782981 A JP3782981 A JP 3782981A JP S6245834 B2 JPS6245834 B2 JP S6245834B2
Authority
JP
Japan
Prior art keywords
marking
package
solution
semiconductor device
semiconductor devices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3782981A
Other languages
Japanese (ja)
Other versions
JPS57152994A (en
Inventor
Hirotoshi Iketani
Akiko Hatanaka
Shuichi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP3782981A priority Critical patent/JPS57152994A/en
Publication of JPS57152994A publication Critical patent/JPS57152994A/en
Publication of JPS6245834B2 publication Critical patent/JPS6245834B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/26Printing on other surfaces than ordinary paper

Landscapes

  • Duplication Or Marking (AREA)
  • Printing Methods (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、半導体装置のマーキング方法に係
り、詳しくは、封止方法や封止用樹脂の種類に関
係なく高信頼性のマーキングを行うことができる
マーキング方法に関する。 半導体装置はそのパツケージの表面に品名や製
造会社名などをマークして出荷されるが、特に樹
脂封止型半導体装置はマーキングを行いにくいと
いう欠点があつた。その理由は樹脂封止型半導体
装置のパツケージの表面には離型剤などが付着し
ており、そのためマークしたインクが下地に接着
せず、はじかれたりはがれやすかつたりするため
であつた。半導体封止用の樹脂としては、エポキ
シ系樹脂組成物、シリコーン系樹脂組成物などが
用いられているが、マーキングに伴う前記のよう
な支障は、エポキシ樹脂系組成物の場合に殊に問
題になつている。 この問題に対処するため、従来は半導体装置の
パツケージをトリクロルエチレンなどの有機溶剤
で洗浄したり、沸騰した有機溶剤で洗浄したりす
る前処理を行い、その後マーキングする方法等が
実施されていた。 しかし、有機溶剤による洗浄、特に沸騰した有
機溶剤による洗浄は、洗浄を行なわない場合より
確かに改善の効果は認められるのであるが、未だ
満足できるものではなかつた。即ち、改善の効果
が認められる樹脂の範囲は限られており、しかも
例えば同じエポキシ樹脂であつても、使用されて
いる離型剤の違いによるものと推測されるが、あ
る銘柄の封止樹脂には有効であるが他の銘柄の封
止樹脂には効果がないという具合にかなり適用範
囲が制約されていた。また改善の効果が認められ
る樹脂についても、その時々のモールド金型の汚
れやマーキング工程以前の様々のプロセスの影響
を受けて効果が一定せずに安定性が乏しく、更に
最良の条件下でも充分満足できる接着強度が得ら
れないことが多かつた。 本発明の目的は、従来のマーキング方法、とり
わけその前処理方法の欠点を解消し、広範囲の半
導体装置パツケージに大きな接着強度で安定した
マーキングを施すことができる信頼性の高いマー
キング方法を提供することにある。 本発明者らは、シランカツプリング剤の利用に
よりこのような高信頼性のマーキングを施し得る
ことを見出し、本発明を完成するに至つた。 即ち、本発明は、シランカツプリング剤を0.01
〜5重量%含有するハロゲン化炭化水素あるいは
芳香族炭化水素溶液を60〜200℃に加熱し、半導
体装置のパツケージを前記加熱溶液に接触させた
後、前記パツケージを乾燥させ、しかる後にマー
キングを行うことを特徴とする半導体装置のマー
キング方法である。 本発明で用いられるシランカツプリング剤と
は、ケイ素原子に直接結合している加水分解性基
(例えばメトキシ基、エトキシ基等のアルコキシ
基;アセトキシ基等のアシロキシ基;塩素等のハ
ロゲン原子)を2〜3個有し、かつ例えばアミノ
基、メルカプト基、グリシドキシ基、メタクリロ
キシ基、ウレイド基、エポキシ基、ビニル基など
の官能基を有する有機基を少なくとも1個有する
有機ケイ素化合物である。具体例をあげると、た
とえば、γ―アミノプロピルトリエトキシシラ
ン、γ―メルカプトプロピルトリメトキシシラ
ン、γ―グリシドキシプロピルトリメトキシシラ
ン、γ―メタクリロキシプロピルトリメトキシシ
ラン、γ―ウレイドプロピルトリエトキシシラ
ン、N―(β―アミノエチル)―γ―アミノプロ
ピルトリメトキシシラン、β―(3,4―エポキ
シシクロヘキシル)エチルトリメトキシシラン、
ビニルトリアセトキシシラン等などであり、また
これらの誘導体などがある。これらの中でもアミ
ノ基を有するシランカツプリング剤がより優れた
効果を示し、とりわけN―(β―アミノエチル)
―γ―アミノプロピルトリアルコキシシランが好
ましい。 本発明で用いられるハロゲン化炭化水素および
芳香族炭化水素としては、沸点が60℃〜200℃程
度のものが好ましい。沸点が低過ぎると良い結果
が得られず。また200℃よりも高いと乾燥に時間
がかかり作業性が劣る。具体例としては、トリク
ロルエチレン、テトラクロルエチレン、クロロホ
ルム、四塩化炭素、1,1,2―トリクロルエタ
ン、1,1,2,2―テトラクロルエタン、臭化
エチレン、ベンゼン、トルエン、キシレンなどが
あげられるが中でもトリクロルエチレン、テトラ
クロルエチレン、トルエン、キシレンなどは入手
も容易であることから工業的にも適している。 前記のシランカツプリング剤を上記ハロゲン化
炭化水素または芳香族炭化水素の溶媒に溶かして
処理液とするが、その場合シランカツプリング剤
は0.01〜5重量%、好ましくは0.05〜1重量%の
濃度を用いる。0.01重量%未満ではシランカツプ
リング剤を添加する効果は得難く、5重量%を超
えて添加すると、パツケージ表面にシミなどが残
つてパツケージの外観が損われ易い。 半導体装置のパツケージは、シランカツプリン
グ剤を含むハロゲン化炭化水素または芳香族炭化
水素の溶液に接触させるとき、溶液の温度は60〜
200℃にさせておく必要がある。かかる加熱溶液
に接触させることにより、初めて本発明の効果が
得られ、接着強度が大きい信頼性の高い、しかも
外観の損われないマーキングを行うことができ
る。溶液の温度が60℃未満では接着強度の大きい
マーキングが得られず、200℃を超えると樹脂封
止半導体装置が損傷を受けやすくなる。 本発明において、半導体装置のパツケージを加
熱溶液と接触させる方法は特に制約はなく、パツ
ケージを溶液に浸漬する方法、溶液をパツケージ
に滴下するとか、吹きつける方法、溶液をロール
やブラシを用いて塗布する方法など適宜可能であ
る。 処理液を乾燥するには、自然乾燥、遠心分離、
エアーブローなどの方法を用いてもよいし、高温
にさらして乾燥を促進してもよいが、100℃〜200
℃、更に好ましくは120〜180℃程度の温度で乾燥
すると、シランカツプリング剤のパツケージ表面
に対する焼付け処理が同時に進行するため、より
優れた結果が得られる。 以上のようにして前処理を行つた後に、通常行
われるように、マーキングインクを用いてマーキ
ングを施す。マーキングは印刷、捺印その他の方
法で行うことができる。使用されるマーキングイ
ンクとしては、熱硬化型インク、紫外線硬化型イ
ンク、常温硬化型インク、常温乾燥型インクなど
が挙げられる。これらのインクの中でも、熱硬化
型インクと紫外線硬化型インクが、硬化後のイン
ク自体の強度、耐溶剤性などが優れているため、
特に好ましい。これらのインクは、たとえばマー
ケム・エシアテツク社から容易に入手することが
できる。 本発明のマーキング方法によると、従来の方法
に比較して次のような点で優れている。すなわち
密着性が強く、高信頼性のマーキングを施すこと
ができる。 封止用樹脂の種類、銘柄に関係なく、効果的に
マーキングを行うことができ、パツケージ表面に
対するマーキングインクのなじみがよく、接着強
度の大きい、美しいマーキングを施すことができ
る。半導体装置の製造プロセスなどによつては影
響されず、常に安定した高信頼性のマーキングを
施すことができる。本発明の効果は、樹脂封止型
半導体装置の場合にとくに顕著であるが、キヤン
封止の場合でも有効である。 以下実施例を述べ、本発明を具体的に説明す
る。 実施例 1〜3 住友ベークライト社製EME155F半導体用封止
樹脂(エポキシ系樹脂)を用いて樹脂封止した半
導体装置を180℃で8時間アフタキユアして判定
のための試料とした。 N4(β―アミノエチル)―γ―アミノプロピ
ルトリメトキシシラン (A) γ―アミノプロピルトリエトキシシラン
(B)、及び γ―グリシドキシプロピルトリメトキシシラン
(C) の(A)と(C)をそれぞれトリクロルエチレンに、(B)を
トルエンに溶解してそれぞれ0.2重量%の溶液を
つくつた。(以下処理液A、B、Cと記す) まず、処理液A、B、Cがそれぞれ入つている
容器を加熱して沸騰させ(温度はA及びCが約87
℃、Bは約110℃)、その中に処理すべき樹脂封止
半導体装置を浸漬して5分間処理した。その後半
導体装置を取り出して自然乾燥させ、それぞれ実
施例1、2及び3とした。 次に、室温にある処理液A、B、Cがそれぞれ
入つている容器に処理すべき半導体装置を5分間
浸漬した後、半導体装置を取り出して自然乾燥さ
せ、それぞれ比較例1、2及び3とした。 更に、シランカツプリング剤が含まれていない
トリクロルエチレン(以下トリクレンと記す)が
入つている容器を2個用意し、一方は加熱して沸
騰させ、他方は室温に保つた。処理すべき半導体
装置をそれぞれに浸漬して5分間処理した後、半
導体装置を取り出して自然乾燥させ、これを従来
例1、2と称する。 これらの処理済みの半導体装置および全く処理
を行なわなかつた半導体装置(従来例3)を試験
用試料とし、マーケム社製インク#7224(熱硬化
型インク)を用いてゴム印によりマーキングを行
い、インク硬化のために160℃のオーブンで10分
間加熱した。 以上のようにして得られたマーキング試料につ
いて、インクの接着強度を調べるためにセロフア
ンテープテストと鉛筆硬度テストを行つた。
The present invention relates to a marking method for semiconductor devices, and more particularly to a marking method that can perform highly reliable marking regardless of the sealing method or the type of sealing resin. Semiconductor devices are shipped with the product name, manufacturing company name, etc. marked on the surface of the package, but resin-sealed semiconductor devices in particular have the disadvantage that marking is difficult. The reason for this is that a release agent or the like is attached to the surface of the package of a resin-sealed semiconductor device, and as a result, the marking ink does not adhere to the base and is easily repelled, peeled off, or scratched. Epoxy resin compositions, silicone resin compositions, etc. are used as resins for semiconductor encapsulation, but the above-mentioned problems associated with marking are particularly problematic in the case of epoxy resin compositions. It's summery. To deal with this problem, conventional methods have been used such as pre-treating semiconductor device packages by cleaning them with an organic solvent such as trichlorethylene or boiling an organic solvent, and then marking them. However, cleaning with an organic solvent, especially cleaning with a boiling organic solvent, is not yet satisfactory, although it is certainly more effective than when no cleaning is performed. In other words, the range of resins for which the improvement effect is recognized is limited, and even for the same epoxy resin, it is presumed that this is due to the difference in the mold release agent used, but a certain brand of sealing resin Although it is effective for encapsulating resins of other brands, it is not effective for other brands of encapsulating resins, so the scope of its application is quite limited. Furthermore, even for resins that have been recognized to have improved effects, they are affected by contamination of molds and various processes prior to the marking process, resulting in inconsistent effects and poor stability, and even under the best conditions, they are insufficient. Satisfactory adhesive strength was often not achieved. SUMMARY OF THE INVENTION An object of the present invention is to provide a highly reliable marking method that eliminates the drawbacks of conventional marking methods, particularly its pretreatment methods, and is capable of applying stable markings with high adhesive strength to a wide range of semiconductor device packages. It is in. The present inventors have discovered that such highly reliable marking can be achieved by using a silane coupling agent, and have completed the present invention. That is, the present invention uses a silane coupling agent of 0.01
A halogenated hydrocarbon or aromatic hydrocarbon solution containing ~5% by weight is heated to 60 to 200°C, a semiconductor device package is brought into contact with the heated solution, the package is dried, and then marking is performed. This is a marking method for semiconductor devices characterized by the following. The silane coupling agent used in the present invention refers to a hydrolyzable group that is directly bonded to a silicon atom (for example, an alkoxy group such as a methoxy group or an ethoxy group; an acyloxy group such as an acetoxy group; or a halogen atom such as chlorine). It is an organosilicon compound having at least one organic group having 2 to 3 functional groups such as an amino group, a mercapto group, a glycidoxy group, a methacryloxy group, a ureido group, an epoxy group, and a vinyl group. Specific examples include γ-aminopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-ureidopropyltriethoxysilane. , N-(β-aminoethyl)-γ-aminopropyltrimethoxysilane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane,
Examples include vinyltriacetoxysilane, and derivatives thereof. Among these, silane coupling agents with amino groups have shown superior effects, especially N-(β-aminoethyl)
-γ-aminopropyltrialkoxysilane is preferred. The halogenated hydrocarbons and aromatic hydrocarbons used in the present invention preferably have a boiling point of about 60°C to 200°C. If the boiling point is too low, good results will not be obtained. Furthermore, if the temperature is higher than 200°C, it takes a long time to dry and the workability is poor. Specific examples include trichlorethylene, tetrachlorethylene, chloroform, carbon tetrachloride, 1,1,2-trichloroethane, 1,1,2,2-tetrachloroethane, ethylene bromide, benzene, toluene, xylene, etc. Among them, trichlorethylene, tetrachlorethylene, toluene, xylene, etc. are suitable for industrial use because they are easily available. The above-mentioned silane coupling agent is dissolved in the above-mentioned halogenated hydrocarbon or aromatic hydrocarbon solvent to prepare a treatment liquid. In this case, the silane coupling agent has a concentration of 0.01 to 5% by weight, preferably 0.05 to 1% by weight. Use. If the amount is less than 0.01% by weight, it is difficult to obtain the effect of adding the silane coupling agent, and if it is added in excess of 5% by weight, stains remain on the surface of the package, which tends to spoil the appearance of the package. When the semiconductor device package is brought into contact with a solution of halogenated hydrocarbon or aromatic hydrocarbon containing a silane coupling agent, the temperature of the solution is between 60 and 60°C.
It needs to be kept at 200℃. By contacting with such a heated solution, the effects of the present invention can be obtained for the first time, and marking with high adhesive strength and reliability can be performed without damaging the appearance. If the temperature of the solution is less than 60°C, a marking with high adhesive strength cannot be obtained, and if it exceeds 200°C, the resin-sealed semiconductor device becomes susceptible to damage. In the present invention, there are no particular restrictions on the method of bringing the package of the semiconductor device into contact with the heated solution, such as immersing the package in the solution, dropping or spraying the solution onto the package, or applying the solution using a roll or brush. Any suitable method is possible. To dry the processing solution, air drying, centrifugation,
Methods such as air blowing may be used, or drying may be accelerated by exposing to high temperatures;
Drying at a temperature of about 120 to 180°C, more preferably about 120 to 180°C, provides better results because the baking process of the silane coupling agent to the package surface proceeds at the same time. After performing the pretreatment as described above, marking is performed using marking ink as is normally done. Marking can be done by printing, stamping, or other methods. Examples of the marking ink used include thermosetting inks, ultraviolet curable inks, room temperature curing inks, and room temperature drying inks. Among these inks, thermosetting inks and ultraviolet curable inks have excellent strength and solvent resistance after curing, so
Particularly preferred. These inks are readily available from, for example, Markem Ecotech. The marking method of the present invention is superior to conventional methods in the following points. In other words, it is possible to provide markings with strong adhesion and high reliability. Regardless of the type or brand of the sealing resin, marking can be performed effectively, the marking ink blends well with the package surface, and beautiful markings with high adhesive strength can be applied. It is not affected by the manufacturing process of semiconductor devices and can always provide stable and highly reliable marking. The effects of the present invention are particularly remarkable in the case of resin-sealed semiconductor devices, but are also effective in can-sealed semiconductor devices. EXAMPLES The present invention will be specifically explained below with reference to Examples. Examples 1 to 3 Semiconductor devices sealed with EME155F semiconductor sealing resin (epoxy resin) manufactured by Sumitomo Bakelite Co., Ltd. were after-cured at 180° C. for 8 hours and used as samples for evaluation. N 4 (β-aminoethyl)-γ-aminopropyltrimethoxysilane (A) γ-aminopropyltriethoxysilane
(B), and γ-glycidoxypropyltrimethoxysilane
(C) (A) and (C) were each dissolved in trichlorethylene, and (B) was dissolved in toluene to prepare a 0.2% by weight solution. (Hereinafter referred to as processing liquids A, B, and C) First, heat the containers containing processing liquids A, B, and C to boil them (the temperature is approximately 87°C for A and C).
The resin-sealed semiconductor device to be processed was immersed therein for 5 minutes. Thereafter, the semiconductor devices were taken out and air-dried to give Examples 1, 2, and 3, respectively. Next, the semiconductor devices to be processed were immersed in containers containing processing solutions A, B, and C at room temperature for 5 minutes, and then the semiconductor devices were taken out and air-dried. did. Furthermore, two containers containing trichlorethylene (hereinafter referred to as trichlene) containing no silane coupling agent were prepared, one was heated to boiling, and the other was kept at room temperature. After the semiconductor devices to be processed were immersed in each and treated for 5 minutes, the semiconductor devices were taken out and air-dried, which are referred to as Conventional Examples 1 and 2. These processed semiconductor devices and a semiconductor device that was not processed at all (Conventional Example 3) were used as test samples, and marked with a rubber stamp using Markem ink #7224 (thermosetting ink), and the ink was cured. Heat in the oven at 160℃ for 10 minutes. The marking samples obtained as described above were subjected to a cellophane tape test and a pencil hardness test to examine the adhesive strength of the ink.

【表】【table】

【表】 実施例 4〜7 γ―ウレイドプロピルトリメトキシシラン
(D) 及び γ―メタクリロキシプロピルトリメトキシシ
ラン (E) をそれぞれトリクレンに溶解して0.2重量%の溶
液をつくつた。(以下処理液D、Eと記す) 処理液A、C、D、Eがそれぞれ入つている容
器を加熱して沸騰させ(約87℃)、その中に実施
例1と同じ樹脂封止した半導体装置を5分間浸漬
した。その後半導体装置を取り出して120℃のオ
ーブンに入れ5分間加熱処理を行つて乾燥させ、
それぞれ実施例4、5、6、7とした。次に、シ
ランカツプリング剤を含まないトリクレンについ
ても同様に行い比較例4とした。また処理液A、
C、D、Eに室温で5分間浸漬した半導体装置を
120℃のオーブンに入れ5分間加熱処理を行つて
乾燥させ、それぞれ比較例5、6、7、8とし
た。実施例1〜3と同様、インク#7224を用いて
マーキングし、インクを160℃で10分間加熱して
硬化させた後、セロフアンテープテスト、鉛筆硬
度テストを行つた結果を表―2に示した。
[Table] Examples 4 to 7 γ-ureidopropyltrimethoxysilane
(D) and γ-methacryloxypropyltrimethoxysilane (E) were each dissolved in trichlene to prepare a 0.2% by weight solution. (hereinafter referred to as processing liquids D and E) Heat the containers containing processing liquids A, C, D, and E to boiling temperature (approximately 87°C), and place semiconductors sealed with the same resin as in Example 1 in the containers. The device was soaked for 5 minutes. After that, the semiconductor device was taken out and placed in an oven at 120°C and heated for 5 minutes to dry it.
Examples 4, 5, 6, and 7 were used, respectively. Next, Comparative Example 4 was prepared in the same manner using trichlene containing no silane coupling agent. In addition, processing liquid A,
Semiconductor devices immersed in C, D, and E for 5 minutes at room temperature
They were placed in an oven at 120° C. and heat-treated for 5 minutes to dry them to obtain Comparative Examples 5, 6, 7, and 8, respectively. As in Examples 1 to 3, marking was performed using ink #7224, and after curing the ink by heating it at 160°C for 10 minutes, a cellophane tape test and a pencil hardness test were performed. The results are shown in Table 2. Ta.

【表】 更にN―(β―アミノエチル)―γ―アミノプ
ロピルトリメトキシシランを水およびエチルアル
コールに溶解して0.2重量%の水溶液とアルコー
ル溶液をつくつた(以下それぞれ処理液F、Gと
記す。)。またγ―グリシドキシプロピルメトキシ
シランを水およびイソプロピルアルコールのそれ
ぞれに溶解して0.2重量%の水溶液とイソプロパ
ノール溶液をつくつた(以下それぞれ処理液H、
Iと記す。)。 処理液A、C、F、G、H、Iを加熱して沸騰
させ(温度は、A及びCは約87℃、F及びHは約
100℃、Gは約78℃、Iは約82℃)、その中に実施
例1と同じ樹脂封止型半導体装置を10分間浸漬し
た。その後半導体装置を取り出して150℃のオー
ブンで3分間加熱処理を行つて乾燥させ、それぞ
れ実施例8、9、並びに比較例9、10、11、12と
した。 次に処理液F、G、H、Iを室温に保ち、その
中に樹脂封止型半導体装置を10分間浸漬した。そ
の後半導体装置を取り出して150℃のオーブンで
3分間加熱処理を行つて、それぞれ比較例13、
14、15、16とした。実施例1と同様インク#7224
を用いてマーキングし、インクを160℃で10分間
加熱して硬化させた後、セロフアンテープテス
ト、鉛筆硬度テストを行つた結果を表―3に示し
た。
[Table] Furthermore, N-(β-aminoethyl)-γ-aminopropyltrimethoxysilane was dissolved in water and ethyl alcohol to create a 0.2% by weight aqueous solution and an alcoholic solution (hereinafter referred to as treatment solutions F and G, respectively). ). In addition, γ-glycidoxypropylmethoxysilane was dissolved in water and isopropyl alcohol to prepare a 0.2% by weight aqueous solution and an isopropanol solution (hereinafter referred to as treatment solution H, respectively).
It is written as I. ). Heat and boil treatment solutions A, C, F, G, H, and I (temperature: approximately 87°C for A and C, approximately 87°C for F and H).
The same resin-sealed semiconductor device as in Example 1 was immersed therein for 10 minutes at 100°C (G: about 78°C, I: about 82°C). Thereafter, the semiconductor devices were taken out and dried by heating in an oven at 150° C. for 3 minutes to obtain Examples 8 and 9 and Comparative Examples 9, 10, 11, and 12, respectively. Next, the processing solutions F, G, H, and I were kept at room temperature, and the resin-sealed semiconductor device was immersed therein for 10 minutes. After that, the semiconductor device was taken out and heat treated in an oven at 150°C for 3 minutes.
14, 15, 16. Same as Example 1 Ink #7224
The ink was marked using a 160°C heating for 10 minutes to cure, and then a cellophane tape test and a pencil hardness test were performed. The results are shown in Table 3.

【表】【table】

Claims (1)

【特許請求の範囲】 1 シランカツプリング剤を0.01〜5重量%含有
するハロゲン化炭化水素溶液あるいは芳香族炭化
水素溶液を60〜200℃に加熱し、半導体装置のパ
ツケージを前記加熱溶液に接触させた後、前記パ
ツケージを乾燥させ、しかる後にマーキングを施
すことを特徴とする半導体装置のマーキング方
法。 2 特許請求の範囲第1項の記載において、パツ
ケージの乾燥を100〜200℃の温度で行うマーキン
グ方法。
[Claims] 1 A halogenated hydrocarbon solution or an aromatic hydrocarbon solution containing 0.01 to 5% by weight of a silane coupling agent is heated to 60 to 200°C, and a semiconductor device package is brought into contact with the heated solution. 1. A method for marking a semiconductor device, comprising: drying the package, and then marking the package. 2. The marking method according to claim 1, wherein the package is dried at a temperature of 100 to 200°C.
JP3782981A 1981-03-18 1981-03-18 Marking method of semiconductor device Granted JPS57152994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3782981A JPS57152994A (en) 1981-03-18 1981-03-18 Marking method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3782981A JPS57152994A (en) 1981-03-18 1981-03-18 Marking method of semiconductor device

Publications (2)

Publication Number Publication Date
JPS57152994A JPS57152994A (en) 1982-09-21
JPS6245834B2 true JPS6245834B2 (en) 1987-09-29

Family

ID=12508409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3782981A Granted JPS57152994A (en) 1981-03-18 1981-03-18 Marking method of semiconductor device

Country Status (1)

Country Link
JP (1) JPS57152994A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153843A (en) * 1986-12-17 1988-06-27 Matsushita Electronics Corp Marking method for resin-sealed semiconductor device
JPH0753531Y2 (en) * 1992-07-17 1995-12-13 株式会社丸信バッグ工業 Band fittings

Also Published As

Publication number Publication date
JPS57152994A (en) 1982-09-21

Similar Documents

Publication Publication Date Title
US4243718A (en) Primer compositions for Si-H-olefin platinum catalyzed silicone compositions
US4230773A (en) Decreasing the porosity and surface roughness of ceramic substrates
US4045397A (en) Printing ink compositions for jet printing on glazed ceramic surfaces
JPS58213075A (en) Ultraviolet ray absorbent, manufacture, composition and product
JPS6123221B2 (en)
JPS6245834B2 (en)
JPS60137956A (en) Aqueous composition containing phenol resin
CN109504337B (en) Low-viscosity transparent mildew-proof electronic coating adhesive and preparation method thereof
JPH0240391B2 (en) HAADOKOOTOSOHENOCHAKUSHOKUTOMAKUKEISEIHOHO
JPH0768495B2 (en) Method for manufacturing integrally molded product with silicone rubber bonded
JP2573537B2 (en) Surface treatment method for fluorine-containing resin molded products
JP3242442B2 (en) Composition for coating
US20210138503A1 (en) Functional Termination of Parylene in Vacuum
JPH0739810A (en) Coating method for inorganic coating material
JPS63110263A (en) Method for treating surface
US5089303A (en) Blend of solvent and photocurable arylsiloxane materials
JP3396951B2 (en) Thin film formation method
JPH0525302A (en) Release film having antistatic properties
JP2001049187A (en) Solid primer and bonding method using the same
EP0884368A1 (en) Dissolving agent for cured polyorganosiloxane material
JP2004315771A (en) Silicon composition and surface-treating agent
JP2002234959A (en) Compound of polyvinyl alcohol resin coating agent for oriented film
JPH09235544A (en) Antifogging agent
JP2567750B2 (en) Anti-vibration rubber material
JP2000256636A (en) Liquid temporary bonding agent