JPS6245282B2 - - Google Patents

Info

Publication number
JPS6245282B2
JPS6245282B2 JP18711982A JP18711982A JPS6245282B2 JP S6245282 B2 JPS6245282 B2 JP S6245282B2 JP 18711982 A JP18711982 A JP 18711982A JP 18711982 A JP18711982 A JP 18711982A JP S6245282 B2 JPS6245282 B2 JP S6245282B2
Authority
JP
Japan
Prior art keywords
blow
transfer path
reduction furnace
ore
reduced ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18711982A
Other languages
Japanese (ja)
Other versions
JPS5976808A (en
Inventor
Mitsuo Kadoto
Toshihiro Inatani
Hisao Hamada
Nobuo Tsuchitani
Shiko Takada
Eiji Katayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP18711982A priority Critical patent/JPS5976808A/en
Publication of JPS5976808A publication Critical patent/JPS5976808A/en
Publication of JPS6245282B2 publication Critical patent/JPS6245282B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 本発明は金属酸化物を含有する粉粒状鉱石を予
備還元した後、溶融還元して溶融金属を製造する
装置において、予備還元炉から溶融還元炉へ予備
還元鉱石を移送する際の重力移送路内の吹抜け防
止方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is an apparatus for producing molten metal by pre-reducing powdery ore containing metal oxides and then melting and reducing the ore, in which the pre-reduced ore is transferred from a pre-reduction furnace to a smelting-reduction furnace. The present invention relates to a method for preventing blow-through in a gravity transfer path when a gravity transfer path is carried out.

近年、各種の金属酸化物を含有する鉱石原料は
塊状鉱石が減少し、粉状もしくは小粒状鉱石が多
くなつており、今後ますます粉粒状鉱石の比率が
増加して行く傾向にある。従来は粉粒状鉱石にバ
インダーが炭材を添加してペレツトや焼結鉱など
に加工し塊状物として使用していたが、塊成化の
ために余分の資源やエネルギーを必要とするばか
りでなく、焼成を必要とする場合には焼成炉から
排出されるガス中のNOx、SOxおよびダスト等を
処理するための費用も多大であるという欠点があ
る。
In recent years, ore raw materials containing various metal oxides have decreased in the form of lumpy ores and have become more powdery or small-grained ores, and the proportion of powdery ores will continue to increase in the future. Conventionally, binders and carbonaceous materials were added to powdery ore to process it into pellets and sintered ore and use it as agglomerates, but this not only required extra resources and energy for agglomeration. However, when firing is required, there is a drawback that the cost for treating NOx, SOx, dust, etc. in the gas discharged from the firing furnace is large.

またクロム鉱石の製錬によるフエロクロムの製
造のように、電気炉で製錬する場合には、電力原
単位が数千KWH/tにも達して、電力の高いと
ころではきわめてコスト高になる。
Furthermore, when smelting is carried out in an electric furnace, such as in the production of ferrochrome by smelting chromium ore, the electricity consumption rate reaches several thousand KWH/t, making the cost extremely high in areas where electricity is expensive.

本発明者らは以上の事情に鑑み、さきに粉粒状
鉱石を塊成化することなく直接使用し、電力を用
いずに溶融金属を製造する方法として、予備還元
炉において粉粒状鉱石を流動層形式で予備還元
し、これを竪形の溶融還元炉にその羽口から高温
空気と共に吹込み、これを溶融還元する方法を開
発し提案している(特願昭56−63294)。
In view of the above circumstances, the present inventors have developed a method for producing molten metal by directly using powder ore without agglomerating it and producing molten metal without using electricity. We have developed and proposed a method in which the pre-reduced material is blown into a vertical melting reduction furnace together with high-temperature air through the tuyere, and then melted and reduced (Japanese Patent Application No. 1983-63294).

本発明は予備還元炉と溶融還元炉からなる溶融
還元装置において、粉粒状の予備還元鉱石を予備
還元炉から溶融還元炉へ移送する移送路の吹抜け
防止方法に係るものである。溶融還元における予
備還元鉱石の移送は、通常の粉体移送と比較して
次のような条件を満足させる必要がある。
The present invention relates to a method for preventing blow-through of a transfer path for transferring powdery pre-reduced ore from the pre-reduction furnace to the smelting-reduction furnace in a smelting-reduction apparatus comprising a pre-reduction furnace and a smelting-reduction furnace. Transfer of pre-reduced ore in smelting reduction needs to satisfy the following conditions compared to normal powder transfer.

(1) 予備還元鉱石は予備還元炉から高温で排出さ
れるのでこれに対処しなければならない。
(1) Pre-reduction ore is discharged from the pre-reduction furnace at a high temperature, so this must be dealt with.

(2) 予備還元炉から溶融還元炉の多数の羽口へ分
岐し、均等に分配する必要がある。
(2) It is necessary to branch from the pre-reduction furnace to the many tuyeres of the smelting reduction furnace and distribute it evenly.

(3) 羽口1本当りの予備還元鉱石の吹込み量を制
御できること。
(3) The amount of pre-reduced ore injected into each tuyere can be controlled.

(4) 移送管内の予備還元鉱石が稀薄になることに
より、羽口送風ガスが移送管内を吹抜ける事故
を防止できること。
(4) By diluting the pre-reduced ore in the transfer pipe, it is possible to prevent accidents in which the tuyere blast gas blows through the transfer pipe.

本発明は、以上のような特別な条件のもとでも
予備還元鉱石の移送が円滑にでき、かつ溶融還元
炉の羽口送風ガスが予備還元鉱石の移送路を吹抜
けることを予防することができる有効な方法を提
供することを目的とするものである。
The present invention enables the smooth transfer of pre-reduced ore even under the above special conditions, and prevents the tuyere blast gas of the melting reduction furnace from blowing through the transfer path of the pre-reduced ore. The purpose is to provide an effective method that can be used.

本発明は、予備還元炉から排出された粉状予備
還元鉱石の重力移送路の途中に、この移送路の横
断面積の10〜50倍の横断面積を有する吹抜け予知
箱を介装し、この吹抜け予知箱内の予備還元鉱石
の充填密度差の境界面の位置の変化を常時検出
し、吹抜け発生の前兆を検知したとき前記移送路
の遮断弁を閉止することを特徴とする。
In the present invention, an atrium prediction box having a cross-sectional area 10 to 50 times the cross-sectional area of this transfer path is interposed in the middle of a gravity transfer path for powdery pre-reduced ore discharged from a pre-reduction furnace. It is characterized in that a change in the position of the boundary surface of the difference in packing density of the pre-reduced ore in the prediction box is constantly detected, and when a sign of blow-through occurrence is detected, the shutoff valve of the transfer path is closed.

本発明方法を実施する溶融還元装置の一つの実
施例を示す系統を第1図について説明する。
A system showing one embodiment of a melt reduction apparatus for carrying out the method of the present invention will be described with reference to FIG.

予備還元炉2は粉粒状の金属酸化物を含有する
鉱石を供給装置1によつて供給される。溶融還元
炉3から排出される高温還元ガスの一部または全
部が、予備還元炉2に導入され、また必要に応じ
て供給口4から粉粒状のフラツクス、固体還元材
および還元ガスなどが供給される。粉粒状鉱石
は、予備還元炉2内で流動層形式によつて、乾
燥、加熱、予備還元される。予備還元された鉱石
は、フラツクスなどとともに排出口5より排出さ
れ、重力移送路6の中を重力によつて落下し、次
いで重力移送路6の下端に設けられた導入管9に
よつて気体輸送方式により羽口送風支管8中に吹
込まれ、羽口送風支管8中の高温空気とともに溶
融還元炉3内に吹込まれる。本発明中記載の予備
還元鉱石には上記粉粒状フラツクス、固体還元材
を随伴する場合があり、これらを含めて予備還元
鉱石という。
The pre-reduction furnace 2 is supplied with ore containing powdery metal oxides by the supply device 1 . Part or all of the high-temperature reducing gas discharged from the smelting reduction furnace 3 is introduced into the preliminary reduction furnace 2, and powdery flux, solid reducing material, reducing gas, etc. are supplied from the supply port 4 as necessary. Ru. The granular ore is dried, heated, and pre-reduced in the pre-reduction furnace 2 in a fluidized bed format. The pre-reduced ore is discharged from the discharge port 5 along with flux etc., falls by gravity in the gravity transfer path 6, and is then transported by gas through the introduction pipe 9 provided at the lower end of the gravity transfer path 6. According to this method, the air is blown into the tuyere blower branch pipe 8, and is blown into the melting reduction furnace 3 together with the high temperature air in the tuyere blower branch pipe 8. The pre-reduced ore described in the present invention may be accompanied by the above-mentioned granular flux and solid reducing agent, and these are collectively referred to as pre-reduced ore.

溶融還元炉3内には、供給装置により供給され
た塊状の炭素系還元剤よりなる充填層が形成され
ている。溶融還元炉3に吹込まれた予備還元鉱石
は溶融還元炉3の内部で溶融し、溶融還元炉の下
部を滴下する間に還元されて、溶融金属と溶融ス
ラグとを生成し、排出口13より適時炉外へ排出
される。
Inside the melting reduction furnace 3, a packed bed is formed of a lumpy carbon-based reducing agent supplied by a supply device. The pre-reduced ore blown into the smelting reduction furnace 3 is melted inside the smelting reduction furnace 3 and reduced while dripping down the lower part of the smelting reduction furnace to generate molten metal and molten slag, which are then discharged from the discharge port 13. It is discharged from the furnace in a timely manner.

本発明は、以上に述べた予備還元鉱石の移送方
法における羽口送風ガスの吹抜け防止方法に関す
るものである。重力移送路の長さは、その移送路
内を充填する粉状予備還元鉱石の抵抗が羽口送風
ガス圧力と予備還元炉内の圧力との差より大きく
なるように設計されるので、通常は羽口送風ガス
の吹抜けは起こらない筈である。しかし、本発明
者らが直視観察可能な実験装置を用いて吹抜け現
象について実験検討した結果、以下に示す場合に
は重力移送路内の粉体が希釈されて充填密度が低
下し、その粉体抵抗が羽口の圧力と予備還元炉の
予備還元鉱石排出口の圧力との差より小さくなる
と羽口圧の方が高いので羽口送風ガスの予備還元
炉への吹抜けが起きることが明らかとなつた。
The present invention relates to a method for preventing blow-through of tuyere blown gas in the method for transferring pre-reduced ore described above. The length of the gravity transfer path is designed so that the resistance of the powdered pre-reduced ore filling the transfer path is greater than the difference between the tuyere blow gas pressure and the pressure in the pre-reduction furnace, so it is usually Blow-through of the tuyere blast gas should not occur. However, as a result of the inventors' experimental study of the blow-through phenomenon using an experimental device that allows direct observation, we found that in the following cases, the powder in the gravity transfer path is diluted and the packing density decreases, and the powder When the resistance becomes smaller than the difference between the pressure at the tuyere and the pressure at the pre-reduced ore discharge port of the pre-reducing furnace, it becomes clear that the tuyere pressure is higher and the tuyere blast gas blows through to the pre-reducing furnace. Ta.

重力移送路下端に設けた導入管内に吹込む粉
体輸送用搬送ガスが多量に予備還元炉へ逆流し
た場合。
When a large amount of the carrier gas for transporting powder that is blown into the introduction pipe installed at the lower end of the gravity transfer path flows back into the preliminary reduction furnace.

重力移送路内または予備還元炉の排出口部で
粉体が凝集(焼結)などにより閉塞し、円滑に
流れなくなつた場合。
When powder becomes clogged due to agglomeration (sintering) in the gravity transfer path or at the outlet of the pre-reduction furnace and cannot flow smoothly.

羽口送風ガスが予備還元鉱石の移送路を吹抜け
ると、次に示す問題が生ずる。
When the tuyere blow gas blows through the pre-reduced ore transfer path, the following problems occur.

(a) 流動層予備還元炉内は高温で、かつCOを含
む可燃性の雰囲気であり、酸素を含む羽口送風
ガスが予備還元炉内に入ると爆発する危険性が
ある。
(a) The inside of the fluidized bed pre-reduction reactor is a high temperature and flammable atmosphere containing CO, and there is a risk of explosion if tuyere blast gas containing oxygen enters the pre-reduction reactor.

(b) 予備還元炉内の予備還元鉱石を再酸化させ、
かつ再酸化反応による温度上昇により炉頂が損
傷する可能性がある。
(b) reoxidizing the pre-reduced ore in the pre-reducing furnace;
In addition, the furnace top may be damaged due to temperature rise due to reoxidation reaction.

(c) 復帰に時間を要し、生産性が低下する。(c) It takes time to recover, reducing productivity.

したがつて、操業の安全確保と生産性向上の立
場から羽口送風ガスの予備還元炉内への吹抜け防
止が重要である。
Therefore, from the standpoint of ensuring operational safety and improving productivity, it is important to prevent the tuyere blast gas from flowing into the pre-reduction furnace.

第2図は本発明に係る吹抜け防止方法を説明す
る予備還元鉱石の重力移送路の縦断面図である。
FIG. 2 is a longitudinal cross-sectional view of a gravity transfer path for pre-reduced ore, illustrating the blow-through prevention method according to the present invention.

7は吹抜け予知箱、15は遮断弁を示す。吹抜
け予知箱7は重力移送路6の途中に介装され重力
移送路6よりも断面積を大きくしたものである。
7 indicates a blow-through prediction box, and 15 indicates a shutoff valve. The blow-through prediction box 7 is interposed in the middle of the gravity transfer path 6 and has a larger cross-sectional area than the gravity transfer path 6.

本移送系統における予備還元鉱石の挙動は吹抜
け限界に近ずくと以下に記すような現象を示す。
The behavior of the pre-reduced ore in this transfer system shows the following phenomenon when it approaches the blow-through limit.

上記吹抜け原因のひとつである搬送ガス逆流
量が増大する場合、搬送ガスが予備還元鉱石の
重力落下を阻害し、その一部を予備還元炉へ逆
流させるので移送路6内の予備還元鉱石は希釈
されて充填密度が小さくなるのに対して、吹抜
け予知箱7内の予備還元鉱石は逆流ガス流速の
低下によつて希釈率が小さくなるので、両者の
予備還元鉱石の充填密度は明瞭に異なり、それ
らの充填密度の異なる層の境界面17は吹抜け
予知箱内を降下していく。吹抜け予知箱を設置
しない場合重力移送路内では、境界面の降下現
象がみられない。
When the flow rate of the carrier gas backflow increases, which is one of the causes of the above-mentioned blow-through, the carrier gas obstructs the gravity fall of the pre-reduced ore and causes some of it to flow back into the pre-reduction furnace, so the pre-reduced ore in the transfer path 6 is diluted. On the other hand, the dilution rate of the pre-reduced ore in the blow-through prediction box 7 becomes smaller due to the decrease in the flow rate of the reverse gas, so the packing density of the two pre-reduced ores is clearly different. The boundary surface 17 between the layers having different packing densities descends within the blow-through prediction box. When no blow-through prediction box is installed, no boundary surface descent phenomenon is observed in the gravity transfer path.

もうひとつの吹抜け原因である閉塞により予
備還元鉱石が円滑に流れない場合も、その閉塞
位置が吹抜け予知箱より予備還元炉側にある場
合は前記の場合と同様に吹抜け予知箱7内で
境界面17が次第に降下する。
Even if the pre-reduced ore does not flow smoothly due to blockage, which is another cause of blow-through, if the blockage position is on the side of the pre-reduction furnace from the blow-through prediction box, the boundary surface in the blow-through prediction box 7 will be 17 gradually descends.

本発明は吹抜け予知箱7内の上、下部2ケ所に
充填密度の差を相対的に検知できるセンサー16
を挿入して予備還元鉱石の充填密度差の境界面1
7の位置の変化を常時検出し、境界面17が予知
箱内を下降しはじめて検出値が大きく変化した時
は吹抜け発生の前兆であるので遮断弁15を閉じ
て吹抜けを予防する。
The present invention provides a sensor 16 that can relatively detect the difference in packing density at two locations in the upper and lower parts of the atrium prediction box 7.
By inserting
7 is constantly detected, and when the boundary surface 17 begins to move down inside the prediction box and the detected value changes greatly, it is a sign of blow-through, so the shutoff valve 15 is closed to prevent blow-through.

実験の結果より、吹抜け予知箱の断面積を以下
に示す範囲にするのが最適である。
According to the experimental results, it is optimal to set the cross-sectional area of the atrium prediction box to the range shown below.

10≦S1/S2≦50 ここに S1:吹抜け予知箱の断面積 S2:移送路の断面積 吹抜け予知箱の断面積が移送路の断面積の10倍
に満たない場合は充填密度差が明瞭に現われなく
なる。50倍を越えると正常移送時における吹抜け
予知箱内の予備還元鉱石の落下速度が著しく減少
し、予備還元鉱石の凝集などのトラブルや温度低
下を起しやすい。
10≦S 1 /S 2 ≦50 where S 1 : Cross-sectional area of the blow-through prediction box S 2 : Cross-sectional area of the transfer path If the cross-sectional area of the blow-through prediction box is less than 10 times the cross-sectional area of the transfer path, the packing density The difference no longer appears clearly. If it exceeds 50 times, the falling speed of the pre-reduced ore in the blow-through prediction box during normal transfer will be significantly reduced, which will easily cause problems such as agglomeration of the pre-reduced ore and a drop in temperature.

吹抜け予知箱の設置位置は移送路の下端近くに
介装するのが適当である。その理由は、吹抜け予
知箱から溶融還元炉側の粉体閉塞についてはこの
予知箱は効力がないからである。
It is appropriate to install the blow-through prediction box near the lower end of the transfer path. The reason for this is that this prediction box is ineffective against powder blockage from the blow-through prediction box to the smelting reduction furnace side.

充填密度差のある粉体層境界面17を検知する
センサー16としては、電気抵抗差異を検出す
るセンサー圧力差を検出するセンサー温度差
センサーγ線による減すい差を測定するセンサ
ーなどを用いることができる。これらのセンサー
の検出値により遮断弁15を開閉するシーケンス
制御は公知の方法を利用することができる。
As the sensor 16 for detecting the powder bed boundary surface 17 with a difference in packing density, a sensor for detecting an electrical resistance difference, a sensor for detecting a pressure difference, a temperature difference sensor, a sensor for measuring a difference in attenuation due to gamma rays, etc. can be used. can. Sequence control for opening and closing the cutoff valve 15 based on the detected values of these sensors can be performed using a known method.

また目的に応じて、予知箱を複数個設置するこ
とも可能である。
It is also possible to install a plurality of prediction boxes depending on the purpose.

本発明の効果は次の通りである。 The effects of the present invention are as follows.

予備還元炉と溶融還元炉とからなる溶融還元装
置における粉状の予備還元鉱石を予備還元炉から
溶融還元炉に移送する場合に、重力による移送路
とその下端に設けた搬送ガスによる吹込み装置と
によれば制御性よく移送することができ好まし
い。その場合に搬送ガスが多量に逆流したり、重
力移送路内で予備還元鉱石が凝集などにより閉塞
し円滑に移送されないことにより吹抜けを生ずる
おそれがある。本発明は、この吹抜けを未然に確
実に検出し、吹抜け防止をすることができるの
で、吹抜けによる爆発、再酸化、生産性阻害等を
起すことが完全に防止される。
When transferring powdered pre-reduced ore from the pre-reduction furnace to the smelting-reduction furnace in a smelting-reduction device consisting of a pre-reduction furnace and a smelting-reduction furnace, there is a transfer path using gravity and a blowing device using a carrier gas provided at the lower end of the transfer path. According to this, it is preferable because it can be transferred with good controllability. In this case, there is a risk that a large amount of the carrier gas will flow back, or that the pre-reduced ore in the gravity transfer path will become clogged due to agglomeration, etc., preventing smooth transfer, resulting in blow-through. The present invention can reliably detect this blow-through and prevent the blow-through, so that explosions, re-oxidation, productivity inhibition, etc. caused by the blow-through can be completely prevented.

実施例 (1) 溶融還元炉内径 1.2m (2) 予備還元炉内径 1.1m (3) 送風羽口 上段4本(粉体吹込みも兼ね
る。) 下段4本 (4) 送風量 1200Nm3/hr (5) 粉体移送管:内径 25mm 導入管 内径 25mm (6) 吹抜け予知箱内径 100mm (7) 粉体搬送ガス N2 上記の試験炉を用いて、粉状クロム鉱石(平均
粒径0.2mm)からのフエロクロムの製錬の操業と
粉状の鉄鉱石(平均粒径0.37mm)からの銑鉄の製
錬の操業を行い、その際吹抜けを起こす量まで搬
送ガス量を増す方法と、原料中に粗粒を混入して
移送路を閉塞させる方法によつて吹抜け原因を作
り、吹抜け予知箱の効果を調べた結果、良好に作
動することを確認した。
Example (1) Melting reduction furnace inner diameter 1.2m (2) Pre-reduction furnace inner diameter 1.1m (3) Air blowing tuyeres 4 upper tiers (also serves as powder injection) 4 lower tiers (4) Air flow rate 1200Nm 3 /hr (5) Powder transfer pipe: Inner diameter 25mm Introductory pipe Inner diameter 25mm (6) Blow-through prediction box inner diameter 100mm (7) Powder carrier gas N 2 Using the above test furnace, powdered chromium ore (average particle size 0.2mm) ferrochrome smelting operation from powdered iron ore (average particle size 0.37 mm) and pig iron smelting operation from powdered iron ore (average particle size 0.37 mm). We created the cause of blow-through by mixing coarse particles to block the transfer path, and investigated the effectiveness of the blow-through prediction box, and as a result, we confirmed that it works well.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶融還元装置の系統図、第2図は本発
明方法を説明する重力移送路の縦断面図である。 1…粉粒状鉱石供給口、2…予備還元炉、3…
溶融還元炉、4…粉粒状フラツクス、固体還元
材、還元ガスなどの供給口、5…予備還元鉱排出
口、6…重力移送路、7…吹抜け予知箱、8…羽
口送風支管、9…導入管、10…搬送ガス供給
管、11…レースウエイ、12…固体炭素系還元
剤供給装置、13…溶融金属と溶融スラグの排出
口、14…送風本管、15…遮断弁、16…充填
密度差検知センサー、17…予備還元鉱石の充填
密度差の境界面。
FIG. 1 is a system diagram of the melting reduction apparatus, and FIG. 2 is a vertical sectional view of a gravity transfer path for explaining the method of the present invention. 1...Powdered ore supply port, 2...Preliminary reduction furnace, 3...
Melting reduction furnace, 4... Supply port for powdery flux, solid reducing material, reducing gas, etc., 5... Preliminary reduced ore discharge port, 6... Gravity transfer path, 7... Atrium prediction box, 8... Tuyere blower branch pipe, 9... Inlet pipe, 10... Carrier gas supply pipe, 11... Raceway, 12... Solid carbon-based reducing agent supply device, 13... Discharge port for molten metal and molten slag, 14... Air blowing main pipe, 15... Shutoff valve, 16... Filling Density difference detection sensor, 17... Boundary surface of packing density difference of pre-reduced ore.

Claims (1)

【特許請求の範囲】[Claims] 1 予備還元炉と溶融還元炉とからなる溶融還元
装置の粉状予備還元鉱石の重力移送路の途中に、
該移送路の横断面積の10倍以上50倍以下の横断面
積を有する吹抜け予知箱を介装し、該吹抜け予知
箱内の予備還元鉱石の充填密度差の境界面の位置
の変化を常時検出し、吹抜け発生の前兆を検知し
たとき前記移送路の遮断弁を閉止することを特徴
とする粉状予備還元鉱石の重力移送路の吹抜け防
止方法。
1. In the middle of the gravity transfer path of the powdered pre-reduced ore of the smelting reduction equipment consisting of a pre-reduction furnace and a smelting reduction furnace,
A blow-through prediction box having a cross-sectional area of 10 times or more and 50 times or less than the cross-sectional area of the transfer path is interposed, and changes in the position of the boundary surface of the difference in packing density of pre-reduced ore in the blow-through prediction box are constantly detected. . A method for preventing blow-through in a gravity transfer path for powdered pre-reduced ore, comprising: closing a cutoff valve of the transfer path when a sign of blow-by occurrence is detected.
JP18711982A 1982-10-25 1982-10-25 Prevention of blow through in gravity transfer path for preliminarily reduced powder ore Granted JPS5976808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18711982A JPS5976808A (en) 1982-10-25 1982-10-25 Prevention of blow through in gravity transfer path for preliminarily reduced powder ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18711982A JPS5976808A (en) 1982-10-25 1982-10-25 Prevention of blow through in gravity transfer path for preliminarily reduced powder ore

Publications (2)

Publication Number Publication Date
JPS5976808A JPS5976808A (en) 1984-05-02
JPS6245282B2 true JPS6245282B2 (en) 1987-09-25

Family

ID=16200436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18711982A Granted JPS5976808A (en) 1982-10-25 1982-10-25 Prevention of blow through in gravity transfer path for preliminarily reduced powder ore

Country Status (1)

Country Link
JP (1) JPS5976808A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6109796B2 (en) * 2014-09-16 2017-04-05 三菱日立パワーシステムズ株式会社 Powder conveying device and char recovery device

Also Published As

Publication number Publication date
JPS5976808A (en) 1984-05-02

Similar Documents

Publication Publication Date Title
US4886246A (en) Metal-making apparatus involving the smelting reduction of metallic oxides
GB2032594A (en) Hot discharge direct reduction furnace
US4251267A (en) Method for direct reduction of metal oxide to a hot metallized product in solid form
US4436551A (en) Process for making steel from direct-reduced iron
JPS6245282B2 (en)
JP3735016B2 (en) Molten iron manufacturing method and molten iron manufacturing apparatus
JP3510472B2 (en) Melting furnace
JPS6360803B2 (en)
JP4220988B2 (en) Molten iron manufacturing method
JPS59140313A (en) Transporting equipment of granular ore in melting and reducing apparatus
JPS624443B2 (en)
JPS6247941B2 (en)
JPS5948841B2 (en) Transfer device for powdery pre-reduced ore in smelting reduction equipment
JPS6360802B2 (en)
JP7180045B2 (en) Method for using raw material containing metallic iron containing Zn
JPS6118633A (en) Apparatus for transferring and supplying constant quantity of powder
JPH0314887B2 (en)
JP4328001B2 (en) Blast furnace operation method
JPH11310814A (en) Smelting reduction furnace
JPH0314888B2 (en)
JPH01129916A (en) Method for charging ore in smelting reduction furnace
US4009871A (en) Metallurgical furnace
JPS59140312A (en) Equipment for transporting prereduced ore in melting and reducing apparatus
JPS6020441B2 (en) Method for injecting granular pre-reduced ore into a smelting reduction furnace in the smelting reduction method
JPH07228908A (en) Operation of carbonaceous material packed layer type smelting reduction furnace