JPS6244264A - Polypropylene porous membrane - Google Patents

Polypropylene porous membrane

Info

Publication number
JPS6244264A
JPS6244264A JP60183704A JP18370485A JPS6244264A JP S6244264 A JPS6244264 A JP S6244264A JP 60183704 A JP60183704 A JP 60183704A JP 18370485 A JP18370485 A JP 18370485A JP S6244264 A JPS6244264 A JP S6244264A
Authority
JP
Japan
Prior art keywords
membrane
polypropylene
porous membrane
serum
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60183704A
Other languages
Japanese (ja)
Other versions
JPH0693979B2 (en
Inventor
元 伊藤
純 加茂
章 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP60183704A priority Critical patent/JPH0693979B2/en
Publication of JPS6244264A publication Critical patent/JPS6244264A/en
Publication of JPH0693979B2 publication Critical patent/JPH0693979B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は血清アルブミンを実質的に通・遇させないポリ
プロピレン多孔質膜に関する。更に詳しくは人工腎臓に
おける人工透析に適したポリプロピレン多孔質膜に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a polypropylene porous membrane that substantially prevents serum albumin from passing through. More specifically, the present invention relates to a polypropylene porous membrane suitable for artificial dialysis in an artificial kidney.

〔従来の技術〕[Conventional technology]

近来、膜による分離技術は精密ろ過流、限外ろ過流、逆
浸透法等広い領域に亘って発達しており注目を集めてい
る。そしてその用途分野は廃水処理、食品工業、電子工
業、精密工業等が上げられる。特に医療分野での発達が
顕著であるが、当該分野ではその性格上極めて高い性能
と精度及び安全性が要求されるのである。医療分野にお
ける膜利用のうち血液浄化、特に人工透析用膜の占める
割合が圧倒的に多いのである。
In recent years, separation technologies using membranes have been developed in a wide range of areas, such as microfiltration, ultrafiltration, and reverse osmosis, and are attracting attention. Application fields include wastewater treatment, food industry, electronic industry, precision industry, etc. The development is particularly remarkable in the medical field, which by its nature requires extremely high performance, precision, and safety. Among the membranes used in the medical field, membranes for blood purification, particularly for artificial dialysis, account for an overwhelmingly large proportion.

このような人工透析用膜においても、やはり種々の性能
が必要であるが、基本的には血清蛋白は透過しないが、
尿素等の低分子ないし、それよりもやや分子量の高い中
分子毒性物質は透遇しかつ適度な透水性があること、更
には湿潤時の強度が大であることが上げられる。一方、
膜の形態としては平膜、中空糸膜があるが、後者は単位
体積中に大きな膜面積を設けることができるという特長
がある。このため、平膜よりも中空糸膜のほうが多く使
われているのである。
Such artificial dialysis membranes still require various performances, but basically serum proteins do not pass through them, but
It must be able to pass through low-molecular or medium-molecular toxic substances with a slightly higher molecular weight such as urea, have appropriate water permeability, and have high strength when wet. on the other hand,
Membrane forms include flat membranes and hollow fiber membranes, and the latter has the advantage of being able to provide a large membrane area within a unit volume. For this reason, hollow fiber membranes are more commonly used than flat membranes.

セルローズ系中空糸膜はこのような要求を満足する優れ
たものであり、現在人工透析用膜としては大部分がセル
ローズ系中空糸膜であると言っても過言ではない。
Cellulose-based hollow fiber membranes are excellent in meeting these requirements, and it is no exaggeration to say that cellulose-based hollow fiber membranes currently account for most of the membranes used for artificial dialysis.

然るに、近年かかるセルローズ系膜の有する欠点が指摘
されるようKなりてきた。それは、血液中に含まれる補
体の活性化の問題である。
However, in recent years, the drawbacks of such cellulose-based films have been pointed out. It is a problem of activation of complement contained in the blood.

つまりセルローズ系膜を用いて人工透析を行りた場合、
血圧の一時的低下、白血球の一時的減少等の症状が起こ
るごとが報告されている。これは血液中に含有される補
体が膜を構成するセルローズとの間で反応し活性化され
ることが原因であることが分かつてきた。更にはとの活
性化反応は単にセルローズによってのみ起こるのではな
く、膜を構成するポリマーとの間で一般的に起こること
、この活性化反応の径路はひとつだけではないが、いず
れにしてもポリマーの表面の性質、就く親水性つまり臨
界表面張力と強い関係があり、臨界表面張力が40乃至
45dya/cs以上の比較的親水性の高いポリマーに
おいて活性化が著しいことも明らかになってきた。
In other words, when performing artificial dialysis using a cellulose membrane,
Symptoms such as a temporary decrease in blood pressure and a temporary decrease in white blood cells have been reported. It has been found that this is caused by the complement contained in the blood reacting with cellulose, which constitutes the membrane, and being activated. Furthermore, the activation reaction with cellulose does not occur only with cellulose, but generally occurs with the polymers that make up the membrane, and although there is more than one pathway for this activation reaction, in any case, the It has also become clear that there is a strong relationship between the properties of the surface and the hydrophilicity, that is, the critical surface tension, and that activation is remarkable in relatively highly hydrophilic polymers with a critical surface tension of 40 to 45 dya/cs or higher.

このような状況の中で補体活性化反応の起こらない透析
用の膜の出現が待たれているのである。このような膜を
実現するには上述の事情から判るように疎水性ポリマー
から透析用膜を製造することができればよいのであるが
、いまだこのような膜は完成されていない。
Under these circumstances, the emergence of a dialysis membrane that does not cause complement activation reactions is awaited. In order to realize such a membrane, it would be sufficient to manufacture a dialysis membrane from a hydrophobic polymer, as can be seen from the above-mentioned circumstances, but such a membrane has not yet been completed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

かかる現状に鑑み本発明者らは鋭意研究を重ね、典型的
な疎水性ポリマーであるポリプロピレンから人工透析に
適した多孔質膜を製造することに成功し、本発明に到達
した。本発明の多孔質膜はポリプロピレンから製造され
ているということのほかに、大きな水透過性を有してい
ることも大きな特長の一つである。つまり該多孔質膜の
一側面から他の側面にかけて比較的大きな貫通孔を有し
ていることが容易に推定されるのであるが、従来このよ
うに大きな貫通孔を有する多孔質膜は人工透析用膜には
適さないと思われていたのであるが、本発明の多孔質膜
は驚くべきことに人工透析用膜に必要とされる性能を満
足することが分かったのである。また、予想された通り
本発明の膜は補体を活性化しないことが確認され、現在
多用されているセルローズ系膜よりも優れたものである
ことがわかったのである。
In view of the current situation, the present inventors have conducted intensive research and succeeded in producing a porous membrane suitable for artificial dialysis from polypropylene, which is a typical hydrophobic polymer, and have thus arrived at the present invention. In addition to the fact that the porous membrane of the present invention is manufactured from polypropylene, one of its major features is that it has high water permeability. In other words, it can be easily inferred that the porous membrane has relatively large through holes from one side to the other. Conventionally, porous membranes with such large through holes were used for artificial dialysis. Although it was thought that the porous membrane of the present invention was not suitable for use as a membrane, it was surprisingly found that the porous membrane of the present invention satisfies the performance required for an artificial dialysis membrane. Furthermore, as expected, it was confirmed that the membrane of the present invention does not activate complement, and was found to be superior to the cellulose-based membranes that are currently widely used.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の人工透析用に適した膜は、少なくとも0.89
0好ましくは0,900P/α1以上の密度を有しかつ
メルトインデックスが0.5以上10以下であるポリプ
ロピレンよりなり、水透過率が5乃至300 d / 
hr −?F!’ −vai、Hpで血清アルブミン阻
止率が99.5%以上であるポリプロピレン多孔質膜で
あり、好ましくは血清透過率が2くは尿素クリアランス
が100 ml / m1n−y1以上であるポリプロ
ピレン多孔質膜である。また、形態の点ではポリプロピ
レン多孔質膜が中空糸膜形状を有することが最も好まし
いのである。
Membranes suitable for artificial dialysis according to the invention have a molecular weight of at least 0.89
0 Preferably made of polypropylene having a density of 0,900P/α1 or more and a melt index of 0.5 to 10, and a water permeability of 5 to 300 d/α.
hr-? F! '-vai, a polypropylene porous membrane having a serum albumin rejection rate of 99.5% or more at Hp, preferably a polypropylene porous membrane having a serum permeability of 2 or a urea clearance of 100 ml/m1n-y1 or more. It is. Furthermore, in terms of morphology, it is most preferable that the porous polypropylene membrane has a hollow fiber membrane shape.

本発明の腹を製造する方法としては可塑剤、造孔剤等の
添加剤を混合して成型した後、該添加剤を抽出法等によ
り除去することにより多孔質膜を製造する方法があるが
、一方、かかる添加剤を一切使用しないで多孔質膜を製
造する方法もある。本発明の多孔質膜は、いずれの方法
によっても得られるのであるが、該多孔質膜が人工透析
による血液浄化に用いることを目的にしたものであるの
で、ポリマー以外の成分は出来るだけ存在しないことが
望ましい。このような観点から判断すると、上記の二つ
の方法の5ち前者の方法は添加剤の残留が全く無いとは
言い切れず、後者の方法の方が安全性の点でより好まし
いと言える。そのような多孔質膜の製造方法としては、
例えば均質膜に電子ビームを照このより好ましい方法の
うち、主に延伸多孔質化法について述べると、 ÷ト←柄これは、ポリプロピレンをその融点以上に加熱
して押し出して膜状に成型し、次に該ポリプロピレンの
融点以下、ガラス転移点以上の温度条件の下で定長熱処
理後、該ポリプロピレンのガラス転移以上で前記の定長
熱処理温度より低い温度条件の下で10乃至350%延
伸し、次に該ポリプロピレンの融点よりも低く前記延伸
温度よりも高い温度条件の下で10乃至40%緩和熱セ
ツトする方法Eある。この場合、延伸は必要に応じて2
段以上に分けておこなうことができる。また、中空糸膜
形状とするには、中空糸製造用ノズルを用いて押し出し
た後、同様に定長熱処理、延伸、熱セットすればよい。
As a method of manufacturing the membrane of the present invention, there is a method of manufacturing a porous membrane by mixing additives such as a plasticizer and a pore-forming agent, molding the mixture, and then removing the additives by an extraction method or the like. However, there is also a method of manufacturing a porous membrane without using any such additives. The porous membrane of the present invention can be obtained by any method, but since the porous membrane is intended for use in blood purification by artificial dialysis, components other than the polymer should be present as little as possible. This is desirable. Judging from this point of view, the former of the above two methods cannot be said to be completely free of residual additives, and the latter method can be said to be more preferable in terms of safety. As a method for manufacturing such a porous membrane,
For example, among the more preferable methods of shining an electron beam onto a homogeneous film, we will mainly discuss the stretching method to make it porous.In this method, polypropylene is heated above its melting point and extruded to form a film. Next, after constant length heat treatment under a temperature condition below the melting point of the polypropylene and above the glass transition point, stretching by 10 to 350% under a temperature condition above the glass transition of the polypropylene and lower than the constant length heat treatment temperature, Next, there is a method E in which a relaxation heat setting of 10 to 40% is carried out under a temperature condition lower than the melting point of the polypropylene and higher than the stretching temperature. In this case, stretching is performed by 2 times as necessary.
It can be done in stages or more. Further, in order to obtain a hollow fiber membrane shape, after extruding using a hollow fiber manufacturing nozzle, it may be subjected to fixed length heat treatment, stretching, and heat setting in the same manner.

しかしながら、ここに示す方法によりて本発明の多孔質
膜を製造するには原料となるポリプロピレンは特定の条
件を満足することが必要である。そのひとつは密度であ
る。ポリプロピレンの密度はその結晶化度の指標である
。溶融成型された膜を延伸して多孔質膜にする過程は、
延伸により結晶層間を剥離することを原理としており、
溶融成型された膜は十分な結晶化度を有していることが
不可欠である。つまり後で述べる様に尿素の透過性を支
配するのは孔の占める割合、即ち、空孔率であり、空孔
率は結晶相の占める割合、即ち、結晶化度が高いことが
要求されるのである。製造される多孔質膜の尿素クリア
ランスが100 rnl / m1ts・イ以上である
ためには、ポリプロピレンの密度は少なくとも0、89
0 P/an”以上、好ましくは0.900 J’ /
an”以上であることが必要である。
However, in order to manufacture the porous membrane of the present invention by the method shown here, the polypropylene used as a raw material must satisfy specific conditions. One of them is density. The density of polypropylene is an indicator of its crystallinity. The process of stretching a melt-molded membrane to make it into a porous membrane is as follows:
The principle is that the crystal layers are separated by stretching.
It is essential that the melt-cast film has sufficient crystallinity. In other words, as will be explained later, what controls the permeability of urea is the proportion occupied by pores, that is, the porosity, and the porosity is determined by the proportion occupied by the crystalline phase, that is, the degree of crystallinity is required to be high. It is. In order for the urea clearance of the porous membrane to be produced to be at least 100 rnl/mlts・i, the density of polypropylene must be at least 0.89
0 P/an” or more, preferably 0.900 J’/
An” or more is required.

原料ポリプロピレンが満足すべきもうひとつの条件はメ
ルトインデックス(以後、MIと称する。)である。M
Iはポリプロピレンの流動性の指標であると同時に分子
量の指標でもある。本発明の多孔質膜における孔は、尿
素分子や水分子を通して該多孔質膜外へ移動せしめ得る
のに対して、アルブミンやグロブリンの如き血清蛋白を
通さず血液内に留めるという機能が必要であり、この機
能は孔の大きさで決定されるのである。つまり、例えば
血清蛋白の主成分であるアルブミンは分子量約6900
0で血清中での回転半径は約50Xといわれており、人
工透析用多孔質膜の孔の大きさは、概略それに相当する
ことが必要である。但し、本発明者らの研究によれば血
清蛋白と該多孔質膜との相互作用があるために、血清蛋
白を実質的に阻止する場合においても、孔の大きさは必
ずしも50A以下でなければならないことはないが、小
さいほうが阻止機能が高いことは容易に推察できる。本
発明者らの研究結果を更に述べると製造される多孔質膜
が有する孔の大きさは原料ポリプロピレンの分子量と密
接に関係しており、分子量が高いほど孔は小さくなるこ
とが分かつたのである。つまりMIは10以下であるこ
とが必要であった。しかし、他方MIが低過ぎると溶融
体の流れが悪くなり、溶融成型が不可能になる。
Another condition that the raw material polypropylene must satisfy is melt index (hereinafter referred to as MI). M
I is an indicator of the fluidity of polypropylene as well as an indicator of molecular weight. The pores in the porous membrane of the present invention allow urea molecules and water molecules to pass through and move out of the porous membrane, but they need to have the ability to remain in the blood without allowing serum proteins such as albumin and globulin to pass through. , this function is determined by the size of the pores. In other words, for example, albumin, the main component of serum protein, has a molecular weight of approximately 6900.
It is said that the radius of gyration in serum at 0 is approximately 50X, and the pore size of the porous membrane for artificial dialysis must roughly correspond to this. However, according to research conducted by the present inventors, there is an interaction between serum proteins and the porous membrane, so even when serum proteins are substantially blocked, the pore size must not necessarily be 50A or less. Although this is not inevitable, it can be easily inferred that the smaller the size, the higher the blocking function. To further explain the research results of the present inventors, it was found that the size of the pores in the porous membrane produced is closely related to the molecular weight of the raw material polypropylene, and the higher the molecular weight, the smaller the pores. . In other words, it was necessary that the MI be 10 or less. However, on the other hand, if the MI is too low, the flow of the melt will be poor, making melt molding impossible.

従って、MIは0.5以上10以下であることが必要で
あった。
Therefore, it was necessary that MI be 0.5 or more and 10 or less.

本発明の多孔質膜は、水透過性が極めて大きいことが特
徴であり、明らかに該膜の一面から他の面にかけて貫通
する孔を有するのである。
The porous membrane of the present invention is characterized by extremely high water permeability, and clearly has pores that penetrate from one side of the membrane to the other.

この点、先行pセルローズ系膜とは際立った形態上の差
異があるばかりでなく、血液を透析する場合、先行のセ
ルローズ系膜とは異なる機構で透析が進行する新しい透
析用膜と言える。つまり、先行のセルローズ膜は均質膜
であり、血液の透析においてはセルローズ分子と結合し
た水分子或いはセルローズ分子間の自由水を拡散媒体と
して尿素分子が血液から除かれ透析液側へ除去されるの
に対し、本発明の多孔質膜においては上記の貫通孔に充
填された水分子を拡散媒体として、尿素分子が移動する
のである。かかる多孔質膜においては上記の貫通孔を通
して血液ろ過が起こり過大な透水性の故に人工透析用膜
としては不適当と考えられていたのであるが、現実に血
液透析を行った場合、予想外のことでありたが、多孔質
膜の有する孔と血液、特に血清との相互作用のために、
血清中の水分に対して適度の透過性を示し、適度な除水
が起こることが確認されたのである。但し、水透過性が
高過ぎると過度の除水が起こるのは当然であり、他方水
透過率が低過ぎると尿素の透過性も低くなることも容易
に想像できるところである。
In this respect, it not only has a distinct morphological difference from previous p-cellulose-based membranes, but also can be said to be a new dialysis membrane in which dialysis proceeds through a mechanism different from that of previous cellulose-based membranes when dialyzing blood. In other words, the previous cellulose membrane is a homogeneous membrane, and in blood dialysis, urea molecules are removed from the blood and removed to the dialysate using water molecules bonded to cellulose molecules or free water between cellulose molecules as a diffusion medium. In contrast, in the porous membrane of the present invention, urea molecules move using the water molecules filled in the through holes as a diffusion medium. In such a porous membrane, blood filtration occurs through the above-mentioned through holes, and it was thought that it was unsuitable as a membrane for artificial dialysis due to its excessive water permeability, but when hemodialysis was actually performed, unexpected results occurred. However, due to the interaction between the pores of the porous membrane and blood, especially serum,
It has been confirmed that the material exhibits appropriate permeability to water in serum, and that appropriate water removal occurs. However, if the water permeability is too high, it is natural that excessive water removal will occur, and on the other hand, it is easy to imagine that if the water permeability is too low, the urea permeability will also be low.

結局、水透過率は5乃至300d/hr−イ・謔H/で
あることが適当である。
After all, it is appropriate that the water permeability is 5 to 300 d/hr.

ここでポリプロピレンが選ばれたのは血液中の補体活性
を活性化しないこと、溶融成型、延伸法等で適切な水透
過率、アルブミン阻止率を有する小孔を設は易いことに
よる。
Polypropylene was selected here because it does not activate complement activity in blood and because it is easy to form small pores with appropriate water permeability and albumin rejection by melt molding, stretching, etc.

本発明の多孔質膜は優れた透析性能を示すだけでなく、
血液中の補体を活性化せず生体適合性の点においても極
めて優れているといえる。
The porous membrane of the present invention not only exhibits excellent dialysis performance, but also
It can be said that it is extremely superior in terms of biocompatibility as it does not activate complement in the blood.

尚、本特許請求の範囲及び本明細書中に記載の各種指標
は次に記す測定法に依り得られた。
Incidentally, various indicators described in the claims and the present specification were obtained by the measurement method described below.

密度: 密度勾配管法 MI  :  ASTM  D−1238に準拠但し温
度200℃、荷重2.16kg 水透過率: 有効膜面積20 cm”  の膜をモジュールとしく中
空糸膜の場合はループ状モジュール)、アルコール等に
より膜を親水化した後、該膜の一方の間から(中空糸膜
の場合は中空内部から)20℃、50111HJIの水
を供給し、該中空糸膜壁より透過する水の景を測定し、
下記の式に従りて水透過率を算出する。
Density: Density gradient tube method MI: Compliant with ASTM D-1238, however, temperature 200°C, load 2.16 kg Water permeability: A membrane with an effective membrane area of 20 cm is used as a module; in the case of a hollow fiber membrane, it is a loop-shaped module), After making the membrane hydrophilic with alcohol, etc., water at 20°C and 50111HJI is supplied from between one side of the membrane (from the hollow interior in the case of a hollow fiber membrane), and the view of the water passing through the hollow fiber membrane wall is observed. measure,
Calculate the water permeability according to the formula below.

水透過率(11t/ hr−m” −smH7) =透
過量(ロ))/透過時間(hr)X膜面積(m’)X膜
間差圧(txHハ血清蛋白阻止率: 有効膜面積300 cm”  の膜をモジュールとし、
該膜の一方の面から(中空糸膜の場合は中空内部から)
エタノールを圧入、15分間循環し次に水に十分に置換
した後、該膜の一方の面から(中空糸膜の場合は中空内
部から)37℃腹間差圧200 mHPで血清を圧入し
、血清及び透過液中の蛋白濃度をブラッドフォード法に
より定量し、下記の式に従りて血清蛋白阻止率を算出す
る。
Water permeability (11t/hr-m"-smH7) = permeation amount (b) / permeation time (hr) x membrane area (m') x transmembrane pressure differential (txH) serum protein rejection rate: effective membrane area 300 cm” membrane as a module,
From one side of the membrane (from the hollow interior in the case of hollow fiber membranes)
Ethanol was press-injected, circulated for 15 minutes, and then sufficiently replaced with water, and then serum was press-injected from one side of the membrane (from the hollow interior in the case of a hollow fiber membrane) at 37°C and an abdominal pressure difference of 200 mHP, The protein concentration in the serum and permeate is determined by the Bradford method, and the serum protein inhibition rate is calculated according to the following formula.

阻止率(%)= 100X(1−透過液中の蛋白濃度/透過液中の蛋白濃
度)血清透過率: 血清蛋白阻止率測定の場合と同様にして血清を圧入し、
この時の透過速度を測定し、下記の式に従って血清透過
率を算出する。
Rejection rate (%) = 100X (1 - protein concentration in permeate / protein concentration in permeate) Serum permeability: Inject serum in the same way as in the case of serum protein inhibition rate measurement,
The permeation rate at this time is measured, and the serum permeability is calculated according to the following formula.

血清透過率(mlhr−イ・露H/)=透過量Cの/透
過時間(hr)X膜面積−)X膜間差圧(ms+Hp)
尿素クリアランス: 血清蛋白阻止率の場合と同様にしてエタノール処理更に
水置換した後の透析装置に装着し、該膜の一方の面に(
中空糸膜の場合は中空内部から)膜面積1イあたり50
0 atj/minの流速で透析液を流しながら、該膜
の他の面に(中空糸膜の場合は中空外部に)膜面積1イ
あたり200111/ mln の流速で濃度0.1%
の尿素水溶液を流す。透析処理前後の尿素濃度をバラジ
メチルアミノベンズアルデヒド法で定量し、下記の式に
よって尿素クリアランスを算出する。
Serum permeability (mlhr-i・douh/) = permeation amount C/permeation time (hr) x membrane area -) x transmembrane pressure differential (ms + Hp)
Urea clearance: In the same way as in the case of serum protein rejection rate, the membrane was attached to a dialysis machine after ethanol treatment and water replacement, and one side of the membrane (
In the case of hollow fiber membranes, from the hollow interior) 50 per membrane area
While flowing the dialysate at a flow rate of 0 atj/min, a concentration of 0.1% was applied to the other surface of the membrane (in the case of a hollow fiber membrane, to the hollow outside) at a flow rate of 200111/mln per membrane area.
urea aqueous solution. The urea concentration before and after the dialysis treatment is determined by the baladimethylaminobenzaldehyde method, and the urea clearance is calculated using the following formula.

尿素クリアランス= 活性化補体C5a : 2抗体RI法により定量する。Urea clearance = Activated complement C5a: Quantitated by two-antibody RI method.

〔実施例〕〔Example〕

以下実施例により本発明を具体的に説明する。 The present invention will be specifically explained below using Examples.

実施例1 密度0,915メルトインデツクス5のポリプロピレン
を200℃で溶融し膜製造用スリットから線速度8 c
m/ win  で押し出し空気流で冷却しながら80
0 ml minで引きとった。次に135℃で100
秒間定長熱処理した後、30℃で150%延伸し更に1
35℃で緩和熱セットし総延伸倍率が100%になるよ
うにした。
Example 1 Polypropylene with a density of 0,915 and a melt index of 5 was melted at 200°C and a linear velocity of 8c was produced from a slit for film production.
m/win while cooling with extruded air flow 80
It was withdrawn at 0 ml min. Then 100 at 135℃
After heat treatment for a fixed length of seconds, it was stretched by 150% at 30°C and further stretched for 1
Relaxation heat setting was performed at 35° C. so that the total stretching ratio was 100%.

かくして得られた膜の水透過率は15 tul/ hr
 。
The water permeability of the membrane thus obtained was 15 tul/hr.
.

i ・OH7、血清透過率が4.1 rd/ hr−y
/・IIIHP、血清蛋白阻止率は100%、尿素クリ
アランスは140 mj/m1n−一であった。
i ・OH7, serum permeability is 4.1 rd/hr-y
/.III HP, serum protein inhibition rate was 100%, and urea clearance was 140 mj/m1n-1.

また補体活性化試験を行った結果、活性化補体C5mは
120分後3.5 rsp/rdであり、同時にコント
ロールとして膜の無い場合について測定したところ05
mは3.8m//mAであり、本発明の中空糸膜が補体
活性化をしない生体適合性に優れていることが判る。
In addition, as a result of a complement activation test, the activated complement C5m was 3.5 rsp/rd after 120 minutes, and at the same time, as a control, the value of activated complement C5m was 0.5 rsp/rd.
m is 3.8 m//mA, which indicates that the hollow fiber membrane of the present invention does not activate complement and has excellent biocompatibility.

比較例1 密度0.880メルトインデツクス7であるポリプロピ
レンを用いる以外は実施例1と全く同様にして多孔質膜
を得た。
Comparative Example 1 A porous membrane was obtained in exactly the same manner as in Example 1, except that polypropylene having a density of 0.880 and a melt index of 7 was used.

該膜の水透過率は1 d/ h r−イ・謁HJI以下
、血清透過率は0.1ゴ/hr−イ・mHz以下、尿素
クリアランスは10 mj/min−m″以下人工透析
には適さなかった。
The membrane has a water permeability of less than 1 d/hr, a serum permeability of less than 0.1 g/hr, mHz, and a urea clearance of less than 10 mj/min-m'', which is not suitable for artificial dialysis. It wasn't suitable.

実施例2 密度0.915メルトインデツクス5のポリプロピレン
を195℃で溶融し中空糸製造用ノズルから線速度8c
m/min で押し出し空気流で冷却しながら800 
?n/mln  で引きとりた。次に135℃で110
秒間定長熱処理した後、30℃で120%延伸し更に1
35℃で緩和熱セットし総延伸倍率が120%、′1に
なるようにした。
Example 2 Polypropylene with a density of 0.915 and a melt index of 5 was melted at 195° C. and a linear speed of 8 c was applied from a nozzle for manufacturing hollow fibers.
800 m/min while cooling with extruded air flow.
? It was withdrawn at n/mln. Then 110 at 135℃
After heat treatment for a fixed length of seconds, it was stretched by 120% at 30°C and further stretched for 1
Relaxation heat setting was carried out at 35° C. so that the total stretching ratio was 120%, '1.

かくして得られた多孔質i中空糸膜の水透過率は22 
ml/ hr −nX −11LHP、血清透過率が5
.0TRV′hr−ml・wHp、  血清蛋白阻止率
は100%、尿素クリアランスは140 d/ m1n
−yjでありた。
The water permeability of the porous i hollow fiber membrane thus obtained was 22
ml/hr -nX -11LHP, serum permeability is 5
.. 0TRV'hr-ml wHp, serum protein inhibition rate is 100%, urea clearance is 140 d/mln
-yj.

また補体活性化試験を行った結果、活性化補体C5mは
120分後3.3 g/yJであり、同時にコントロー
ルとして膜の無い場合について測定れていることが判る
Furthermore, as a result of a complement activation test, it was found that activated complement C5m was 3.3 g/yJ after 120 minutes, and at the same time, it was also measured in the case without a membrane as a control.

比較例2 密度0.885メルトインデツクス15であるポリプロ
ピレンを用いる以外は実施例2と全く同様にして多孔質
膜を得た。
Comparative Example 2 A porous membrane was obtained in exactly the same manner as in Example 2, except that polypropylene having a density of 0.885 and a melt index of 15 was used.

該膜の水透過率は1 mj/hr−m”・OH/以下、
血清透過率は0.11fLl/ hr −m’ −mH
p以下、尿素クリアランスは10 M/min −m’
以下で人工透析には適さなかった。
The water permeability of the membrane is 1 mj/hr-m”・OH/ or less,
Serum transmittance is 0.11 fLl/hr -m' -mH
Below p, urea clearance is 10 M/min -m'
The following conditions were not suitable for artificial dialysis.

Claims (1)

【特許請求の範囲】 1、少なくとも0.890g/cm^3以上の密度を有
しかつメルトインデックスが0.5以上10以下である
ポリプロピレンよりなり、水透過率が5乃至300ml
/hr・m^3・mmHgで血清アルブミン阻止率が9
9.5%以上であるポリプロピレン多孔質膜。 2、血清透過率が2乃至200ml/hr・m^3・m
mHgである特許請求の範囲第1項記載のポリプロピレ
ン多孔質膜。 3、尿素クリアランスが100ml/min・m^3以
上である特許請求の範囲第2項記載のポリプロピレン多
孔質膜。 4、ポリプロピレン多孔質膜が中空糸膜である特許請求
の範囲第1項、第2項又は第3項記載のポリプロピレン
多孔質膜。
[Claims] 1. Made of polypropylene having a density of at least 0.890 g/cm^3 or more and a melt index of 0.5 to 10, and a water permeability of 5 to 300 ml.
/hr・m^3・mmHg and serum albumin inhibition rate is 9
A polypropylene porous membrane having a content of 9.5% or more. 2. Serum permeability is 2 to 200ml/hr・m^3・m
2. The porous polypropylene membrane according to claim 1, wherein the porous polypropylene membrane has a temperature of mHg. 3. The porous polypropylene membrane according to claim 2, which has a urea clearance of 100 ml/min·m^3 or more. 4. The porous polypropylene membrane according to claim 1, 2 or 3, wherein the porous polypropylene membrane is a hollow fiber membrane.
JP60183704A 1985-08-21 1985-08-21 Polypropylene porous hollow fiber membrane Expired - Fee Related JPH0693979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60183704A JPH0693979B2 (en) 1985-08-21 1985-08-21 Polypropylene porous hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60183704A JPH0693979B2 (en) 1985-08-21 1985-08-21 Polypropylene porous hollow fiber membrane

Publications (2)

Publication Number Publication Date
JPS6244264A true JPS6244264A (en) 1987-02-26
JPH0693979B2 JPH0693979B2 (en) 1994-11-24

Family

ID=16140491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60183704A Expired - Fee Related JPH0693979B2 (en) 1985-08-21 1985-08-21 Polypropylene porous hollow fiber membrane

Country Status (1)

Country Link
JP (1) JPH0693979B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0314611A (en) * 1989-06-09 1991-01-23 Komatsu Ltd Production of hollow fibers for aeration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0314611A (en) * 1989-06-09 1991-01-23 Komatsu Ltd Production of hollow fibers for aeration

Also Published As

Publication number Publication date
JPH0693979B2 (en) 1994-11-24

Similar Documents

Publication Publication Date Title
US4439322A (en) Polymethyl methacrylate membrane
CN100503020C (en) Plasma purifying membrane and plasma purifying system
KR100432464B1 (en) Polysulfone Hollow Fiber Semipermeable Membrane
KR940008074B1 (en) Porous polypropylene membrane
US6042783A (en) Hollow yarn membrane used for blood purification and blood purifier
US3896061A (en) Semi-permeable membranes, their preparation and their use
JPS6193801A (en) Asymmetric microporous hollow fiber and its production
EP0193725A2 (en) Process for spinning hollow fiber membranes
WO2015032786A1 (en) Permselective asymmetric membranes
US6013182A (en) Selectively permeable hollow fiber membrane and process for producing same
US5643452A (en) High-flux hollow-fiber membrane with enhanced transport capability and process for making same
EP0012630B1 (en) Process for producing a cellulose acetate-type permselective membrane, permselective membrane thus produced, and use of such membrane in artificial kidney
Göhl et al. Membranes and filters for hemofiltration
WO2000027447A1 (en) Blood purifying apparatus
JPS6244264A (en) Polypropylene porous membrane
EP0092587B1 (en) Polymethyl methacrylate hollow yarn ultra-filtration membrane and process for its production
JPH053335B2 (en)
IE55578B1 (en) Hollow fibre useful in blood treating processes
JPH09308685A (en) Hollow fiber membrane for blood purification and blood purifying device
JPH0211263B2 (en)
JPH02164424A (en) Manufacture of hollow fiber membrane of synthetic polymer
JPS6045358A (en) Serum separating membrane and its preparation
JPS61106168A (en) Permselective hollow yarn membrane, its production and serum component separator using the same
JP2000210544A (en) Production of semipermeable membrane
JPH09308684A (en) Selective separating membrane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees