JPS6245322A - Method of treating exhaust gas of catalyst regenerating tower - Google Patents

Method of treating exhaust gas of catalyst regenerating tower

Info

Publication number
JPS6245322A
JPS6245322A JP60184754A JP18475485A JPS6245322A JP S6245322 A JPS6245322 A JP S6245322A JP 60184754 A JP60184754 A JP 60184754A JP 18475485 A JP18475485 A JP 18475485A JP S6245322 A JPS6245322 A JP S6245322A
Authority
JP
Japan
Prior art keywords
gas
exhaust gas
tower
desorption
desorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60184754A
Other languages
Japanese (ja)
Inventor
Kimio Nishio
西尾 公男
Reizo Kawasaki
川崎 禮三
Teruo Sugitani
照雄 杉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Chemical Engineering and Construction Co Ltd
Priority to JP60184754A priority Critical patent/JPS6245322A/en
Publication of JPS6245322A publication Critical patent/JPS6245322A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To enhance heat recovery efficiency, by using the exhaust gas of a catalyst regenerating tower or the exhaust gas of a boiler as the high temp. desorbing gas of an adsorbent subjected to desulfarization and denitration treatment and controlling the flow amount of the desorbing gas while returning the desorbing gas after a desorbing process to the boiler. CONSTITUTION:The exhaust gas to be treated from a catalyst regenerating tower is supplied to a waste heat line 1a from a line 11 and introduced into an adsorbing tower 2 to adsorb SOX in the gas while the treated gas is exhausted out of a system from a line 13. The adsorbent is subsequently sent to a desorbing tower 3 and a part of the exhaust gas from a catalyst regenerating tower is supplied to the desorbing tower 3 to indirectly heat the adsorbent. At this time, the flow amount of desorbing gas is regulated by a valve 24 so as to set desorbing temp. to 350-400 deg.C. The desorbing gas after the desorbing process is returned to a waste heat boiler 1a but mixed with such a gaseous phase that the temp. difference with the desorbing gas is within 50 deg.C to enhance heat-exchange efficiency. As the desorbing gas, the combustion exhaust gas of the waste heat boiler may be used.

Description

【発明の詳細な説明】 本発明は、触媒再生塔排ガスの処理方法に関し、更に詳
しくは、炭化水素油等の流動接触分解に用いた触媒の再
生工程における再生塔排ガスを炭素系吸着剤を用いて乾
式脱硫、脱硝処理する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating exhaust gas from a catalyst regeneration tower, and more specifically, the present invention relates to a method for treating exhaust gas from a catalyst regeneration tower using a carbon-based adsorbent. This invention relates to a dry desulfurization and denitrification process.

触媒再生塔排ガスは、動力回収後、通常500〜600
℃の温度を持ち、又、硫黄酸化物、窒素酸化物等の有害
ガスの外、触媒微粉末を50〜100mg/Nrn’含
むものである。又、不完全燃焼型触媒再生排ガスの場合
は、更に一酸化炭素を含む、従って、このような排ガス
を処理し、熱回収、脱硫、脱硝を行うことは、不可欠で
あり、従来から種々の方法が提案されている。
Catalyst regeneration tower exhaust gas usually has a 500 to 600
℃, and contains 50 to 100 mg/Nrn' of fine catalyst powder in addition to harmful gases such as sulfur oxides and nitrogen oxides. Furthermore, in the case of incomplete combustion type catalyst regenerated exhaust gas, it also contains carbon monoxide. Therefore, it is essential to treat such exhaust gas and perform heat recovery, desulfurization, and denitrification, and various methods have been used to date. is proposed.

第1図は、従来の乾式脱硫装置の説明図であって、図中
、1は廃熱ボイラー又は一酸化炭素燃焼ボイラー(以下
COボイラーと略す)、2は吸着塔、3は脱着塔、4は
燃焼炉を示す、この従来方式においては、触媒再生塔排
ガスは、ライン11によりボイラー1に供給されるが、
この場合、排ガスが完全燃焼型の場合にはボイラー1は
廃熱ボイラーが採用されて熱回収が行われ、不完全燃焼
型の場合には、COボイラーが採用されて、排ガス中に
含まれる一酸化炭素の燃焼処理及び燃焼ガスの熱回収が
行われる。
FIG. 1 is an explanatory diagram of a conventional dry desulfurization apparatus, in which 1 is a waste heat boiler or a carbon monoxide combustion boiler (hereinafter abbreviated as a CO boiler), 2 is an adsorption tower, 3 is a desorption tower, and 4 is a desorption tower. indicates a combustion furnace. In this conventional system, the catalyst regeneration tower exhaust gas is supplied to the boiler 1 through a line 11.
In this case, if the exhaust gas is of the complete combustion type, a waste heat boiler is adopted as the boiler 1 to recover heat, and if the exhaust gas is of the incomplete combustion type, a CO boiler is adopted to recover the heat contained in the exhaust gas. Combustion of carbon oxide and heat recovery of combustion gas are performed.

熱回収後の排ガスは次にライン12により吸着塔2へ供
給され、炭素系吸着剤との接触により脱硫、脱硝処理を
受け、処理ガスはライン13から系外へと排出される。
The exhaust gas after heat recovery is then supplied to the adsorption tower 2 through a line 12, where it is subjected to desulfurization and denitration treatment by contact with a carbon-based adsorbent, and the treated gas is discharged from the system through a line 13.

硫黄酸化物等の吸着性物質を吸着した炭素系吸着剤は吸
着塔2から抜出され、ライン14により脱着塔3へと導
かれ、ここでライン15から供給される高温脱着用ガス
による間接加熱により吸着物質が脱着されて再生される
。再生した吸着剤はライン16により吸着塔2へ循環さ
れる。
The carbon-based adsorbent that has adsorbed adsorbent substances such as sulfur oxides is extracted from the adsorption tower 2 and guided to the desorption tower 3 via line 14, where it is indirectly heated by high-temperature desorption gas supplied from line 15. The adsorbed substances are desorbed and regenerated. The regenerated adsorbent is circulated to the adsorption tower 2 via line 16.

尚、脱着用ガスとしては、燃焼炉4において、ライン1
9からの燃料を燃焼して得られる燃焼ガスが用いられる
。脱着塔3で脱着用に使用された脱着用ガスは一部がラ
イン18により脱着用ガス導入ライン15へ循環され、
残部はライン17により吸着塔2の導入ライン12又は
脱着塔2の排出ライン13に導かれる。一方、硫黄酸化
物等の脱着物を含む脱着ガスはライン20を通じて硫黄
酸化物処理工程へ4かれる。
In addition, as the desorption gas, in the combustion furnace 4, the line 1
The combustion gas obtained by burning the fuel from No. 9 is used. A part of the desorption gas used for desorption in the desorption tower 3 is circulated through the line 18 to the desorption gas introduction line 15,
The remainder is led via line 17 to the inlet line 12 of the adsorption tower 2 or the discharge line 13 of the desorption tower 2. On the other hand, the desorption gas containing desorbed products such as sulfur oxides is sent through line 20 to the sulfur oxide treatment step.

上記した従来法においては、高温脱着用ガスを得るため
に燃焼炉やバーナー等の燃焼設備を必要とする上、燃料
としては硫黄分の少ない、灯、111等を大量に用いな
ければならず、経済的に不利であった。
In the conventional method described above, combustion equipment such as a combustion furnace or burner is required to obtain the high-temperature desorption gas, and a large amount of fuel with low sulfur content, such as lamps, 111, etc., must be used. It was economically disadvantageous.

本発明は上記した従来技術の問題点を解決すへくなされ
たものであって、高温脱着用ガスとして、吸着塔上流の
触媒再生塔排ガス又はcoボイラー燃焼ガスを用いるこ
とにより、燃焼設備や燃料の使用を不必要とし、更に脱
着用ガスの脱着塔への供給量を制御すると共に、脱着工
程後の脱着用ガスをボイラーの特定の部位に返送するこ
とにより、触媒再生塔排ガスの脱硫及び/又は脱硝処理
を連続且つ安定に行うと共に熱回収を効率よく行うこと
を特徴とするものである。
The present invention has been made to solve the above-mentioned problems of the prior art, and by using catalyst regeneration tower exhaust gas upstream of the adsorption tower or CO boiler combustion gas as the high-temperature desorption gas, combustion equipment and fuel Furthermore, by controlling the amount of desorption gas supplied to the desorption tower and returning the desorption gas after the desorption process to a specific part of the boiler, it is possible to desulfurize and/or remove the exhaust gas from the catalyst regeneration tower. Alternatively, it is characterized by performing denitrification treatment continuously and stably and efficiently recovering heat.

即ち、本発明によれば、触媒再生塔排ガスを廃熱ボイラ
ーで熱回収するか又は一酸化炭素燃焼ボイラーで燃焼後
熱回収した後、吸着塔に導いて炭素系吸着剤との接触に
より脱硫及び/又は脱硝処理を行うと共に、硫黄酸化物
等の吸着性物質を吸着した吸着剤を脱着塔に導いて高温
脱着用ガスによる間接加熱により吸着剤を再生する触媒
再生塔排ガスの処理方法において、該高温脱着用ガスと
して前記触媒再生塔排ガスの一部又は前記一酸化炭素燃
焼ボイラーの燃焼排ガスの一部を用いると共に、脱着処
理温度が350〜400℃となるように脱着塔に供給す
る脱着用ガスの流量を制御し、更に、該脱着塔から排出
される脱着用ガスを前記廃熱ボイラー又は一酸化炭素燃
焼ボイラーに返送して脱着用ガスとの温度差が50℃以
内のボイラー内のガス相に混合させることを特徴とする
触媒再生塔排ガスの処理方法が提供される。
That is, according to the present invention, after the catalyst regeneration tower exhaust gas is heat recovered in a waste heat boiler or heat is recovered after combustion in a carbon monoxide combustion boiler, it is led to an adsorption tower where it is desulfurized and desulfurized by contact with a carbon-based adsorbent. / Or in a method for treating exhaust gas from a catalyst regeneration tower, which performs denitrification treatment and guides the adsorbent adsorbing adsorbent substances such as sulfur oxides to the desorption tower and regenerates the adsorbent by indirect heating with high-temperature desorption gas. A part of the catalyst regeneration tower exhaust gas or a part of the combustion exhaust gas of the carbon monoxide combustion boiler is used as the high-temperature desorption gas, and the desorption gas is supplied to the desorption tower so that the desorption treatment temperature is 350 to 400°C. Furthermore, the desorption gas discharged from the desorption tower is returned to the waste heat boiler or the carbon monoxide combustion boiler, and the gas phase in the boiler whose temperature difference with the desorption gas is within 50°C is controlled. Provided is a method for treating catalyst regeneration tower exhaust gas, characterized in that the catalyst regeneration tower exhaust gas is mixed with:

本発明を次に図面により詳細に説明する。The invention will now be explained in more detail with reference to the drawings.

第2図は、処理すべき触媒再生塔排ガスが完全燃焼型の
ものである場合に適用される。本発明の方法を実施する
ための排ガス処理装置の実施例を示すもので、図中、第
1図と同一の部材は同一符号で示した。触媒再生塔から
の被処理排ガスはうイン11から廃熱ボイラー1aへ供
給され、その後ライン12、吸着塔2、ライン13を経
て系外へ排出される。炭素系吸着剤は吸着塔2及び脱着
塔3の間をライン14及びライン16により循環し、第
1図に関して述べたように吸着塔2で排ガス中の硫黄酸
化物等が吸着剤に吸着され、脱着塔3でこれら吸着物質
が脱着される。
FIG. 2 is applied when the catalyst regeneration tower exhaust gas to be treated is of a complete combustion type. This figure shows an embodiment of an exhaust gas treatment apparatus for carrying out the method of the present invention, and in the figure, the same members as in FIG. 1 are designated by the same reference numerals. The exhaust gas to be treated from the catalyst regeneration tower is supplied from the inlet 11 to the waste heat boiler 1a, and is then discharged to the outside of the system via the line 12, the adsorption tower 2, and the line 13. The carbon-based adsorbent is circulated between the adsorption tower 2 and the desorption tower 3 through lines 14 and 16, and as described with reference to FIG. These adsorbed substances are desorbed in the desorption tower 3.

本発明においては、脱着塔3における脱着を被処理排ガ
スを脱着用ガスとして用いて行う。即ち、完全燃焼型の
触媒再生塔排ガスはその一部がライン23により脱着塔
3に供給される。前記したように排ガスの温度は、50
0〜600℃であるが、これを脱着用ガス排出ライン2
2に設けた調節弁24により流量調節して、脱着塔3の
脱着処理温度が350〜400℃の範囲になるようにす
る。21は再生吸着剤の温度計である。5:のような脱
着用ガスの脱着塔への供給流量調節を行うことにより、
脱着用ガスとしての被処理排ガスの温度変化が生じても
適宜対応して再生吸着剤の温度を一定に保つことができ
、これにより、吸着塔の運転が安定して行われる。
In the present invention, desorption in the desorption tower 3 is performed using the treated exhaust gas as a desorption gas. That is, part of the complete combustion type catalyst regeneration tower exhaust gas is supplied to the desorption tower 3 through the line 23. As mentioned above, the temperature of the exhaust gas is 50
The temperature is 0 to 600℃, but this is connected to the gas exhaust line 2 for desorption.
The flow rate is adjusted by the control valve 24 provided at 2 so that the desorption treatment temperature of the desorption tower 3 is in the range of 350 to 400°C. 21 is a thermometer of the regenerated adsorbent. 5: By adjusting the flow rate of the desorption gas supplied to the desorption tower,
Even if the temperature of the exhaust gas to be treated as the desorption gas changes, the temperature of the regenerated adsorbent can be kept constant by responding appropriately, thereby stably operating the adsorption tower.

脱着塔3は350〜400℃で運転され、この場合、脱
着塔3からライン20により排出される脱着した硫黄酸
化物等を含んだ脱着ガスの温度も350〜400℃とな
る。一方、ライン12により吸着塔2へ送られる排ガス
の吸着塔入[J温度はその酸露点(約140〜160℃
)以北、吸着塔使用上限温度(通常約200℃)以下で
ある。本発明では、脱着塔3から排出される脱着用ガス
は廃熱ボイラー1aに返送されるが、この脱着用ガスの
熱量は、この廃熱ボイラー1aで熱回収される。この場
合、脱着用ガスは、温度差が50℃以内であるようなボ
イラー内気相(触媒再生塔排ガス)に混合されるように
そのボイラーへの供給位置を選択する。これにより、ガ
スの比重差を極小化でき、ガス相互の混合を効率良く行
うことができ、従って廃熱ボイラーの熱交換効率を高い
値に維持できる。
The desorption tower 3 is operated at 350 to 400°C, and in this case, the temperature of the desorption gas containing desorbed sulfur oxides etc. discharged from the desorption tower 3 through the line 20 is also 350 to 400°C. On the other hand, the exhaust gas is sent to the adsorption tower 2 via the line 12.
), the temperature is below the upper limit temperature for adsorption tower use (usually about 200°C). In the present invention, the desorption gas discharged from the desorption tower 3 is returned to the waste heat boiler 1a, and the heat of this desorption gas is recovered by the waste heat boiler 1a. In this case, the supply position of the desorption gas to the boiler is selected so that it is mixed with the gas phase within the boiler (catalyst regeneration tower exhaust gas) such that the temperature difference is within 50°C. Thereby, the difference in specific gravity of the gases can be minimized, the gases can be mixed efficiently, and therefore the heat exchange efficiency of the waste heat boiler can be maintained at a high value.

第3図は、処理すべき触媒再生塔排ガスが不完全燃焼型
のものである場合に適用される本発明の方法を実施する
ための排ガス処理装置の1実施例を示すもので、図中第
2図と同一部材は同一符号で示した。第3図の態様にお
いては、COボイラー1bが第2図の廃熱ボイラー1a
に代えて用いられている。又、第2図の場合は、触媒再
生塔排ガスをそのまま脱着用ガスとして用いたが、本実
施例においては、排ガスは先ずCOボイラー11)にお
いて燃焼され、排ガス中の一酸化炭素を二酸化炭素に変
え、この時の燃焼排ガスをライン25により脱着塔3へ
供給して脱着を行う。その他は、第2図の場合と全く同
様である。上記第2図と第3図の態様においては、それ
ぞれの運転モードの違いにより、脱着用ガスの温度も変
るが、流星調節システム20.21を用いることにより
、いずれのモードにも対応でき、モードの切換を行って
も吸着処理を中断することなく、しかも安定して行うこ
とができる。
FIG. 3 shows one embodiment of an exhaust gas treatment apparatus for carrying out the method of the present invention, which is applied when the catalyst regeneration tower exhaust gas to be treated is of incomplete combustion type. Components that are the same as those in Figure 2 are designated by the same symbols. In the embodiment of FIG. 3, the CO boiler 1b is the waste heat boiler 1a of FIG.
is used instead of. In addition, in the case of Fig. 2, the exhaust gas from the catalyst regeneration tower was directly used as the desorption gas, but in this example, the exhaust gas is first combusted in the CO boiler 11), and the carbon monoxide in the exhaust gas is converted into carbon dioxide. The combustion exhaust gas at this time is supplied to the desorption tower 3 through the line 25 for desorption. The rest is exactly the same as in the case of FIG. In the embodiments shown in Fig. 2 and Fig. 3 above, the temperature of the desorption gas changes depending on the difference in the respective operation modes, but by using the meteor adjustment system 20.21, it is possible to correspond to either mode. Even if the switching is performed, the adsorption process can be performed stably without interruption.

尚、上記の例では、吸着剤を吸着塔と脱着塔の間を循環
させるようにしたが、この場合、各基では吸着剤は移動
層を形成させる。本発明は、しかしながら、このような
態様に限られるものではなく、吸着剤を複数の固定層と
して設け、被処理ガス及び脱着用ガスを弁操作で順次各
層に切換え導入する方式を採用することもできる。
In the above example, the adsorbent was circulated between the adsorption tower and the desorption tower, but in this case, the adsorbent forms a moving bed in each group. However, the present invention is not limited to this embodiment, and it is also possible to adopt a method in which the adsorbent is provided as a plurality of fixed layers, and the gas to be treated and the gas for desorption are switched and introduced into each layer sequentially by valve operation. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の触媒再生塔排ガスの処理に適用される
処理装置の説明図、及び 第2図及び第3図は、それぞれ、完全燃焼型及び不完全
燃焼型の触媒再生塔排ガスに適用される本発明の処理法
を実施するための装置の説明図である。 図中、l・・・廃熱ボイラー又は一酸化炭素燃焼ボイラ
ー、1.)・・・廃熱ボイラー、1b・・・一酸化炭素
燃焼ボイラー、2・・・吸着塔、3・・・脱着塔、4 
・燃料燃焼装量、24・・・流量調節弁、21・・・温
度計。 特許出願人 千代田化工建設株式会社 代 理 人 弁理士 池 浦 敏 明 渠   j   図 第  2   図 第  3   図
Figure 1 is an explanatory diagram of a conventional treatment device applied to the treatment of catalyst regeneration tower exhaust gas, and Figures 2 and 3 are applicable to complete combustion type and incomplete combustion type catalyst regeneration tower exhaust gas, respectively. FIG. 2 is an explanatory diagram of an apparatus for carrying out the treatment method of the present invention. In the figure, l...waste heat boiler or carbon monoxide combustion boiler, 1. )... Waste heat boiler, 1b... Carbon monoxide combustion boiler, 2... Adsorption tower, 3... Desorption tower, 4
・Fuel combustion charge, 24...Flow control valve, 21...Thermometer. Patent applicant Chiyoda Corporation Representative Patent attorney Satoshi Ikeura Akiyuki Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)触媒再生塔排ガスを廃熱ボイラーで熱回収するか
又は一酸化炭素燃焼ボイラーで燃焼後熱回収した後、吸
着塔に導いて炭素系吸着剤との接触により脱硫及び/又
は脱硝処理を行うと共に、吸着性物質を吸着した吸着剤
を脱着塔に導いて高温脱着用ガスによる間接加熱により
吸着剤を再生する触媒再生塔排ガスの処理方法において
、該高温脱着用ガスとして前記触媒再生塔排ガスの一部
又は前記一酸化炭素燃焼ボイラーの燃焼排ガスの一部を
用いると共に、脱着塔の脱着処理温度が350〜400
℃となるように脱着塔に供給する脱着用ガスの流量を制
御し、更に、該脱着塔から排出される脱着用ガスを前記
廃熱ボイラー又は一酸化炭素燃焼ボイラーに返送して脱
着用ガスとの温度差が50℃以内のボイラー内のガス相
に混合させることを特徴とする触媒再生塔排ガスの処理
方法。
(1) After recovering heat from the catalyst regeneration tower exhaust gas in a waste heat boiler or recovering heat after combustion in a carbon monoxide combustion boiler, it is led to an adsorption tower and subjected to desulfurization and/or denitrification treatment by contacting with a carbon-based adsorbent. In a method for treating a catalyst regeneration tower exhaust gas, the adsorbent that has adsorbed an adsorptive substance is guided to a desorption tower and the adsorbent is regenerated by indirect heating with a high temperature desorption gas, wherein the catalyst regeneration tower exhaust gas is used as the high temperature desorption gas. or part of the combustion exhaust gas of the carbon monoxide combustion boiler, and the desorption treatment temperature of the desorption tower is 350 to 400.
The flow rate of the desorption gas supplied to the desorption tower is controlled so that the desorption gas is returned to the waste heat boiler or the carbon monoxide combustion boiler to be used as the desorption gas. A method for treating exhaust gas from a catalyst regeneration tower, characterized in that the exhaust gas is mixed with a gas phase in a boiler with a temperature difference of 50° C. or less.
JP60184754A 1985-08-22 1985-08-22 Method of treating exhaust gas of catalyst regenerating tower Pending JPS6245322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60184754A JPS6245322A (en) 1985-08-22 1985-08-22 Method of treating exhaust gas of catalyst regenerating tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60184754A JPS6245322A (en) 1985-08-22 1985-08-22 Method of treating exhaust gas of catalyst regenerating tower

Publications (1)

Publication Number Publication Date
JPS6245322A true JPS6245322A (en) 1987-02-27

Family

ID=16158757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60184754A Pending JPS6245322A (en) 1985-08-22 1985-08-22 Method of treating exhaust gas of catalyst regenerating tower

Country Status (1)

Country Link
JP (1) JPS6245322A (en)

Similar Documents

Publication Publication Date Title
US5198001A (en) Apparatus and process for removing organic compounds from a gas stream
JP2002540222A (en) Sulfur and hydrogen recovery system from sour gas
KR100204257B1 (en) Heat treated activated carbon for denitration process for preparing the same method of denitration using the same and system of denitration using the same
WO1995034372A1 (en) Landfill gas treatment system
CN108554150A (en) A kind of pre-heated catalytic combustion system of purifying volatile organic exhaust gas
US3905783A (en) Method of purifying an air or gas flow of vaporous or gaseous impurities adsorbable in filters
JPS6245322A (en) Method of treating exhaust gas of catalyst regenerating tower
JPH07136456A (en) High desulfurization-denitration method and apparatus for exhaust gas
KR100534543B1 (en) Oxygen enrichment system using temperature swing adsorption with combustion waste heat
EP0707881B1 (en) Ammonia adsorption method
CN102380369A (en) Method for exchanging heat in regenerating process of flue gas desulfurization and denitrification adsorbent
KR960030979A (en) Method and apparatus for regenerating an absorbent used to treat combustion products in a thermal boiler
JPH08323128A (en) Method for self-reproducing adsorption tower
JPH0347884B2 (en)
JPS5864117A (en) Dry stack-gas desulfurization process
SU1378900A1 (en) Method of cleaning waste gases
JPH0119936B2 (en)
JP2020163304A (en) Gas separation recovery system and gas separation recovery method
JPS61146344A (en) Regenerating method of zeolite adsorbent
SU1572686A1 (en) Method of cleaning waste gases from vapours of organic solvents
SU1544466A1 (en) Method of cleaning waste gases from admixtures of hydrocabons
JPS63335Y2 (en)
JP2000300951A (en) Facility and method for treatment of exhaust gas
JPH05200223A (en) Method for adsorbing and removing specific gas component
JPH0372333B2 (en)