JPS6244415A - Control method of changeover of dwelling of injection molding machine - Google Patents

Control method of changeover of dwelling of injection molding machine

Info

Publication number
JPS6244415A
JPS6244415A JP18404985A JP18404985A JPS6244415A JP S6244415 A JPS6244415 A JP S6244415A JP 18404985 A JP18404985 A JP 18404985A JP 18404985 A JP18404985 A JP 18404985A JP S6244415 A JPS6244415 A JP S6244415A
Authority
JP
Japan
Prior art keywords
screw
thrust
dwelling
changeover
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18404985A
Other languages
Japanese (ja)
Other versions
JPH0371969B2 (en
Inventor
Bunichi Isotani
磯谷 文一
Koichi Kawaura
川浦 広一
Naokatsu Harada
原田 尚克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP18404985A priority Critical patent/JPS6244415A/en
Publication of JPS6244415A publication Critical patent/JPS6244415A/en
Publication of JPH0371969B2 publication Critical patent/JPH0371969B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/47Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
    • B29C45/50Axially movable screw
    • B29C45/5008Drive means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/47Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
    • B29C45/50Axially movable screw
    • B29C45/5008Drive means therefor
    • B29C2045/5032Drive means therefor using means for detecting injection or back pressures

Abstract

PURPOSE:To eliminate dispersion in dimensions and strength of a molded article, by changing over to a dwelling process from an injection process at a point of time when a detected value becomes identical with preset pressure at the first stage of dwelling by detecting a thrust to be applied directly to a screw by a sensor. CONSTITUTION:A thrust F while is varied according to each process is applied to a screw 1 during operation of an injection molding machine and a variation of the thrust of the screw is grasped as elastic deformation in the axial direction of a sensor body 21. On the one hand, a preset value signal of the thrust at the time of changeover of dwelling is being signaled from a setting device Y1 and while the thrust F of the screw 1 is being detected by a sensor 2, an injection process is kept on during a period of time when the thrust F is weaker than a preset value from the device Y1. The changeover from the injection process of the screw to a dwell process of the same is performed by applying instructions about starting of the dwell process to a motor controller Y3 at a point of time when decision is performed by a comparator Y2 that the thrust of the screw is identical with the preset value. With this construction, it is possible to reduce dispersion in dimensions and strength of a molded article by changing over the thrust of the screw at the time of the changeover of the dwelling at the preset value always without dispersion.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、モータでスクリューを駆動する射出成形機に
於て、スクリューの推力を直接センサーで検出して射出
工程から保圧工程への切換を制御する方法に関するもの
であり、プラスチック成形加工業界で利用されるもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is an injection molding machine in which a screw is driven by a motor, and the thrust of the screw is directly detected by a sensor to switch from the injection process to the pressure holding process. The invention relates to a method for controlling the amount of plastic, and is used in the plastic molding and processing industry.

〔従来の技術〕[Conventional technology]

電動機(モータ)でスクリ、−に推力を与える射出成形
機は従来よシ公知であり、例えば第4図に示す如く、ス
クリ、lをポールネジ軸3と直結し、該ボールネジ3を
ナツト4の回転によυ前後運動させるようにし、該ナツ
ト4をモータ8→駆動ギヤ7→伝達軸6→駆動ギヤ5→
ナツト4の経路で駆動していた。そしてモータでスクリ
ューを制御する成形機に於けるスクリューの推力変化は
、第5A図の如く、横軸(時間)0→P1点までの射出
工程領域ZIでは実線Aの如く種々変化し、樹脂の充て
んがほぼ完了した点P、で実施者が成形品に応じて固有
技術で設定したスクリュー推力F。
An injection molding machine that uses an electric motor to apply thrust to the screw 4 is known in the art. For example, as shown in FIG. The nut 4 is moved back and forth by motor 8 → drive gear 7 → transmission shaft 6 → drive gear 5 →
It was driven by the route of Natsu 4. In a molding machine where the screw is controlled by a motor, the thrust force of the screw changes in various ways as shown by the solid line A in the injection process region ZI from 0 to P1 on the horizontal axis (time) as shown in Figure 5A. At point P, when filling is almost completed, screw thrust force F is set by the operator using unique technology according to the molded product.

として保圧工程に切換え、保圧1段目Zffi、保圧2
段目23等を経て点P3で射出成形工程を完了してスク
リュー推力Fが零になっている。そしてスクリュー推力
F値はモータトルク値Tから機械的に変換されるもので
あるので、スクリュー推力値はモータ固有の電流−トル
ク特性をモータ稼動時のコイル発熱に起因する電流−ト
ルク特性の変化をも考慮して予じめ算定した、例えば第
5A図及び第5B図の@Aの関係に基いて制御していた
Switch to the pressure holding process, hold pressure 1st stage Zffi, hold pressure 2
The injection molding process is completed at point P3 after passing through stage 23, etc., and the screw thrust force F becomes zero. Since the screw thrust force F value is mechanically converted from the motor torque value T, the screw thrust value is calculated by converting the current-torque characteristic unique to the motor into the change in current-torque characteristic caused by coil heat generation during motor operation. For example, control was performed based on the relationship @A in FIGS. 5A and 5B, which was calculated in advance by taking into account the following.

そして速度制御の射出工程から圧力制御の保圧工程への
切換えの制御は、モータの消費電流を監視してその値が
保圧1段目の圧力F1を発生する電流に等しくなると保
圧へ切換えていた。
The control for switching from the injection process of speed control to the pressure holding process of pressure control monitors the current consumption of the motor and switches to pressure holding when the value becomes equal to the current that generates pressure F1 in the first stage of holding pressure. was.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし従来の消費電流による保圧切換制御によっては、
モータの電流値と発生トルクとの関係がモータの使用状
況によって変化するため保圧へ切換える時の圧力がばら
つき、このばらつきが成形品の品質のばらつきの一因と
なっていた。
However, with conventional holding pressure switching control using current consumption,
Because the relationship between the motor's current value and the generated torque changes depending on the motor usage conditions, the pressure when switching to holding pressure varies, and this variation is a contributing factor to variations in the quality of molded products.

即ち、モータ固有の電流−トルク特性は、コイル発熱に
よる特性の変化を想定して決定しているが、現実には第
5B図1fsAの想定よυも大きな発熱が生じて該特性
が@Bに示す想定値+ΔT、になったシ、或いは逆に予
想した場合より小さな発熱ですむ場合(冷却がうまくい
った場合)は@Cに示す想定値−ΔT、になったシして
、結局、現実には電流−トルク特性は線B−C間にばら
ついておシ、従来の射出成形機の電流によるモータトル
クの制御は第5A図の点線B−C間にばらついていた。
In other words, the current-torque characteristics unique to the motor are determined assuming changes in characteristics due to coil heat generation, but in reality, heat generation that is υ larger than the assumption in Fig. 5B 1fsA occurs and the characteristics change to @B. In the end, the actual value becomes +ΔT, or, conversely, if the heat generation is smaller than expected (if cooling is successful), the expected value shown in @C becomes -ΔT. The current-torque characteristic varies between lines B and C in the conventional injection molding machine, and the control of motor torque by current in a conventional injection molding machine varies between dotted lines B and C in FIG. 5A.

従って点PIに於て保圧への切換をスクリーーの必要推
力F、で達成したつもりが、実際はF、より大であった
シ小であったシした。
Therefore, at point PI, it was thought that the switch to holding pressure was achieved with the required thrust of the scree, F, but in reality, F was larger, but smaller.

射出成形に於ては注入材料は型に接触している部分(外
側)から固化し、文型の奥の方から固化して行くので、
材料の射出注入後も材料の固化による体積縮小を補充す
るために保圧工程は重要であシ、型の奥の方の保圧時は
大圧力が必要であり型の手前の方の保゛圧は小圧力で充
分であるので、例えば第5A図でRPt間の保圧1段目
の領域z2及びp、−p、間の保圧2段目の領域2.の
如く成形品に応じて適宜に保圧工程を設定している。そ
して保圧工程での圧力、即ちスクリュー推力がばらつく
と従来の射出工程から保圧工程への切換点P1に於ける
スクリュー推力FのF、を中心とする上下のばらつきに
よシ、成形品の寸法、強度がばらつき、さらに極端な場
合にはパリやヒケが発生して成形品にばらつきを生ずる
一因を付与していた。
In injection molding, the injected material solidifies from the part that is in contact with the mold (outside) and solidifies from the depths of the pattern.
Even after injection and injection of the material, the pressure holding process is important to compensate for the volume reduction due to solidification of the material, and a large pressure is required when holding the pressure at the back of the mold, and it is necessary to hold the pressure at the front of the mold. Since a small pressure is sufficient, for example, in FIG. 5A, the region z2 of the first stage of holding pressure between RPt and the region 2 of the second stage of holding pressure between p and -p. The holding pressure process is set as appropriate depending on the molded product. If the pressure in the pressure holding process, that is, the screw thrust, varies, the molded product may Dimensions and strength vary, and in extreme cases, cracks and sink marks occur, contributing to variations in molded products.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、モータでスクリューを駆動する射出成形機に
おいて、スクリューとスクリューを押す装置との間に荷
重を検出するセンサーを取付け、このセンサーで直接ス
クリューにかかる推力を検知して、検知値と保圧1段目
の設定圧力が等しくなった時点で射出工程から保圧工程
に切換えることにより、モータの消費電流とは無関係に
モータのトルク、即ちスクリュー推力を制御して前述の
従来方法の問題点を解した。
In an injection molding machine that drives a screw with a motor, a sensor for detecting the load is installed between the screw and a device pushing the screw, and this sensor directly detects the thrust force applied to the screw, and the detected value and the By switching from the injection process to the holding process when the set pressure of the first stage becomes equal, the motor torque, that is, the screw thrust, is controlled regardless of the motor's current consumption, thereby solving the problems of the conventional method described above. I understood.

〔作用〕[Effect]

センサーでスクリューにかかる推力を直接検知すること
によシ、実際のスクリュー推力が把握出来、スクリュー
推力が未だ所定値まで到達しない間は射出工程を続行し
て材料充填が十分になってスクリュー推力が設定値に到
達した瞬間に保圧工程を開始出来、モータの使用状況の
差異から派生する電流−トルク特性のばらつきとは無関
係に常にスクリュー推力値の一定値で射出工程→保圧工
程の切換が達成出来る。
By directly detecting the thrust force applied to the screw with a sensor, the actual screw thrust force can be ascertained, and while the screw thrust force has not yet reached the predetermined value, the injection process is continued until the material is sufficiently filled and the screw thrust force is increased. The pressure holding process can be started the moment the set value is reached, and the injection process → pressure holding process can always be switched at a constant screw thrust value, regardless of variations in current-torque characteristics derived from differences in motor usage. It can be achieved.

〔実施例〕〔Example〕

第1図は本発明の実施に用いる装置の例であって、スク
リ、−1は荷重センサー2を介してボールネジ3と連結
してあり、該ボールネジ3はナツト4の回転により前後
に駆動される。ナツト4はモータ8→駆動ギヤ7→伝達
軸6→駆動ギヤ5→ナツト4の経路によシ回転される。
FIG. 1 shows an example of a device used to carry out the present invention, in which a screw 1 is connected to a ball screw 3 via a load sensor 2, and the ball screw 3 is driven back and forth by the rotation of a nut 4. . The nut 4 is rotated by the path of the motor 8 → drive gear 7 → transmission shaft 6 → drive gear 5 → nut 4.

YIは設定器であって、保圧切換時のスクリュー推力の
設定値を入力している。Y2は比較器で、セン?−2か
ら取出した推力信号S1と設定器Y1からの信号S、と
を比較し、Y3に制御方法の指示を出すものであシ、Y
、はモータ制御器で、必要な電流iをモータ8へ供給す
る装置である。
YI is a setting device, and inputs the set value of the screw thrust at the time of pressure holding switching. Y2 is a comparator, and Sen? It compares the thrust signal S1 taken out from -2 with the signal S from the setting device Y1, and issues instructions on the control method to Y3.
, is a motor controller that supplies the necessary current i to the motor 8.

第2図はセンサーの取付状態の例であって、センサー2
の両端の取付用7ランジ21’、 21’がそれぞれス
クリュー取付軸12及びボールネジ3の軸端に、固定用
分割7ランジ14′及び14′と締着ボルト15′及び
15′で固着しである、スクリュー1はその固定部1′
をスクリュー取付軸12中に嵌入してキー13で止める
と共に、その挟着部1′を分割7ランジ14で挟着し、
該7ランジ14をボルト15によってスクリュー取付軸
I2に締着し、スクリュー1、セン?−2、ボールネジ
3のそれぞれが一体の剛体の如く強固に結合しである。
Figure 2 shows an example of how the sensor is installed.
7 mounting langes 21' and 21' at both ends of the screw are fixed to the shaft ends of the screw mounting shaft 12 and the ball screw 3, respectively, with 7 fixed split flange 14' and 14' and tightening bolts 15' and 15'. , the screw 1 is its fixing part 1'
is inserted into the screw mounting shaft 12 and fixed with the key 13, and its clamping part 1' is clamped with the divided seven flange 14,
Tighten the 7 langes 14 to the screw mounting shaft I2 with the bolts 15, and then tighten the screws 1 and 2. -2, each of the ball screws 3 is firmly connected like a single rigid body.

第3図から明らかな如くセンサー2は、゛両端部に連結
用フランジ21′を有するセンサ一本体21と、本体に
嵌められて本体と共に回転するインナースリーブ28と
、インナースリーブ上にベアリング30を介して設けら
れ且つ廻り止め32で回転は止められているアウターケ
ース29とから構成してあシ、センサ一本体21の軸方
向弾性変形を検出する歪みゲージ22が本体局面に90
°間隔を置いて軸方向歪を検出する状態に4枚貼付けで
ある。
As is clear from FIG. 3, the sensor 2 consists of a sensor main body 21 having connecting flanges 21' at both ends, an inner sleeve 28 that is fitted into the main body and rotates together with the main body, and a bearing 30 on the inner sleeve. A strain gauge 22 for detecting elastic deformation in the axial direction of the sensor main body 21 is provided on the surface of the main body 90.
Four sheets are pasted at intervals of 50° to detect axial strain.

各歪みゲージ22からリード@23→中間端子台24→
絶縁被覆リード線23′と引出し、リード線23′をイ
ンナースリーブ28中を通し、スリーブ28表面の絶縁
体26上にスリップリング止めネジ25′を介して設け
た各対応スリップリング25に接続すると共に、各スリ
ップリング25にはそれぞれアウターケース29上忙端
子ボルト31で取付けられたブラシ27が接触している
Leads from each strain gauge 22 @ 23 → Intermediate terminal block 24 →
The insulated lead wire 23' is pulled out, the lead wire 23' is passed through the inner sleeve 28, and connected to each corresponding slip ring 25 provided on the insulator 26 on the surface of the sleeve 28 via a slip ring set screw 25'. A brush 27 attached to the outer case 29 with a terminal bolt 31 is in contact with each slip ring 25, respectively.

図に於てスリップリングと端子ボルトとの対の個数は歪
みゲージ22の個数4個十アース用1個としている。そ
して端子ボルト31には電気信号取出し用リード線(図
示なし)を接続する。
In the figure, the number of pairs of slip rings and terminal bolts is four for strain gauges 22 and one for grounding. A lead wire (not shown) for taking out an electric signal is connected to the terminal bolt 31.

射出成形機の稼動中は、各工程に応じて変化する推力F
が例えば第5A図に示す如く、スクリュー1に付与され
ており、スクリュー推力変化はセンサ一本体21の軸方
向の弾性変形上してとらえられる。一方設定器Y、から
は保圧切換時の推力の設定値信号が出ており、スクリュ
ー1の推力をセンサー2で検知しながら該推力FがY、
からの設定値より小さい間は射出工程を続行し、スクリ
ュー推力が設定値に等しいと比較器Y、で判断された時
点で保圧工程開始の指示をモータ制御器Y3へ出し、ス
クリューの射出工程から保圧工程への切換を常に設定圧
力値で達成出来た。
During operation of the injection molding machine, the thrust force F changes depending on each process.
is applied to the screw 1, as shown in FIG. 5A, for example, and changes in the screw thrust are detected on the basis of elastic deformation of the sensor body 21 in the axial direction. On the other hand, the set value signal of the thrust force at the time of pressure holding switching is output from the setting device Y, and while the thrust force of the screw 1 is detected by the sensor 2, the thrust force F changes to Y,
The injection process continues as long as the screw thrust is smaller than the set value, and when the comparator Y determines that the screw thrust is equal to the set value, an instruction to start the holding pressure process is sent to the motor controller Y3, and the screw thrust starts the injection process. Switching from to pressure holding process was always achieved at the set pressure value.

なお設定器Y、には保圧切換時のスクリーー推力の設定
値信号のみでなく、例えば第5A図に於ける実MAの如
きスクリュー推カプログラムを入力しておいてスクリュ
ー推力検出センサー2からの信号Slとスクリーー推カ
プログラムにより発せられる設定器YIからの信号とを
常時比較してスクリーー駆動モータを制御すれば、スク
リュ−1の射出成形全工程に於ける推力Fがモータの′
gt流−トルク特性の変化に関係なく、設定値どおシに
達成出来るのは勿論、設定器Y1のプログラムとセンサ
ー2との組合せで射出成形工程中の必要個所、例えば第
5A図の点P1+点P2+点P8等、のみでスクリュー
推力Fを設定値に制御することも可能である。
In addition, not only the set value signal of the screw thrust at the time of holding pressure switching is input to the setting device Y, but also a screw thruster program such as the actual MA in FIG. If the screw drive motor is controlled by constantly comparing the signal Sl and the signal from the setting device YI issued by the screw thruster program, the thrust force F in the entire injection molding process of the screw 1 will be
Regardless of changes in GT flow-torque characteristics, the set value can of course be achieved at any required point during the injection molding process, such as point P1+ in FIG. 5A, by combining the setting device Y1 program and sensor 2. It is also possible to control the screw thrust F to a set value only by points such as point P2+point P8.

〔発明の効果〕〔Effect of the invention〕

保圧切換時のスクリーー推力はばらつきがなく常に設定
値で切換えが出来る。この結果、成形品の寸法、強度の
ばらつきを小さくできるようになシ、また保圧切換時の
スクリュー推力が大きすぎて成形品にパリが発生するこ
とや、逆に保圧切換時のスクリュー推力が小さすぎて材
料の充填不足による成形品にヒケの発生することが防止
出来た。
There is no variation in the scree thrust when changing the holding pressure, and it can always be changed at the set value. As a result, it is possible to reduce variations in the dimensions and strength of the molded product, and it is also possible to prevent the screw thrust force when changing the holding pressure from being too large and causing cracks in the molded product, and conversely, the screw thrust force when changing the holding pressure was so small that it was possible to prevent sink marks from occurring on the molded product due to insufficient filling of the material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に用いる装置の概略説明図。 第2図は、センサー取付部の一部断面説明図。 第3図は、センサーの一部断面説明図。 第4図は、従来装置の概略説明図。 第5A図は、スクリュー推力変化の説明線図。 第5B図は、モータの電流−トルク特性線図。 Iニスクリユー、    2:荷重センサー、3:ボー
ルネジ、    4:ナツト、5.7:駆動ギヤ、  
 6:伝達軸、8:モータ、      Yl:設定器
、Y、:比較器、      Y3 aモータ制御器、
SIニスクリユー推力信号、 S、:保圧切換時の推力の設定値信号。 1・・・スクリュー 2・・・荷重センサー 3・・・?−ルネノ 4・・・ナンド 5.7・・・駆動ギヤ 6・・・伝達軸 8・・・モータ 21・・・センサ一本体       27・・・ブラ
シ24・・・中間端子台        30・・・ベ
アリング25・・・スリップリング      31・
・・端子ボルト26 、、、絶縁体         
32・・・廻シ止め第弘図 第58図
FIG. 1 is a schematic explanatory diagram of an apparatus used in the present invention. FIG. 2 is a partially cross-sectional explanatory diagram of the sensor mounting part. FIG. 3 is a partially cross-sectional explanatory diagram of the sensor. FIG. 4 is a schematic explanatory diagram of a conventional device. FIG. 5A is an explanatory diagram of changes in screw thrust force. FIG. 5B is a current-torque characteristic diagram of the motor. I-niscrew, 2: Load sensor, 3: Ball screw, 4: Nut, 5.7: Drive gear,
6: Transmission shaft, 8: Motor, Yl: Setting device, Y,: Comparator, Y3a motor controller,
SI Niscrew thrust signal, S: Thrust set value signal when switching to holding pressure. 1...Screw 2...Load sensor 3...? - Runeno 4...Nand 5.7...Drive gear 6...Transmission shaft 8...Motor 21...Sensor body 27...Brush 24...Intermediate terminal block 30...Bearing 25...Slip ring 31.
・・Terminal bolt 26 ・・・Insulator
32...Rotating stop diagram Figure 58

Claims (1)

【特許請求の範囲】[Claims] 1、モータでスクリューを駆動する射出成形機に於て、
スクリュー(1)とスクリュー(1)を押す装置(3)
との間に荷重を検出するセンサー(2)を取付け、この
センサーで直接スクリューにかかる推力を検知し、この
値と保圧1段目の設定圧力とが等しくなった時点で、射
出工程から保圧工程へ切換えることを特徴とする保圧切
換制御方法。
1. In an injection molding machine where the screw is driven by a motor,
Screw (1) and device for pushing screw (1) (3)
A sensor (2) that detects the load is installed between the A holding pressure switching control method characterized by switching to a pressure process.
JP18404985A 1985-08-23 1985-08-23 Control method of changeover of dwelling of injection molding machine Granted JPS6244415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18404985A JPS6244415A (en) 1985-08-23 1985-08-23 Control method of changeover of dwelling of injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18404985A JPS6244415A (en) 1985-08-23 1985-08-23 Control method of changeover of dwelling of injection molding machine

Publications (2)

Publication Number Publication Date
JPS6244415A true JPS6244415A (en) 1987-02-26
JPH0371969B2 JPH0371969B2 (en) 1991-11-15

Family

ID=16146474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18404985A Granted JPS6244415A (en) 1985-08-23 1985-08-23 Control method of changeover of dwelling of injection molding machine

Country Status (1)

Country Link
JP (1) JPS6244415A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0495266A1 (en) * 1990-12-18 1992-07-22 AUTOMATISIERUNGS- UND KUNSTSTOFFTECHNIK GmbH CHEMNITZ Process for regulation and controlling of injection moulding
EP0563466A1 (en) * 1992-03-31 1993-10-06 Hummel, Erhard Process and equipment for ascertainment of sumvalues of parameters of processes for controlling of injection moulding machines
JP2011183704A (en) * 2010-03-09 2011-09-22 Sumitomo Heavy Ind Ltd Injection molding machine and injection molding method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0495266A1 (en) * 1990-12-18 1992-07-22 AUTOMATISIERUNGS- UND KUNSTSTOFFTECHNIK GmbH CHEMNITZ Process for regulation and controlling of injection moulding
EP0563466A1 (en) * 1992-03-31 1993-10-06 Hummel, Erhard Process and equipment for ascertainment of sumvalues of parameters of processes for controlling of injection moulding machines
JP2011183704A (en) * 2010-03-09 2011-09-22 Sumitomo Heavy Ind Ltd Injection molding machine and injection molding method

Also Published As

Publication number Publication date
JPH0371969B2 (en) 1991-11-15

Similar Documents

Publication Publication Date Title
JP3452373B2 (en) Screw fastening device and screw fastening method
JP4896153B2 (en) Method for reducing vibration of machine elements or workpieces
GB2265728A (en) System and method to compensate for torque overshoot in rotary power tools
JPS6234782A (en) Method and device for clamping or loosing united article which can be screwed
WO2015091987A1 (en) A power tool for tightening a fastener and a method
US20190168364A1 (en) Electric pulse tool with controlled reaction force
JPS6244415A (en) Control method of changeover of dwelling of injection molding machine
JPS61154820A (en) Method of controlling injection pressure of motor driven injection molding machine
JPH0442972B2 (en)
EP0249641B1 (en) Metering method in an injection molding machine
JPS6244416A (en) Monitoring method for filling thrust of injection molding machine
JP3433621B2 (en) Friction welding method
JP3719501B2 (en) Control method of electric injection molding machine
JP2003200469A (en) Control device of injection drive part of motor-driven injection molding machine
GB2198983A (en) Method of and apparatus for tightening screw-threaded fasteners
JPH07106548B2 (en) Electric screwdriver with slip detection function
JPS61222718A (en) Injection control of electrically operated injection unit
JP2002079556A (en) Method for controlling driving of injection molding machine and control device
JP2869391B2 (en) Feedback control method of force in injection molding machine
JPH0344889B2 (en)
JPH08281567A (en) Sinusoidal wave drive nut runner
JP2839480B2 (en) Feedback control method of force in injection molding machine
JP2002096365A (en) Pressure controlling device for injection molding machine and method for controlling pressure
JPH10128811A (en) Method and device for injection control for motorized injection molding equipment
JP2004074334A (en) Motor control method for screw tightening device