JPS6244216B2 - - Google Patents

Info

Publication number
JPS6244216B2
JPS6244216B2 JP8275081A JP8275081A JPS6244216B2 JP S6244216 B2 JPS6244216 B2 JP S6244216B2 JP 8275081 A JP8275081 A JP 8275081A JP 8275081 A JP8275081 A JP 8275081A JP S6244216 B2 JPS6244216 B2 JP S6244216B2
Authority
JP
Japan
Prior art keywords
filter
sample
arrangement
light
images
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8275081A
Other languages
Japanese (ja)
Other versions
JPS57197449A (en
Inventor
Kenji Iwahashi
Jugoro Suzuki
Toshimi Kadota
Masayoshi Hirabayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP8275081A priority Critical patent/JPS57197449A/en
Publication of JPS57197449A publication Critical patent/JPS57197449A/en
Publication of JPS6244216B2 publication Critical patent/JPS6244216B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 最近、血液中の生化学物質の含有量あるいはそ
の活性値を2波長分光測定法によつて自動的に分
析する生化学自動分析装置が各種市販されている
が、2波長を得る手段としては干渉フイルターを
用いたものが大部分を占めている。干渉フイルタ
ーを用いると一般に一検査項目当りの光学系は単
純にでき易いが、検査項目が多くなれば、それに
比例して光学素子も増え光学系を一括するのが難
しく、このために生ずる不都合も少なくない。
DETAILED DESCRIPTION OF THE INVENTION Recently, various automatic biochemical analyzers that automatically analyze the content of biochemical substances in blood or their activity values by two-wavelength spectrometry have been commercially available. Most methods for obtaining wavelengths use interference filters. Using an interference filter generally makes it easy to create an optical system for each inspection item, but as the number of inspection items increases, the number of optical elements increases proportionally, making it difficult to integrate the optical system all at once, which also causes inconvenience. Not a few.

これらの欠点を改良するのに分光器を使う方法
も考えられるが、干渉フイルターを用いる光学系
についても、多くの改良すべき点が残されてい
る。本発明は、従来多く市販されている干渉フイ
ルターを用いた2波長多項目自動分析計の光学系
の改良を計つたもので、使用する干渉フイルター
の大きさを極小にすることによつて、多数の検査
項目をまとめて、共通の光学素子で処理するよう
にし、かつ従来の機種に往々にして見られる2波
長の光束の合成あるいは分離素子として用いられ
る半透鏡を用いることによるエネルギーの低下を
生じないようにしてSN比の良い光学系を提供し
ようとするものである。
Although it is possible to use a spectrometer to improve these drawbacks, there are still many points that need to be improved regarding optical systems that use interference filters. The present invention aims to improve the optical system of a two-wavelength multi-item automatic analyzer using interference filters, which are conventionally available on the market. The inspection items are grouped together and processed by a common optical element, and the energy is reduced by using a semi-transparent mirror that is used as a combining or separating element for two wavelengths of light, which is often seen in conventional models. The objective is to provide an optical system with a good signal-to-noise ratio.

本発明は一つの面上に小さな多種のフイルター
を配置し、このフイルターの配置と同じ配置パタ
ーンを以つて試料を配置した面上に上記フイルタ
ーの配置パターンが一致するように上記フイルタ
ーの像を投影するようにし、上記したフイルター
配置を2種用意して、これら2種のフイルター配
置の像を光学的に切換えて交互に試料配置面上に
形成するようにした2波長分析装置を提供するも
のである。一つの検体について多項目の2波長分
光測定を行う場合、その一つの検体を多数の試料
セルに分注し試料配置面上にセツトする。この試
料の配置上に上記したフイルターの像が形成され
るが、フイルターの配置パターンと試料の配置パ
ターンが一致させてあるから、一つの試料セルに
は或る一つのフイルターを透過した或る波長の光
が入射せしめられることになる。
In the present invention, various types of small filters are arranged on one surface, and the image of the filter is projected onto the surface on which the sample is arranged in the same arrangement pattern as the filter arrangement so that the arrangement pattern of the filter matches the arrangement pattern of the filter. The present invention provides a two-wavelength analyzer in which two kinds of the above-mentioned filter arrangements are prepared and images of these two kinds of filter arrangements are optically switched and alternately formed on a sample arrangement surface. be. When performing multi-item two-wavelength spectroscopic measurements on one specimen, that one specimen is dispensed into a number of sample cells and set on the sample placement surface. The above-mentioned filter image is formed on this sample arrangement, but since the filter arrangement pattern and the sample arrangement pattern are matched, one sample cell has a certain wavelength transmitted through one filter. of light will be incident.

このようにして2種類のフイルター配置の像を
交互に試料面上に形成させると、各試料セルに入
射する光の波長が交互に切換えられる。従つて一
つのフイルター配置上の一つのフイルターの透過
光と他のフイルター配置の対応位置のフイルター
の透過光とによつて一検査項目に対する2波長の
組を構成するようにしておけば、多項目の2波長
測定が同時に遂行でき、個々のフイルター及び試
料セルは小さくてよい。以下実施例によつて本発
明を説明する。
When images of the two types of filter arrangements are alternately formed on the sample surface in this way, the wavelength of the light incident on each sample cell is alternately switched. Therefore, if a set of two wavelengths for one inspection item is configured by the transmitted light of one filter on one filter arrangement and the transmitted light of the filter at the corresponding position of another filter arrangement, multiple inspection items can be performed. Two wavelength measurements can be performed simultaneously, and the individual filters and sample cells can be small. The present invention will be explained below with reference to Examples.

第1図において、光源1からの光はミラー2,
3および2′,3′によつて2方向から取り出され
て、レンズ4および4′によつて互に等価で平行
な二光束が作られる。この平行な二光束の中にそ
れぞれ、λの組の干渉フイルター群5とλ′の組
の干渉フイルター群5′が挿入されたあと、レン
ズ6,6′によつてそれぞれ、平面鏡7,7′を介
してチヨツパーミラー8上に光源の像が作られ
る。チヨツパーミラーから以後は両光束は完全に
共通光路を通り、レンズ9により干渉フイルター
群5,5′の像が交互に試料配列面12上に作ら
れる。このとき、干渉フイルター群5,5′から
レンズ9までの距離、およびレンズ9から試料面
までの距離をそれぞれレンズ9の焦点距離fの2
倍にとり、チヨツパーミラーがレンズ9の焦点の
位置に来るようにすれば、各試料に入射する光束
の主光線は光軸に平行、すなわち試料面に垂直に
入射し、像倍率1で両フイルター群の像を結ぶこ
とになる。フイルター群5,5′のフイルターの
配置パターンは前述したように互に同じであり、
試料配列面12における試料セル14の配置パタ
ーンも上記フイルター群の配置と同じパターンで
試料配列面12上のフイルター群の像のパターン
と各試料セル14の配置は一致している。第1図
イはこの試料セル14の配置パターンの一例を示
すが、このような円周上の配置に限られず、面1
2全体に配置してもよいことは云うまでもない。
各試料セル14の背後に測光素子13が配置さ
れ、多項目の測定が同時に行われる。
In FIG. 1, light from a light source 1 is reflected by a mirror 2,
3 and 2', 3' from two directions, and lenses 4 and 4' create two mutually equivalent and parallel beams of light. After the interference filter group 5 of the set λ and the interference filter group 5' of the set λ' are inserted into these two parallel light beams, the plane mirrors 7 and 7' are respectively inserted by the lenses 6 and 6'. An image of the light source is formed on the chopper mirror 8 through the mirror 8. From the chopper mirror, both light beams pass through a completely common optical path, and images of the interference filter groups 5 and 5' are alternately formed on the sample arrangement surface 12 by the lens 9. At this time, the distance from the interference filter groups 5, 5' to the lens 9 and the distance from the lens 9 to the sample surface are each 2 of the focal length f of the lens 9.
If the chopper mirror is placed at the focal point of the lens 9, the chief ray of the light beam incident on each sample will be parallel to the optical axis, that is, perpendicular to the sample surface, and the image magnification will be 1 and both filter groups will be A statue will be attached. The arrangement patterns of the filters in the filter groups 5 and 5' are the same as described above,
The arrangement pattern of the sample cells 14 on the sample arrangement surface 12 is also the same as the arrangement of the filter group, and the pattern of the image of the filter group on the sample arrangement surface 12 and the arrangement of each sample cell 14 match. FIG. 1A shows an example of the arrangement pattern of the sample cells 14, but the arrangement is not limited to such a circumferential arrangement, and
It goes without saying that they may be placed over the entirety of 2.
A photometric element 13 is arranged behind each sample cell 14, and multiple items are measured simultaneously.

一般に生化学分析では試料は微量であり、セル
自体の容積も小さくなければならず、一実施例と
して断面が2φ光路長10mmのフローセルを考えれ
ば、上に述べたような倍率1の結像の場合は、必
要な各フイルターの大きさは最小限2φあればよ
く、余裕を見ても従来のものに較べて極めて小さ
いものでよいことが判る。そして、このことが更
に各検査項目に必要なフイルターの組を一括して
共通の光学素子で処置できるという従来にない長
所をも、もたらしているのである。10,11は
単に光路を変えるための平面鏡で、必ずしも必要
なものではない。
Generally, in biochemical analysis, the amount of sample is very small and the volume of the cell itself must be small.As an example, if we consider a flow cell with a cross section of 2φ and an optical path length of 10mm, it is possible to form an image at a magnification of 1 as described above. In this case, the required size of each filter should be at least 2φ, and it can be seen that even considering the margin, it can be extremely small compared to the conventional filter. This also brings about the unprecedented advantage of being able to collectively treat sets of filters required for each inspection item with a common optical element. 10 and 11 are plane mirrors simply for changing the optical path, and are not necessarily necessary.

第2図は干渉フイルターの像を試料面に結像す
るレンズ系の他の実施例でチヨツパーミラー8か
ら以後の光学系が上述実施例と異つているが本質
的には第1図の実施例と同様である。第2図の実
施例は第1図の実施例のレンズ9および鏡10,
11をなくした構造で、フイルター群5,5′か
らチヨツパーミラー8の集光点までの距離と、チ
ヨツパーミラーから試料面12までの距離を等し
くとつてある。この場合フイルター群5,5′上
の任意のフイルターを通つた細い光束を考える
と、チヨツパーミラー8の面に関して、その前後
の光路は対称的だから、上記光束は試料面12上
で交互に上記任意フイルターに対応する試料を通
過することになる。この場合フイルター群を平行
光束で照したことによる影絵の関係でフイルター
群の影絵像が試料面12に投影されていることに
なる。なおこの場合各試料セル14に入射する光
束中の主光線が互に平行でなくなるので、試料配
置面12の前面にチヨツパーミラー8上の集光点
に焦点を位置させて視野レンズ15を置き各試料
セルに入射する主光線が互に平行に試料配置面1
2に垂直になるようにしてある。この構成による
ときはチヨツパーミラー8から以後の光学系が第
1図の例に比しコンパクトになる。
Fig. 2 shows another embodiment of a lens system for forming an image of an interference filter on a sample surface, and although the optical system from the chopper mirror 8 onwards is different from the above-mentioned embodiment, it is essentially the same as the embodiment shown in Fig. 1. The same is true. The embodiment of FIG. 2 includes the lens 9 and mirror 10 of the embodiment of FIG.
11 is eliminated, and the distance from the filter group 5, 5' to the focal point of the chopper mirror 8 and the distance from the chopper mirror to the sample surface 12 are made equal. In this case, considering the narrow light beam that passes through any filter on the filter group 5, 5', the optical path before and after it is symmetrical with respect to the surface of the chopper mirror 8, so the light beam passes through the arbitrary filter alternately on the sample surface 12. It will pass through the sample corresponding to . In this case, a shadow image of the filter group is projected onto the sample surface 12 due to the shadow image created by illuminating the filter group with a parallel light beam. In this case, since the principal rays in the light beams incident on each sample cell 14 are no longer parallel to each other, the field lens 15 is placed in front of the sample placement surface 12 with the focal point on the chopper mirror 8, and each sample is The chief rays entering the cell are parallel to each other on the sample placement surface 1.
It is set perpendicular to 2. With this configuration, the optical system from the chopper mirror 8 onward becomes more compact than in the example shown in FIG.

本発明フイルター式2波長分析装置は上述した
ような構成で、多数のフイルターを一面に配置し
たものの像をフイルター配置と同じ配置パターン
を持つ多数試料上に形成させるようにしたから各
フイルターは小さくてよくこれを一つの投影光学
系の光束中に挿入するので多種の波長についての
測定が単一の装置でかつ並列的に進行され、各試
料も微少量ですみ、コンパクトで高能率の多項目
分析装置が得られることになる。
The filter-type two-wavelength analyzer of the present invention has the above-mentioned configuration, and images of a large number of filters arranged on one surface are formed on a large number of samples having the same arrangement pattern as the filter arrangement, so each filter is small. Since this is often inserted into the light beam of one projection optical system, measurements at various wavelengths can be performed in parallel with a single device, and each sample requires a minute amount, making it possible to perform compact and highly efficient multi-item analysis. The device will be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の夫々異る実施例装置
の光学系を示す平面図である。 1…光源、5,5′…同一の配置パターンを持
つフイルター群、8…チヨツパーミラー、9…結
像レンズ、12…試料配置面、14…試料セル、
13…測光素子、15…視野レンズ。
FIGS. 1 and 2 are plan views showing optical systems of apparatuses according to different embodiments of the present invention. DESCRIPTION OF SYMBOLS 1... Light source, 5, 5'... Filter group having the same arrangement pattern, 8... Chopper mirror, 9... Imaging lens, 12... Sample placement surface, 14... Sample cell,
13... Photometric element, 15... Field lens.

Claims (1)

【特許請求の範囲】[Claims] 1 一つの光源からの光を2光束に分け、これら
の2光束をチヨツパーミラーを介して同一光路上
に導くようにし、多種のフイルターが一面上に配
置された互に同じフイルター配置パターンを持つ
2つのフイルター群を上記2つの光束中に夫々独
立に挿入し、これら2つのフイルター群の像を上
記2光束が同一光路上に導かれた部分において同
一面上に交互に形成させ、この像面上に上記フイ
ルター群のフイルター配置と同じ配置パターンで
試料を配置し、これらの試料配置パターンとその
上に形成される両フイルター群の像の各フイルタ
ー配置パターンが一致して重なるようにし、上記
2フイルター群において、互に対応する位置にあ
る2種のフイルターの透過光波長が一項目の2波
長測定における2波長であるように、上記2フイ
ルター群の各フイルターを設定したことを特徴と
する2波長分析装置。
1. The light from one light source is divided into two beams, and these two beams are guided onto the same optical path via a chopper mirror. Filter groups are inserted independently into the two light beams, images of these two filter groups are alternately formed on the same plane in the portion where the two light beams are guided onto the same optical path, and the images are formed on this image plane. Arrange the sample in the same arrangement pattern as the filter arrangement of the above filter group, and make sure that these sample arrangement patterns and each filter arrangement pattern of the images of both filter groups formed thereon match and overlap, and A two-wavelength analysis characterized in that each filter in the two filter groups is set so that the transmitted light wavelengths of two types of filters located at mutually corresponding positions are two wavelengths in one item of two-wavelength measurement. Device.
JP8275081A 1981-05-29 1981-05-29 Two-wavelength analyzing device Granted JPS57197449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8275081A JPS57197449A (en) 1981-05-29 1981-05-29 Two-wavelength analyzing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8275081A JPS57197449A (en) 1981-05-29 1981-05-29 Two-wavelength analyzing device

Publications (2)

Publication Number Publication Date
JPS57197449A JPS57197449A (en) 1982-12-03
JPS6244216B2 true JPS6244216B2 (en) 1987-09-18

Family

ID=13783101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8275081A Granted JPS57197449A (en) 1981-05-29 1981-05-29 Two-wavelength analyzing device

Country Status (1)

Country Link
JP (1) JPS57197449A (en)

Also Published As

Publication number Publication date
JPS57197449A (en) 1982-12-03

Similar Documents

Publication Publication Date Title
CA2294840C (en) Multi-spectral two-dimensional imaging spectrometer
US5747813A (en) Broadband microspectro-reflectometer
JP2511057B2 (en) Spectral analysis method and apparatus
EP2160591B1 (en) Imaging optical inspection device with a pinhole camera
JP2011141288A (en) System for measuring polarimetric spectrum and other properties of sample
JP2004522163A (en) Imaging and analysis parameters of micro-moving objects such as cells
JPS61153546A (en) Particle analyzer
US4566792A (en) Multi-channel spectrophotometric measuring device
CA2166662C (en) Colorimetric measurement device for a display screen
USRE32598E (en) Feature extraction system for extracting a predetermined feature from a signal
Walker et al. Ultraviolet absorption techniques
JPS634650B2 (en)
JP2002005823A (en) Thin-film measuring apparatus
CA1108429A (en) Spectrophotometer
JPH0224535A (en) Particle analyzing apparatus
US6147350A (en) Spectroscopic residue detection system and method
EP2098849B1 (en) Test apparatus usable to measure stray light in electro-optical apparatuses
JPS6244216B2 (en)
JPS61173141A (en) Particle analyzing instrument
JPH01188816A (en) Spectral type scanning microscope
US6414753B1 (en) Low stray light czerny-turner monochromator
JPS5827029A (en) Plural channels spectrophotometric measuring device
US4995725A (en) Monochromator arrangement
JPH04270943A (en) Spectrum analyzer
US20240369484A1 (en) Method and system for spectral imaging