JPS6245411Y2 - - Google Patents

Info

Publication number
JPS6245411Y2
JPS6245411Y2 JP3329683U JP3329683U JPS6245411Y2 JP S6245411 Y2 JPS6245411 Y2 JP S6245411Y2 JP 3329683 U JP3329683 U JP 3329683U JP 3329683 U JP3329683 U JP 3329683U JP S6245411 Y2 JPS6245411 Y2 JP S6245411Y2
Authority
JP
Japan
Prior art keywords
magnetic pole
piece
yoke
movable piece
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3329683U
Other languages
Japanese (ja)
Other versions
JPS59138155U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3329683U priority Critical patent/JPS59138155U/en
Publication of JPS59138155U publication Critical patent/JPS59138155U/en
Application granted granted Critical
Publication of JPS6245411Y2 publication Critical patent/JPS6245411Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Electromagnets (AREA)

Description

【考案の詳細な説明】 イ 考案の分野 本考案は単安定型有極リレーに関する。[Detailed explanation of the idea] B Field of invention The present invention relates to a monostable polarized relay.

ロ 従来技術とその問題点 可動片に永久磁石を用いた有極リレーは通常二
安定型として構成される。この二安定型有極リレ
ーの殆んどの部品及び組立構造をそのまゝ流用し
一部の部品だけを別部品とすることによつて単安
定型リレーを構成すれば、別途に単安定型リレー
を造るより製造上有利で製産コストを低減でき
る。このため単安定型の有極リレーが造られてい
るが、従来のこの種のリレーは別部品を要する等
して必ずしも製造上有利とはならず、特に同型二
安定型有極リレーに比し感度が低くなると云う欠
点があつた。この点を第1図を用いて説明する。
B. Prior art and its problems Polarized relays that use permanent magnets in their movable pieces are usually constructed as bistable types. If you configure a monostable relay by using most of the parts and assembly structure of this bistable polarized relay and making only some parts separate, you can create a separate monostable relay. It is more advantageous in manufacturing than manufacturing and can reduce production costs. For this reason, monostable type polarized relays have been manufactured, but conventional relays of this type require separate parts and are not necessarily advantageous in manufacturing, especially compared to bistable type polarized relays of the same type. The drawback was that the sensitivity was low. This point will be explained using FIG.

第1図Aは二安定型有極リレーの固定子の斜視
図でヨークYの一端が両翼Y1,Y2に分れて鉄
心Cの一端Pを両側からはさんでおり、鉄心の磁
極Pとヨーク両翼との間に第1図Bに示すように
可動片の両磁極片P1,P2が位置させてある。
これらの磁極片P1,P2は永久磁石mをはさん
でおり、三者一体にして可動片が構成されてい
る。コイルLに通電していない状態では可動片は
磁極片P1,P2の何れかが固定子鉄心の磁極P
に接し、他方の磁極片がヨークの一方の翼に接し
て例えば第1図Bに示すような位置を採つてい
る。こゝで第1図BにおいてコイルLに磁極Pが
N極になるような方向の電流を流すと可動片は固
定子により反撥されて左方に動き、電流を絶つた
後も、永久磁石の磁力により磁極片p1が磁極P
に接し、p2がヨークの左翼Y2に接した位置に
停まり、二安定の特性を示す。こゝでこの構造を
単安定型にするには可動片に第1図Bで例えば右
方への復帰力をばねによつて付与し、この復帰力
の方が永久磁石による可動片を左側に移動した安
定位置に留める保持力より大きくしておく。この
ため従来は第1図Cに示すように可動片の一方の
磁極片p2をp1より小面積とするとか、反対に
一方の翼の面積を小さくする、或は磁極Pの両面
に設けてある遮磁板S1,S2の一方例えばS1
を厚くする等の方法が用いられていた。第1図C
の構造であると、第1図Cに示す一安定特性にお
ける安定位置から第1図Dに示す作動位置へと可
動片を動かすようにコイルLに通電した場合、固
定鉄心の磁極Pからヨークの左翼に向う磁力線の
相当部分は可動片の磁極片P2を貫通せず直接ヨ
ークの左翼へ流れるため磁極Pが磁極片p2を反
撥する力が低下し、ヨークの左翼と磁極片p2間
の磁力線(この磁力線の方向に吸引力が働く)は
斜めになつて磁極片p2の面に平行な吸引力成分
が増し、ヨーク左翼と磁極片p2間の有効吸引力
も低下する。このため可動片を摩擦力とかばね力
に打克つて左方へ駆動するに必要なコイルLの励
磁電流が増大しリレーの感度が低下する。片方の
翼を小さくする方法も同様の問題がある上、高価
なヨーク部分を別部品としなければならず、遮磁
板の厚さを変える方法は特性面での損はないが、
可動片のワーキングギヤツプが左右不同になるの
で、例えば固定子鉄心の磁極部Pの片面を削つて
おく必要があつて、製造上不利である。
Figure 1A is a perspective view of the stator of a bistable polarized relay.One end of the yoke Y is divided into two wings Y1 and Y2, which sandwich one end P of the iron core C from both sides, and the magnetic pole P of the iron core and the yoke As shown in FIG. 1B, movable magnetic pole pieces P1 and P2 are positioned between the two wings.
These magnetic pole pieces P1 and P2 sandwich a permanent magnet m, and the three pieces together constitute a movable piece. When the coil L is not energized, either of the magnetic pole pieces P1 and P2 of the movable piece is connected to the magnetic pole P of the stator core.
The other pole piece is in contact with one wing of the yoke, for example, in the position shown in FIG. 1B. In Fig. 1B, when a current is applied to the coil L in a direction such that the magnetic pole P becomes the N pole, the movable piece is repelled by the stator and moves to the left, and even after the current is cut off, the permanent magnet remains unchanged. Due to magnetic force, the magnetic pole piece p1 becomes the magnetic pole P
, and p2 stops at a position in contact with the left wing Y2 of the yoke, exhibiting bistable characteristics. To make this structure monostable, a spring is used to apply a return force to the movable piece, for example, to the right as shown in Figure 1B, and this return force causes the permanent magnet to move the movable piece to the left. Make it larger than the holding force required to keep it in a stable position after moving. For this reason, in the past, one of the magnetic pole pieces p2 of the movable piece was made smaller in area than p1, as shown in FIG. One of the magnetic shielding plates S1 and S2, for example S1
Methods such as making the material thicker were used. Figure 1C
With this structure, when the coil L is energized to move the movable piece from the stable position in the monostable characteristic shown in Fig. 1C to the operating position shown in Fig. 1D, the yoke is A considerable portion of the magnetic field lines toward the left wing do not pass through the magnetic pole piece P2 of the movable piece and flow directly to the left wing of the yoke, so the force with which the magnetic pole P repels the magnetic pole piece p2 decreases, and the magnetic field lines between the left wing of the yoke and the magnetic pole piece p2 ( The attractive force acting in the direction of the magnetic field lines becomes oblique, the attractive force component parallel to the surface of the magnetic pole piece p2 increases, and the effective attractive force between the left yoke and the magnetic pole piece p2 also decreases. Therefore, the excitation current of the coil L required to overcome the frictional force and spring force and drive the movable piece to the left increases, and the sensitivity of the relay decreases. The method of making one wing smaller has the same problem, and the expensive yoke part has to be made as a separate part, and the method of changing the thickness of the magnetic shielding plate does not cause any loss in terms of characteristics, but
Since the working gap of the movable piece is asymmetrical, it is necessary to shave off one side of the magnetic pole portion P of the stator core, which is disadvantageous in terms of manufacturing.

ハ 目的 本考案は従来の単安定型有極リレーの上述した
欠点を解消し、感度良好な単安定有極リレーを提
供しようとするものである。
C. Purpose The present invention aims to eliminate the above-mentioned drawbacks of conventional monostable polarized relays and provide a monostable polarized relay with good sensitivity.

ニ 構成 本考案単安定有極リレーは、可動片の両磁極片
を同面積とし、リレー作動時にヨーク翼片と接す
る側の可動片磁極片のヨーク翼片と対向する面を
厚さ方向に削除して薄くし、同磁極片とヨーク翼
片との間にギヤツプを形成したことを特徴とす
る。このギヤツプのため永久磁石の可動片を作動
位置に保持する力が低下し単安定特性が実現され
る。
D. Configuration In the monostable polarized relay of the present invention, both magnetic pole pieces of the movable piece have the same area, and the surface of the movable single magnetic pole piece that is in contact with the yoke blade on the side that faces the yoke blade is removed in the thickness direction. A gap is formed between the magnetic pole piece and the yoke blade. This gap reduces the force that holds the movable piece of the permanent magnet in the operating position and achieves monostable characteristics.

ホ 実施例 第2図に本考案の実施例を示す。基本構成は第
1図に示した従来例と同じであるから要部のみを
示す。第2図Aは可動片が安定位置にある状態を
示し、第2図Bは可動片が作動位置にある状態を
示している。Pは固定子鉄心の磁極、Y1,M2
は磁極Pをはさむヨークの両翼で、mは可動片の
永久磁石、p1,p2は可動片の両磁極片であ
る。これらの磁極片は同じ面積であり、その面積
はヨークの両翼Y1,Y2が固定子磁極Pと対向
している面積と略等しい。可動片の作動位置(第
2図B)においてヨーク翼片Y2と接する磁極片
p2は翼片Y2に対向する面が削られて薄くなつ
ており、p2とY2との間に隙間dが形成されて
いる。この隙間dのため永久磁石mの発生する磁
束が磁極片p2から翼片Y2へと流れる部分の磁
気抵抗が大であり、p2とY2との間の吸引力は
p2とY2とが密着しているときより低下してお
り、従つて永久磁石による可動片の作動位置への
保持力が低下していて不図示のばね力に負け、単
安定性が実現される。第2図Aの安定位置におい
て、磁極PにN極が現れるようにコイルLに電流
を流したとき、磁極Pからヨーク翼片Y2に向う
磁力線は全部磁極片p2を貫通しており、磁極P
の反撥力も翼片Y2の吸引力も全部磁極片p2に
垂直で100%有効であるから、第2図Bに示した
二安定有極リレーの場合と全く同じ作動力が発生
する。
E. Embodiment FIG. 2 shows an embodiment of the present invention. Since the basic configuration is the same as the conventional example shown in FIG. 1, only the main parts are shown. FIG. 2A shows the movable piece in the stable position, and FIG. 2B shows the movable piece in the operating position. P is the magnetic pole of the stator core, Y1, M2
are the two wings of the yoke that sandwich the magnetic pole P, m is the permanent magnet of the movable piece, and p1 and p2 are the two magnetic pole pieces of the movable piece. These magnetic pole pieces have the same area, and the area is approximately equal to the area where both wings Y1 and Y2 of the yoke face the stator magnetic pole P. In the operating position of the movable piece (Fig. 2B), the surface of the magnetic pole piece p2 that is in contact with the yoke blade Y2, which faces the blade Y2, is shaved and thinned, and a gap d is formed between p2 and Y2. ing. Because of this gap d, the magnetic resistance in the part where the magnetic flux generated by the permanent magnet m flows from the magnetic pole piece p2 to the wing piece Y2 is large, and the attractive force between p2 and Y2 is due to the fact that p2 and Y2 are in close contact with each other. Therefore, the force of holding the movable piece in the operating position by the permanent magnet is reduced, and is overcome by the spring force (not shown), achieving monostability. In the stable position shown in FIG. 2A, when current is applied to the coil L so that the north pole appears on the magnetic pole P, all the lines of magnetic force from the magnetic pole P toward the yoke wing piece Y2 pass through the magnetic pole piece p2, and the magnetic pole P
Since both the repulsive force of the wing and the attractive force of the wing piece Y2 are perpendicular to the pole piece p2 and are 100% effective, exactly the same operating force as in the case of the bistable poled relay shown in FIG. 2B is generated.

ヘ 効果 本考案単安定有極リレーは上述したような構成
で作動力の低下を来さず作動時の保持力のみ低減
できるので、感度低下のない単安定有極リレーを
得ることができ、また可動片の一方の磁極片だけ
が別部品となり、その他の余分の加工とか組立調
整の工程がなく、二安定型のものと同じ製造ライ
ンで流すことも可能で製造上有利である。
F. Effect The monostable polarized relay of the present invention has the above-described configuration, and only the holding force during operation can be reduced without reducing the operating force. Therefore, a monostable polarized relay without a decrease in sensitivity can be obtained, and Only one pole piece of the movable piece is a separate part, and there are no other extra machining or assembly/adjustment steps, and it is possible to run it on the same production line as the bistable type, which is advantageous in terms of manufacturing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例を示し、Aは固定子鉄心斜視
図、Bは二安定型の場合の平面図、Dは単安定型
の作動時の平面図、Cは安定時の平面図であり、
第2図は本考案の一実施例を示し、Aは安定時、
Bは作動時を示す夫々平面図である。 C……固定子鉄心、P……固定子磁極、L……
コイル、m……永久磁石、p1,p2……可動片
磁極片、Y1,Y2……ヨーク翼片。
FIG. 1 shows a conventional example, where A is a perspective view of the stator core, B is a plan view of the bistable type, D is a plan view of the monostable type when it is in operation, and C is a plan view of the stable state.
Figure 2 shows an embodiment of the present invention, where A is stable;
B is a plan view showing the state in operation. C...Stator core, P...Stator magnetic pole, L...
Coil, m...Permanent magnet, p1, p2...Movable magnetic pole piece, Y1, Y2...Yoke wing piece.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 可動片の両方の磁極片を同じ面積とし、作動時
にヨークの翼片と接する側の磁極片の同翼片と対
向する面を削除して同磁極片を薄くし、作動時同
磁極片と上記翼片との間に隙間が形成されるよう
にした単安定型有極リレー。
Both magnetic pole pieces of the movable piece have the same area, and the surface of the magnetic pole piece on the side that contacts the yoke blade during operation, which faces the same blade, is removed to make the same magnetic pole piece thinner, and when activated, the same magnetic pole piece and the above A monostable polarized relay with a gap formed between the wing pieces.
JP3329683U 1983-03-07 1983-03-07 Monostable polarized relay Granted JPS59138155U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3329683U JPS59138155U (en) 1983-03-07 1983-03-07 Monostable polarized relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3329683U JPS59138155U (en) 1983-03-07 1983-03-07 Monostable polarized relay

Publications (2)

Publication Number Publication Date
JPS59138155U JPS59138155U (en) 1984-09-14
JPS6245411Y2 true JPS6245411Y2 (en) 1987-12-04

Family

ID=30164097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3329683U Granted JPS59138155U (en) 1983-03-07 1983-03-07 Monostable polarized relay

Country Status (1)

Country Link
JP (1) JPS59138155U (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010536A (en) * 1983-06-30 1985-01-19 松下電工株式会社 Polarized electromagnet unit
JPS6010255U (en) * 1983-06-30 1985-01-24 松下電工株式会社 polar electromagnet device
JPH051047Y2 (en) * 1984-11-22 1993-01-12
JP6168785B2 (en) * 2012-03-30 2017-07-26 富士通コンポーネント株式会社 Polarized electromagnetic relay

Also Published As

Publication number Publication date
JPS59138155U (en) 1984-09-14

Similar Documents

Publication Publication Date Title
JPS6245411Y2 (en)
US3599133A (en) Latch relay motor structure
JPS63133604A (en) Polarized electromagnet
JPH0110889Y2 (en)
JPH0342653Y2 (en)
JPS62291006A (en) Electromagnet device
JPH028353Y2 (en)
JPS6230768Y2 (en)
JPH0347301Y2 (en)
JPH0445214Y2 (en)
JPH0225206Y2 (en)
JPH0342652Y2 (en)
JPS6346997Y2 (en)
JPS6031217Y2 (en) Monostable polar electromagnet
JPH0510328Y2 (en)
JPS61248318A (en) Monostable type polar solenoid
JPH0225203Y2 (en)
JPS5919379Y2 (en) electromagnet
JPH0722048B2 (en) Electromagnetic device
JPH0347298Y2 (en)
JPS595535A (en) 4-air gap type polar electromagnetic relay
JPS5923427A (en) 4-air gap type polarized electromagnet unit
JPH07320621A (en) Single stable-type polar electromagnet
JPH0218913Y2 (en)
JPH0432731Y2 (en)