JPS6244178A - Recombinant vaccinia virus - Google Patents

Recombinant vaccinia virus

Info

Publication number
JPS6244178A
JPS6244178A JP60184590A JP18459085A JPS6244178A JP S6244178 A JPS6244178 A JP S6244178A JP 60184590 A JP60184590 A JP 60184590A JP 18459085 A JP18459085 A JP 18459085A JP S6244178 A JPS6244178 A JP S6244178A
Authority
JP
Japan
Prior art keywords
vaccinia virus
strain
dna
temperature
virus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60184590A
Other languages
Japanese (ja)
Inventor
Kiyoshi Oi
大井 清
Michio Morita
森田 迪夫
Kazuyoshi Suzuki
一義 鈴木
Takeshi Hashizume
橋爪 壮
Hanako Yoshizawa
吉沢 花子
Hiroyuki Goto
浩之 後藤
Sakiko Nakazato
中里 早木子
Koichi Kamogawa
鴨川 幸市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba Prefectural Government
Zeon Corp
Original Assignee
Chiba Prefectural Government
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba Prefectural Government, Nippon Zeon Co Ltd filed Critical Chiba Prefectural Government
Priority to JP60184590A priority Critical patent/JPS6244178A/en
Publication of JPS6244178A publication Critical patent/JPS6244178A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/24011Poxviridae
    • C12N2710/24111Orthopoxvirus, e.g. vaccinia virus, variola
    • C12N2710/24121Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/24011Poxviridae
    • C12N2710/24111Orthopoxvirus, e.g. vaccinia virus, variola
    • C12N2710/24141Use of virus, viral particle or viral elements as a vector
    • C12N2710/24143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Abstract

PURPOSE:To obtain a recombinant vaccinia virus giving weak side reaction after vaccination, by integrating an extraneous DNA to the non-essential DNA region of a specific attenuated Lister temperature-sensitive mutant vaccinia virus strain. CONSTITUTION:The objective recombinant vaccinia virus is produced by integrating an extraneous DNA to the non-essential DNA region of an attenuated Lister temperature-sensitive mutant vaccinia virus strain exhibiting no proliferation property in rabbit renal cell and having small pox size on the chorion of embryonated hen egg. The vaccinia virus to be integrated with the extraneous DNA is an attenutated temperature-sensitive mutant strain of Lister virus which gives smaller pox size (<=3mm) on the chorion of embryonated hen egg than the Lister mother strain. The temperature to inhibit the proliferation of the virus in rabbit renal cell is 41 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は組換えワクチニアウィルスに関し、さらに詳し
くは、ウサギ腎細胞において高温増殖性を示さず蝉化場
卵漿尿膜上でのポックサイズが小さい弱毒性リスター温
度感受性変異ワクチニアウィルス株をベクターとする組
換えワクチニアウィルスに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a recombinant vaccinia virus, and more specifically, the present invention relates to a recombinant vaccinia virus that does not exhibit high-temperature proliferation in rabbit kidney cells and has a high pock size on the chorioallantoic membrane of cicada eggs. This invention relates to a recombinant vaccinia virus using a small, attenuated Lister temperature-sensitive mutant vaccinia virus strain as a vector.

(従来の技術) 近年、ワクチニアウィルスに外来性DNAを組み込んだ
組み換えワクチニアウィルスの構築法が考案され、外来
性DNAとして、例えば感染症抗原コードDNAを用い
た組み換えワクチニアウィルスを生ワクチンとして利用
する方法が提案されるようになりた(例えば特開昭58
−129971号、特公表昭60−500518号など
)。
(Prior art) In recent years, a method for constructing a recombinant vaccinia virus in which foreign DNA is incorporated into a vaccinia virus has been devised, and a recombinant vaccinia virus using infectious disease antigen-encoding DNA as the foreign DNA can be used as a live vaccine. Methods of using
-129971, Special Publication No. 60-500518, etc.).

この方法は、例えば次のような手順に従って行われる(
第1図参照)。すなわち、まず初めにワクチニアウィル
スの増殖に必須でないDNA領域から制限酵素を用いて
適当なりNAを切り出し、これをプラスミドに組み込ん
で第1のハイプリ、ドブラスミドを調製する。次いで、
このハイブリッドプラスミドのワクチニアウィルスDN
A部分に外来性DNAを組み込み、第2のハイプリ、ド
ブラスミドを調製する。
This method is performed, for example, according to the following steps (
(See Figure 1). That is, first, an appropriate amount of NA is cut out using a restriction enzyme from a DNA region that is not essential for the propagation of vaccinia virus, and this is incorporated into a plasmid to prepare the first hyperply and doblasmid. Then,
Vaccinia virus DNA of this hybrid plasmid
Incorporate exogenous DNA into part A to prepare a second hyperply, doblasmid.

一方、予めワクチニアウィルスに感染させた動物細胞を
単画しておき、これに第2のハイブリッドプラスミドを
導入すると、感染動物細胞内でワクチニアウィルスと第
2のハイブリッドプラスミドとの間の相同組換えが起こ
り、外来性DNAを取り込んだ組換えワクチニアウィル
スが形成される(例えば前記公報、細胞工学VOL、 
2. A 9 、第84〜87頁、1983年など)。
On the other hand, if an animal cell previously infected with vaccinia virus is isolated and a second hybrid plasmid is introduced into the cell, a homologous group between the vaccinia virus and the second hybrid plasmid will be formed in the infected animal cell. Recombination occurs, and a recombinant vaccinia virus that incorporates foreign DNA is formed (for example, the above publication, Cell Engineering Vol.
2. A9, pp. 84-87, 1983).

この方法によれば、目的に応じて種々の外来性DNAを
組み込むことが可能であり、新しい生ワクチンの製法と
して有望視されている。
According to this method, it is possible to incorporate various foreign DNAs depending on the purpose, and it is seen as a promising method for producing a new live vaccine.

しかし、従来法において用いられているワクチニアウィ
ルスはWR株が殆どであり(前記公報、ジャーナル・オ
プ・ヴアイオロジー、VOL、49゜P857〜.19
84年など)、これらは種痘後の副z〜 反応が強く種痘後脳炎・腸病の発生が多く見られること
から、安全性の面でその実用化は困難な状況にあった。
However, most of the vaccinia viruses used in conventional methods are the WR strain (see the above publication, Journal of Virology, VOL, 49゜P857-.19
(1984, etc.), these have a strong adverse reaction after smallpox, and the occurrence of post-vaccination encephalitis and intestinal disease is common, so it has been difficult to put them into practical use from the standpoint of safety.

(発明が解決しようとする問題点) そこで本発明者らは、かかる従来技術の欠点を克服すべ
く鋭意検討を進めた結果、ウサギ腎細胞において高温増
殖性を示さず郷化鶏卵漿尿膜上でのポックサイズが小さ
い弱毒性のりスタ一温度感受性変異ワクチニアウィルス
株が、本来、きわめて弱い増殖性しか示さ々いにも拘ら
ず、組換えワクチニアウィルスのベクターとして使用可
能であり、しかも得られた組換え体は親株に比較して同
等もしくはそれ以上に弱か性であることを見い出し、本
発明を完成するに到った。
(Problems to be Solved by the Invention) Therefore, as a result of intensive studies to overcome the drawbacks of the prior art, the present inventors found that rabbit kidney cells do not exhibit high-temperature proliferative properties and are grown on the chorioallantoic membrane of chicken eggs. The attenuated non-temperature-sensitive mutant vaccinia virus strain with a small pock size can be used as a vector for recombinant vaccinia viruses, even though it originally shows only extremely weak propagation ability. They discovered that the resulting recombinant strain was equally or even more vulnerable than the parent strain, leading to the completion of the present invention.

(問題点を解決するための手段) かくして本発明によれば、ウサギ腎細胞において高温増
殖性を示さず郷化鶏卵漿尿膜上でのポ。
(Means for Solving the Problems) Thus, according to the present invention, rabbit kidney cells do not exhibit high-temperature proliferative properties and are grown on the chorioallantoic membrane of hen eggs.

クスサイズが小さい弱毒性リスター温度感受性変異ワク
チェアウィルス株の非必須DNA領域に外来性DNAが
組み込まれた組み換えワクチニアウィルスが提供される
Provided is a recombinant vaccinia virus in which foreign DNA is integrated into the non-essential DNA region of an attenuated Lister temperature-sensitive mutant vaccinia virus strain with a small virus size.

本発明において外来性DNAを組み込むために供される
ワクチニアウィルスは、リスター株ウィルスの弱毒性温
度感受性変異株であって、郷化鶏卵漿尿膜上でのポック
サイズが3皿以下、好ましくは1n以下とりスター親株
に比較して小さく、ウサギ腎臓細胞での増殖不能温度が
41℃、好ましくは40.5℃のものである。
The vaccinia virus used for incorporating foreign DNA in the present invention is a weakly virulent temperature-sensitive mutant strain of Lister strain virus, and has a pock size of 3 plates or less on the chorioallantoic membrane of grown chicken eggs, preferably 3 plates or less. It is less than 1n, which is smaller than the star parent strain, and the temperature at which rabbit kidney cells cannot grow is 41°C, preferably 40.5°C.

ここで弱毒性とは、ウサギやサルの中枢神経系が実質的
に認められないことをいい(実施例4参照)、とくに2
.0〜2.5 kgの日本白色種ウサギに対して5.8
 (tOgl。TCID 50/dose )を接腫し
6日間経過後、10%脳乳剤から回収されるウィルスt
 (AOglq TCID 50/d )が2以下、さ
らには1以下のものが好ましい。
Attenuated toxicity here refers to the fact that the central nervous system of rabbits and monkeys is not substantially observed (see Example 4).
.. 5.8 for Japanese white rabbits weighing 0-2.5 kg
Virus t recovered from 10% brain emulsion after 6 days of inoculating (tOgl. TCID 50/dose)
(AOglq TCID 50/d ) is preferably 2 or less, more preferably 1 or less.

かかる弱毒性温度感受性変異株は、例えば、リスター株
を30℃においてウサギ腎細胞で継代培養し、プラーク
純化を行ったのち、40℃に分けるペロ(Vero)細
胞での増殖性の極めて悪いものと る選択することで得ることができ、さらに、こうして得
た株を孵化鶏卵漿尿膜上でポ、りを形成させ、ポ、りの
比較的小さいクローンを選択することにより得ることが
できる。
Such attenuated temperature-sensitive mutant strains are, for example, those that have extremely poor proliferative properties in Vero cells after subculturing the Lister strain in rabbit kidney cells at 30°C, performing plaque purification, and dividing the strain into cells at 40°C. Furthermore, it can be obtained by allowing the thus obtained strain to form a colony on the chorioallantoic membrane of a hatched chicken egg, and selecting relatively small clones of the colony.

本発明で用いられる弱毒性温度感受性変異株の具体例と
しては、以下の方法に従って作出されるLA株やLB株
(CNTM−I −423)などが例示される。
Specific examples of the attenuated temperature-sensitive mutant strain used in the present invention include LA strain and LB strain (CNTM-I-423), which are produced according to the following method.

1)LA株の作出 原株のりスター株を30′r′−においてウサギ腎細胞
で36代継代後、プラーク純化を3回行い、50クロン
を分離した。その50クロンのうち40℃においてミド
リプル腎細胞から樹立されたペロ細胞に最も増殖の悪い
温度感受性変異株を選択した。
1) Production of LA strain The original Norister strain was passaged for 36 generations in rabbit kidney cells at 30'r'-, and plaque purification was performed three times to isolate 50 clones. Among these 50 clones, a temperature-sensitive mutant strain with the worst proliferation of Pero cells established from middle kidney cells at 40°C was selected.

この温度感受性変異株を原株と比較したところ、ウサギ
皮膚増殖性は原株よりよいが、ウサギ中枢霞変異株)と
同程度で原株と比べて著しく弱いこ1゜とが確認された
ので、少数例の接種試駆を実施した。その結果、発熱率
は14チで全身反応は軽いが、伽皮形成が遅れる傾向が
みられたので、皮膚増殖性の悪いクロンを分離すること
を試みた。クロン分離のマーカーとして孵化鶏卵漿尿膜
上のポ、りの大きさを用いた。すなわち上述の温度感受
性変異株をウサギ腎細胞で6継代代後プラーク純化を2
回行い、孵化鶏卵漿尿膜上のポックの比較的小さく(2
〜3 m )均一なりロンを分離し、これをLA株と命
名した。この株の増殖不能温度は41℃であり、親株に
比較してはるかに弱電性であったQ 2) L B株の作出 LA株をさらに30℃においてウサギ腎細胞で(1關以
下)クローンを分離し、これをLB株と命名した。この
株の増殖不能温度は40.5℃であり、LA株よりもさ
らに剥離性であった。
When this temperature-sensitive mutant strain was compared with the original strain, it was confirmed that rabbit skin proliferation was better than the original strain, but was comparable to that of the rabbit central haze mutant strain, and significantly weaker than the original strain. A small number of vaccination trials were conducted. As a result, the fever rate was 14 cm and the systemic reaction was mild, but skin formation tended to be delayed, so an attempt was made to isolate Chron, which has poor skin proliferation. The size of the pores on the chorioallantoic membrane of hatched chicken eggs was used as a marker for chron separation. In other words, after 6 passages of the above-mentioned temperature-sensitive mutant strain in rabbit kidney cells, plaque purification was carried out for 2
The pock on the chorioallantoic membrane of the hatched chicken egg was relatively small (2
~3 m) A homogeneous strain was isolated and named LA strain. The growth-inhibiting temperature of this strain was 41°C, and it was much weaker than the parent strain. The strain was isolated and named LB strain. The growth failure temperature of this strain was 40.5°C, and it was more exfoliating than the LA strain.

なお、親株として用いたりスター株とLB株の性質の比
較は表1に示すとうりである。
A comparison of the properties of the star strain and the LB strain used as the parent strain is shown in Table 1.

表1  リスター株とLB株の比較 リスター株   LB株 増殖不能温度(ウサギ腎培養細胞) 41℃以上 40
.5℃グラ、クサイズ(ウサギ腎培養細胞)大(3,5
m)  中(2,0mm)ポックサイズ       
   大(4,0m)小(0,9mm)詳化鶏卵漿尿膜
での増殖性     +1+     ÷ペロ細胞での
増殖性        +     十(注1)中枢神
経系病原性 ウサギ(注2)         +l+     +
カニクイザル(注3)      有(死亡) 無(生
残)末梢感染による中枢神経系への侵襲性 マウス(酢酸コルチゾン皮下接種) 有     無マ
ウス(無処置)        有     無皮膚増
殖性 ウサギ           +    +ヒト   
            升     十注に両者の間
に2tog1゜程の差がある。
Table 1 Comparison of Lister strain and LB strain Lister strain LB strain Growth inability temperature (rabbit kidney culture cells) 41°C or higher 40
.. 5℃, large size (rabbit kidney culture cells) (3,5
m) Medium (2.0mm) pock size
Large (4.0 m) Small (0.9 mm) Detailed Proliferative ability in chicken egg chorioallantoic membrane +1+ ÷ Proliferative ability in Pero cells + 10 (Note 1) Central nervous system pathogenic rabbit (Note 2) +l+ +
Cynomolgus monkey (Note 3) Yes (death) No (survival) Invasion of the central nervous system due to peripheral infection Mouse (subcutaneous cortisone acetate inoculation) Yes No mouse (no treatment) Yes No skin growth rabbit + +Human
There is a difference of about 2 tog 1 degree between the two in 10 notes.

注2 、10  TCID5oのウィルスを脳内接種後
、6日目におけるウィルス回収量による。
Note 2, 10 Based on the amount of virus recovered on day 6 after intracerebral inoculation with TCID5o virus.

注3 : 10””’TCID5oのウィルスを視床内
接種による。
Note 3: Intrathalamus inoculation with 10''''TCID5o virus.

これらワクチ;アウィルス温度感受性変異株に外来性D
NAを組み込む方法に関しては常法に従えばよく、例え
ば、ワクチニアウィルスDNA領域のうち欠失してもな
んらウィルスとしての増殖性に根本的な影響を及ぼさな
い非必須DNA領域を利用することにより達成できる。
These vaccines;
As for the method of incorporating NA, conventional methods may be followed; for example, by using a non-essential DNA region of the vaccinia virus DNA region that, even if deleted, does not have any fundamental effect on the propagation ability of the virus. It can be achieved.

すなわち前記の非必須DNA領域の一部あるいは全てを
含む第1の組換えベクターを構築し、さらに第1の組換
えベクターに組み込まれた非必須DNA領域に外来性D
NAが挿入された第2の組み換えベクターを構築し、あ
らかじめ前述の温度感受性ワクチニア変異株を感染させ
た動物細胞に第2の組換えベクターをリン酸カルシウム
法などの常法で導入させれば、感染動物細胞内で該DN
A領域を介しての相同組換えが起こり、外来性DNAが
組み込まれた組み換えワクチニアウィルスが得られる(
例えば特開昭58−129971号、特公表昭60−5
00518号など)。
That is, a first recombinant vector containing part or all of the non-essential DNA region described above is constructed, and a foreign DNA is added to the non-essential DNA region integrated into the first recombinant vector.
By constructing a second recombinant vector into which NA has been inserted, and introducing the second recombinant vector into animal cells that have been previously infected with the temperature-sensitive vaccinia mutant using a conventional method such as the calcium phosphate method, infected animals can be infected. The DN inside the cell
Homologous recombination occurs via the A region, and a recombinant vaccinia virus incorporating foreign DNA is obtained (
For example, JP-A-58-129971, JP-A-60-5
00518 etc.).

本発明で用いられる前記の非必須DNA領域は増殖性に
本質的な影響を及ぼさない部分であればいずれでもよく
、その具体例として、例えばチミジンキナーゼ(TK)
をコードするDNA領域、赤血球凝集素(HA)をコー
ドするDNA領域、特開昭58−129971号に見ら
れるようなりNA領領域どが例示される。
The above-mentioned non-essential DNA region used in the present invention may be any region as long as it does not have an essential effect on proliferation, and specific examples thereof include, for example, thymidine kinase (TK).
Examples include a DNA region encoding hemagglutinin (HA), a DNA region encoding hemagglutinin (HA), and an NA region as seen in JP-A-58-129971.

一方、第1の組換えベクターを構築するために用いられ
るベクターは、非必須DNAを挿入しうるものであれば
とくに制限されるものではなく、その具体例として、例
えばpBR322、pBR325,pBR327゜pB
R328、pUC7、pUC8、pUC9などのごとき
プラスミド、λファージ、M13ファージなどのごとき
ファージ、pHC79(ジーン、U、291.1980
年)などのごときコスミドが例示される。
On the other hand, the vector used to construct the first recombinant vector is not particularly limited as long as it can insert non-essential DNA, and specific examples include pBR322, pBR325, pBR327゜pB
Plasmids such as R328, pUC7, pUC8, pUC9, etc., phages such as λ phage, M13 phage, etc., pHC79 (Gene, U, 291.1980
Examples include cosmids such as

第1の組換えベクターの構築は常法に従って実mすれば
よく、例えば、ワクチェアウィルスDNAを適当な制限
酵素で完全分解した後、非必須領域に相当するDNA断
片を分離精製し、該制限酵素切断末端と同じ接着末端を
DNAに生じさせることのできる制限酵素で切断したベ
クターと酵素的に結合させれば良い。
Construction of the first recombinant vector may be carried out according to a conventional method. For example, after completely digesting the vaccine virus DNA with an appropriate restriction enzyme, separating and purifying the DNA fragment corresponding to the non-essential region, and It is sufficient to enzymatically link the DNA with a vector that has been cut with a restriction enzyme that can generate sticky ends in DNA that are the same as the enzyme-cleaved ends.

目的のベクターが首尾良く得られたかどうかは、切断ベ
クターと酵素的に結合させた組換えベクターを含むDN
A混合物で、例えば大腸菌のごとき細菌を形質転換(ま
たは形質導入)し、得られる形質転換株(または形質導
入法)の中から目的の非必須領域DNAが挿入されたベ
クターを保持する株を選択する等の方法で確認すればよ
い。
Whether the desired vector was successfully obtained is determined by the DNA containing the recombinant vector that has been enzymatically linked to the cut vector.
Transform (or transduce) bacteria such as E. coli with mixture A, and select from the resulting transformed strains (or transduction method) those that carry the vector into which the desired non-essential region DNA has been inserted. You can check by doing something like

本発明においては、かくして得られた第1の組換えベク
ターと外来性DNAとから、第2の組換えベクターが構
築される。用いられる外来性DNAはとくに制限されな
いが、生ワクチンの開発が期待されている感染症病原体
(例えばウィルス、細菌、寄生虫、原虫など)の抗原タ
ンパクをコードするDNAであることが好ましく、その
具体例として、例えばヘル4スウィルス、水痘性口内炎
ウィルス、B型肝炎ウィルス、A型肝炎ウィルス、非A
非B型肝炎ウィルス、口蹄疫ウィルス、ポリオウィルス
、狂犬病ウィルス、日本脳炎ウィルス、コレラ菌、サル
モネラ菌、破傷風菌、マラリア原虫、住血吸虫などの抗
原タン・ンクをコードするDNA領域などが例示される
In the present invention, a second recombinant vector is constructed from the thus obtained first recombinant vector and foreign DNA. The foreign DNA used is not particularly limited, but it is preferably DNA encoding an antigen protein of an infectious disease pathogen (e.g., virus, bacteria, parasite, protozoa, etc.) for which the development of a live vaccine is expected. Examples include health virus, varicella stomatitis virus, hepatitis B virus, hepatitis A virus, non-A
Examples include DNA regions encoding antigen tanks such as non-B hepatitis virus, foot-and-mouth disease virus, poliovirus, rabies virus, Japanese encephalitis virus, Vibrio cholerae, Salmonella enterica, Clostridium tetani, Plasmodium, and Schistosoma.

第2の組換えベクターの構築法も常法に従って行えばよ
く、例えば第1の1組換えベクターに挿入されたワクチ
ニアウィルス非必須DNA領域に切断部位を持つ制限酵
素で該ベクターを切断し、該制限酵素切断末端と同じ接
着末端を持つ外来性DNA断片を酵素的に結合させれば
よい。
The second recombinant vector may also be constructed according to a conventional method, for example, by cutting the first recombinant vector with a restriction enzyme having a cutting site in the non-essential DNA region of the vaccinia virus, An exogenous DNA fragment having the same adhesive end as the restriction enzyme-cleaved end may be enzymatically linked.

目的とする第2の組換えベクターの取得は、第1の組換
えベクターの場合と同様にして行うことができる。
The desired second recombinant vector can be obtained in the same manner as the first recombinant vector.

本発明においては、次いで予めワクチニアウィルスを感
染させた動物細胞に第2の組換えベクターを導入するこ
とによって、組換えワクチニアウィルスが形成される。
In the present invention, a recombinant vaccinia virus is then formed by introducing a second recombinant vector into animal cells that have been previously infected with vaccinia virus.

ここで用いられる動物細胞はワクチニアウィルスが増殖
可能なものであればよく、その具体例として、例えばT
K143(ヒト骨肉腫由来) 、F’L(ヒト羊膜由来
)、He1a(ヒト子宮頚部癌由来)、KB(ヒト鼻咽
腔癌由来)、CJ−1(サル腎由来)、B10−1 (
サル腎由来)、RK−13(ウサギ腎由来)、L929
(マウス結合組織由来)などが例示される。
The animal cells used here need only be those in which vaccinia virus can propagate, and specific examples include, for example, T.
K143 (derived from human osteosarcoma), F'L (derived from human amniotic membrane), He1a (derived from human cervical cancer), KB (derived from human nasopharyngeal carcinoma), CJ-1 (derived from monkey kidney), B10-1 (
(derived from monkey kidney), RK-13 (derived from rabbit kidney), L929
(derived from mouse connective tissue).

また組換えベクターを動物細胞中に導入する手法は常法
に従えばよく1例えばリン酸カルシウム法、リポゾーム
法、マイクロインソエクシ、ン法などによって行うこと
ができる。
In addition, the recombinant vector can be introduced into animal cells by conventional methods, such as the calcium phosphate method, liposome method, microinjection method, and the like.

構築された組換えワクチニアウィルスの選択も常法に従
って行えばよく、例えば非必須DNA領域がチミジンキ
ナーゼをコードするDNA領域である場合には、感染動
物細胞にチミジンキナーゼ欠損株を用い、相同ffl換
えを起した組換えワクチニアウィルスのプラーク形成用
培地として25μI/−の5−ブロモデオキシウリ・シ
ン(BudR)を含む細胞培養培地を用いて3日間培養
し、組み換えワクチニアウィルスの形成するプラークを
選択することにより得ることができる。
Selection of the constructed recombinant vaccinia virus may be carried out according to conventional methods. For example, when the non-essential DNA region is a DNA region encoding thymidine kinase, a thymidine kinase-deficient strain is used as the infected animal cell, and the homologous ffl Plaques formed by the recombinant vaccinia virus were cultured for 3 days using a cell culture medium containing 25 μI/- of 5-bromodeoxyuricin (BudR) as a plaque-forming medium for the recombinant vaccinia virus. can be obtained by selecting .

しかし、リスター温度感受性変異ワクチニアウィルス株
として増殖不能温度が40.5℃の株を用いる場合には
、組換えワクチニアウィルスの取得が著しく困難であり
、Bu dRの濃度を低くした培地を用いて5日以上培
饗することによって初めて組換えワクチニアウィルスの
プラークを選択することができる。
However, when using a Lister temperature-sensitive mutant vaccinia virus strain with a growth incapacity temperature of 40.5°C, it is extremely difficult to obtain a recombinant vaccinia virus, and a medium with a low concentration of Bu dR is used. Plaques of recombinant vaccinia virus can be selected only after culturing for 5 days or more.

(本発明の効果) かくして本発明によれば、ウサギ腎細胞において高温増
殖性を示さずWfヒ鶏卵漿尿膜上でのポックサイズが小
さいリスター温度感受性変異ワクチニアウィルス株の非
必須DNA領域に外来性DNAを組み込むことにより、
マウスの末梢感染による中枢神経への侵襲性が認められ
ず接種後の副反応の弱い組み換えワクチニアウィルスを
得ることができる。
(Effects of the Present Invention) Thus, according to the present invention, the non-essential DNA region of the Lister temperature-sensitive mutant vaccinia virus strain that does not exhibit high-temperature proliferation in rabbit kidney cells and has a small pock size on the Wf chicken egg chorioallantoic membrane. By incorporating foreign DNA,
It is possible to obtain a recombinant vaccinia virus that is not invasive to the central nervous system due to peripheral infection of mice and has weak side effects after inoculation.

すなわち、実施例4において具体的に説明するが、動物
試験において組換え体は親株と同等か又は、ウサギの中
枢神経系病原性試験の成績から親株より神経毒性の低い
ウィルスと判断され、組換え体の安全性が高いことが示
唆された。
In other words, as will be explained in detail in Example 4, the recombinant virus was judged to be equivalent to the parent strain in animal tests, or to be less neurovirulent than the parent strain based on the results of the rabbit central nervous system pathogenicity test. This suggests that it is physically safe.

(実施例) 以下に実施例を挙げて本発明をさらに具体的に説明する
(Example) The present invention will be described in more detail with reference to Examples below.

実施例1 (1)  ワクチェアウィルスTK遺伝子を含む第1の
組換エベクター(グラスミドPCZO2)の作製(第2
図参照) 5 tJのpBR328をEe oRIで消化したのち
、フェノール・クロロホルム(1:1)で抽出シ、エタ
ノール沈殿により開裂したpBR328を回収し、次い
でS1酵素で処理することにより両端を平滑末端とした
。このDNA断片をライr−シ、ンし、EcoRI切断
部位を持たないプラスミド(pcZOl )を得た。
Example 1 (1) Production of the first recombinant evector (Grasmid PCZO2) containing the vaccine virus TK gene (second
(See figure) 5tJ pBR328 was digested with Ee oRI, extracted with phenol/chloroform (1:1), cleaved pBR328 was recovered by ethanol precipitation, and then both ends were made blunt by treating with S1 enzyme. did. This DNA fragment was ligated to obtain a plasmid (pcZOl) that does not have an EcoRI cleavage site.

pcZOlの選択はコンピテントな大腸菌C600株を
連結されたDNAで形質転換し、クロラムフェニコール
感受性の形質転換株を選択することによって実施した。
Selection of pcZOl was performed by transforming competent E. coli strain C600 with the ligated DNA and selecting chloramphenicol-sensitive transformants.

次いでプラスミドpcZO15μmをHlndDIで処
理し、フェノールやクロロホルムで抽出してエタノール
沈殿後、DNAを回収した。5′末端リン酸をアルカリ
フォスターゼ処理によって除去し、DNAを再びフェノ
ール・クロロホルム抽出ジェタノール沈殿によって回収
した。開裂した0、 5μyのpcZOI DNAを、
ワクチニアウィルスチミジンキナーゼ(TK)遺伝子を
含む0.1μgの精製ワクチニアウィルス(WR株)H
lndI[[J断片に連結し、得られた)・イブリッド
プラスミドをpcZO2と命名した。
Next, 15 μm of plasmid pcZO was treated with HlndDI, extracted with phenol or chloroform, precipitated with ethanol, and then the DNA was recovered. The 5'-terminal phosphoric acid was removed by alkaline phosphatase treatment, and the DNA was recovered again by phenol-chloroform extraction and jetanol precipitation. The cleaved 0.5 μy pcZOI DNA was
0.1 μg of purified vaccinia virus (WR strain) H containing the vaccinia virus thymidine kinase (TK) gene
The hybrid plasmid obtained by ligation to the lndI[[J fragment was named pcZO2.

pcZO2中にワクチニアウィルスTK遺伝子が存在す
ることの確認は、以下の平頭によって行った。
The presence of the vaccinia virus TK gene in pcZO2 was confirmed by the following flat head analysis.

すなわち、連結されたDNAでコンピテントな大腸菌H
B 101株を形質転換し、アンピシリン耐性、テトラ
サイクリン感受性の菌を選択し、次いでビルンゲイム(
Blrnboim )とドーリ−(Doly)の方法〔
ヌクレイツク・アシッド・リサーチ、7.1513〜p
(1979年)〕でプラスミドを抽出し、HlndI[
Iで消化したのち電気泳動によってもとのワクチェアウ
ィルスHtndlJ断片と同じ長さの断片が存在するか
どうかを調べることによって確認した。
That is, the ligated DNA allows for competent E. coli H
B101 strain was transformed, ampicillin-resistant and tetracycline-sensitive bacteria were selected, and then Birungheim (
Blrnboim) and Doly's method [
Nucleitsk Acid Research, 7.1513~p
(1979)] and extracted the plasmid with HlndI [
This was confirmed by electrophoresis after digestion with I and examining whether a fragment having the same length as the original vaccine virus HtndlJ fragment was present.

(2)  HBsAg遺伝子を含む第2の組換えベクタ
ー(グラスミドpcZO3)の作製 B型肝炎表面抗原(HBmAg )をコードする遺伝子
を含むグラスミドpBRHBadr72 (ヌクレイツ
ク・7 ’/ y )” ・リサーチ、VOL 11 
、 A 13 、4601〜4610.1983年) 
10 μNをBamHIとXhoIで消化したのち低融
点電気泳動(40&ルト、16時間)で約1.27 k
bのDNA断片を分離した。次いでエチジウムブロマイ
ド染色でDNA断片を確認後、ダルを切υ出し、フェノ
ール抽出したのち、エタ記シ ノール沈殿によl) HBsAg k伝子を含む約1.
27kbのDNA断片を回収した。回収したDNA断片
は10mMTrla−HCt(PH8,0)、l mM
 EDT人を含む緩衝液10μtに溶解し、DNAポリ
メラーゼで処理して平滑末端にしたのちフェノール・ク
ロロホルムで抽出ジェタノール沈殿によシ回収した。
(2) Creation of a second recombinant vector (Grasmid pcZO3) containing the HBsAg gene Grasmid pBRHBadr72 (nucleitsu 7'/y) containing the gene encoding the hepatitis B surface antigen (HBmAg)" Research, VOL 11
, A 13, 4601-4610.1983)
After digesting 10 μN with BamHI and XhoI, approximately 1.27 k was obtained by low melting point electrophoresis (40°C, 16 hours).
The DNA fragment of b was isolated. Next, after confirming the DNA fragments by ethidium bromide staining, the dal was excised, extracted with phenol, and then precipitated with ethyl-sinol.
A 27 kb DNA fragment was recovered. The recovered DNA fragment was mixed with 10mM Trla-HCt (PH8,0), 1mM
The DNA was dissolved in 10 μt of a buffer containing EDT, treated with DNA polymerase to make the ends blunt, extracted with phenol/chloroform, and recovered by precipitation with jetanol.

一方、EcoRIリンカ−1μgを、カイネーシ、/バ
クファー中、10ユニツトのキナーゼで5/末端をリン
酸化し、(37℃、30分)、これに先のHBsAg 
DNA断片を加えライダージョンした(12℃、16時
間)。反応物をフェノール・クロロホルム処理し、エタ
ノール沈殿でDNAを回収した後、さらに20ユニツト
のEcoRIを加えて消化した後、フェノール争クロロ
ホルム処理し、エタノール沈殿を行った。
On the other hand, 1 μg of EcoRI linker was phosphorylated at the 5/terminus with 10 units of kinase in Kainesi/Bacfur (37°C, 30 minutes), and this
A DNA fragment was added and subjected to lidarization (12°C, 16 hours). The reaction product was treated with phenol and chloroform, and DNA was recovered by ethanol precipitation. After digestion by adding 20 units of EcoRI, the reaction product was treated with phenol and chloroform, followed by ethanol precipitation.

一方、プラスミドpC2O2を緩衝液中で2単位Ec 
oRI/μllDNAで37℃、2時間処理することに
より直線化した。直線化きれたプラスミドを50rnM
TrisHCt(d49.0 )、1 mM Mg(、
t2.0.1 mM ZnC22゜1mMスノ音ミノミ
ノンむ緩衝液中で0.1単位ウシ小腸アルカリフォスタ
ーゼで37℃、30分静置することによってプラスミド
5′末端を脱リン酸化した。等容量のフェノール・クロ
ロホルで抽出しエタノール沈殿によってDNAを回収し
た。この直鎖状プラスミド0.1 pgを66 mM 
Trim−HCt(pH7,5)、6、6 mM Mg
Cl2.10 mMDTT、 0.5 mMATP中で
12℃、15時間処理したのち、HBaAg遺伝子を含
む1、27 kb (D EcoRI断片0.2 μi
と結合した。このグラスミドを大腸菌HB 101株を
形質転換するのに用い、形質転換された大腸菌を1.5
%寒天、50μg/lアンピシリン加LB培地で37℃
、15時間培養した。寒天上に生育した形質転換大腸菌
を50μl/dアンピシリン加LB液体培地で37℃、
15時間培養し、前記Birnboim & Doly
の方法で精製した。それぞれDNA試料10チを緩衝液
中で、5単位のE(!ORIで37℃で1時間消化し、
アガロース電気泳動によってプラスミドDNAの1.2
7kbEe oRI断片をスクリーニングした。
Meanwhile, plasmid pC2O2 was added to 2 units of Ec in buffer solution.
Linearization was performed by treatment with oRI/μll DNA at 37°C for 2 hours. 50rnM of linearized plasmid
TrisHCt (d49.0), 1 mM Mg (,
t2. The 5' end of the plasmid was dephosphorylated by incubating at 37°C for 30 minutes with 0.1 units of bovine small intestine alkaline foster enzyme in a buffer containing 0.1 mM ZnC22 and 1 mM Sunominomiminone. DNA was recovered by extraction with equal volumes of phenol and chloroform and ethanol precipitation. 0.1 pg of this linear plasmid was added to 66 mM
Trim-HCt (pH 7,5), 6, 6 mM Mg
After treatment at 12°C for 15 hours in Cl2.10 mM DTT and 0.5 mM ATP, a 1.27 kb (D EcoRI fragment 0.2 μi
combined with. This Grasmid was used to transform E. coli HB 101 strain, and the transformed E. coli was transformed to 1.5
% agar, 37°C in LB medium supplemented with 50 μg/l ampicillin.
, and cultured for 15 hours. Transformed E. coli grown on agar was grown in LB liquid medium supplemented with 50 μl/d ampicillin at 37°C.
After culturing for 15 hours, the Birnboim & Doly
Purified using the method. Ten DNA samples each were digested in buffer with 5 units of E (!ORI) for 1 hour at 37°C.
1.2 of plasmid DNA by agarose electrophoresis
A 7 kb Ee oRI fragment was screened.

1、27 kb EeoRI B型肝炎ウィルスDNA
断片は、それぞれのプラスミド内で正又はその逆の方向
に挿入されうるので、挿入遺伝子の方向性をスクリーニ
ングした。スクリーニングはプラスミドpcz O2か
ら誘導されたプラスミドを緩衝液中でXholで1時間
消化し、生成したDNA断片を7ガa−スミ気泳動で分
析し、その長さを比較することによって行った@HBs
Ag遺伝子がワクチェアウィルスTK遺伝子プロモータ
ーに対し正方向に挿入てれているプラスミドをpcZO
3、逆の方向に挿入されているプラスミドをpcZO4
と命名した。
1.27 kb EeoRI hepatitis B virus DNA
Since fragments can be inserted in the forward or reverse orientation within their respective plasmids, the orientation of the inserted genes was screened. Screening was performed by digesting the plasmid derived from plasmid pczO2 with Xhol in a buffer solution for 1 hour, analyzing the generated DNA fragments by 7-ga-Sumi electrophoresis, and comparing their lengths.
A plasmid in which the Ag gene is inserted in the forward direction of the vaccine virus TK gene promoter is called pcZO.
3. pcZO4 plasmid inserted in the opposite direction
It was named.

(3)組換えワクチニアウィルスの作出6αのペトリ皿
に培養され九RK−13細胞を弱毒位そうウィルス株(
弱毒位そう株LA、ウサギ腎細胞における増殖不能温度
41℃、卿化鶏卵漿尿膜上でのポックサイズ2〜3m、
親株からの取得法は前述のとりF) ) o、 I P
FUで接種45分後、ワクチェアウィルスTK遺伝子中
にHBsAg−遺伝子を挿入されたグラスミドpcZO
312μgを2.21nlの滅菌水で溶かし、樋高う(
蛋白、核酸、酵素、27゜340.1985)の方法に
よってDNA−リン酸カルシューム共沈物をつくυ、そ
の0.5 m7を感染RK−13細胞上に滴下した。3
0分間37℃5チCO□インキユベーターに静置し、1
0チ牛脂児血清を含むイーグル(Eagle ) ME
M 4.5ゴを加えた。
(3) Creation of recombinant vaccinia virus A virus strain (6α) cultured in Petri dishes and attenuated to RK-13 cells (
Attenuated strain LA, temperature incapable of growth in rabbit kidney cells: 41°C, pock size on aged chicken egg chorioallantoic membrane: 2-3 m.
The acquisition method from the parent stock is as described above F)) o, IP
45 minutes after inoculation with FU, Grasmid pcZO with the HBsAg-gene inserted into the vaccine virus TK gene.
Dissolve 312 μg in 2.21 nl of sterile water and pour
A DNA-calcium phosphate coprecipitate was prepared by the method of Proteins, Nucleic Acids, Enzymes, 27, 340, 1985), and 0.5 m7 of it was dropped onto infected RK-13 cells. 3
Leave it in an incubator at 37°C for 0 minutes and leave it in a 5-inch CO□ incubator.
Eagle ME containing 0% tallow serum
M 4.5 go was added.

その3時間後培養液を交換し、48時間培養後、培養細
胞ごと3度凍結融解し、超音波処理(1分)した。
Three hours later, the culture medium was exchanged, and after culturing for 48 hours, the cultured cells were frozen and thawed three times and treated with ultrasound (1 minute).

組換え体のHBmAg遺伝子挿入を確認するため、63
のベトリ皿に培養石れたTK陰性(TK−)143細胞
に上記プラーク形成ウィルスを接種し、45分後lチ寒
天、12%牛脂児血清、25μji/jllBUdR加
Eagl@MEMを積層し、3日間培養後感染細胞を0
.01%中性紅で染色した。ブラック形成率は約0.0
05%でありた。ペトリ皿よシ寒天培地を除去し4℃に
保存しペトリ皿の底に残った細胞表面に滅菌し九ナイロ
ンメンブレンを押えつけてウィルスを移し、0.5 N
 NaOHで10分、1Mトリス塩酸緩衝液で5分の処
理を3回繰返した後、1.5M NaCL 0.5 M
 ) ’)ス塩酸緩衝液で5分処理した。
To confirm the insertion of the HBmAg gene in the recombinant, 63
The above plaque-forming virus was inoculated into TK-negative (TK-) 143 cells cultured in a vetri dish, and 45 minutes later, L-chi agar, 12% beef tallow serum, and Eagl@MEM containing 25μji/jllBUdR were layered. 0 infected cells after culture for 1 day
.. Stained with 01% neutral red. Black formation rate is approximately 0.0
It was 0.05%. Remove the agar medium from the Petri dish, store it at 4°C, and transfer the virus to the cell surface remaining at the bottom of the Petri dish by pressing a sterilized nylon membrane with 0.5N.
After repeating the treatment for 10 min with NaOH and 5 min with 1 M Tris-HCl buffer three times, 1.5 M NaCl 0.5 M
)') Treated with hydrochloric acid buffer for 5 minutes.

2倍SSC(1倍SSC、0,15M NaC1,0,
015Mc 、H4(OH)(COONa )、 )で
飽和させ、80℃、2時間焼きつけた。4倍SET (
0,6MNaC2,0,08MTrls HCL、 4
mMEDTAp)17.8 ) −10倍Dsnhar
dt−0,1%SDSで68℃、2時間処理した。4倍
SET −10倍り@nhardt −0,1% SD
S −0,1%Na4P20.− s o μg/ ’
変性サケ精子DNAとニックトランスレージ、ンにより
て Pで標識したB型肝炎DNAを入れて68℃、14
時間ハイプリダイジェイシ、ンした。洗浄後、ナイロン
メンプランとX線フィルムを重ね、オートラジオグラフ
ィを行い、スポットの存在を確認し、4℃に保存してあ
った寒天にX線フィルムを重ねスポットと合致するプラ
ークがHBaAg遺伝子を含む組換え体(rLA株)と
同定し滅菌パスツールピペットで単離した。
2x SSC (1x SSC, 0,15M NaC1,0,
015Mc, H4(OH)(COONa), ) and baked at 80°C for 2 hours. 4x SET (
0,6M NaC2,0,08MTrls HCL, 4
mMEDTAp)17.8) -10x Dsnhar
It was treated with dt-0.1% SDS at 68°C for 2 hours. 4x SET -10x @nhardt -0.1% SD
S-0,1% Na4P20. - s o μg/'
Add denatured salmon sperm DNA and hepatitis B DNA labeled with P by nick translage and incubate at 68°C for 14 days.
Time was high. After washing, a nylon membrane plate was overlaid with an X-ray film, and autoradiography was performed to confirm the presence of the spot.The X-ray film was then placed on agar stored at 4°C, and plaques that matched the spots were found to contain the HBaAg gene. A recombinant (strain rLA) containing the virus was identified and isolated using a sterile Pasteur pipette.

実施例2 リスター温度感受性変異ワクチニアウィルスとして弱毒
位そう株LB株(ウサギ腎細胞における増殖゛不能温度
40.5℃、卿化鶏卵漿尿膜上でのポックサイズ約0.
99−1CNC−1−423)を用いること、及び組換
えワクチニアウィルスの選択法を以下のごとく変更する
こと以外は実施例1に準じて実験を行い、HBsAg遺
伝子を含む組換え体(rLB株)を得た。
Example 2 Lister temperature-sensitive mutant vaccinia virus, attenuated LB strain (temperature at which growth is ineffective in rabbit kidney cells: 40.5°C, pock size on aged chicken egg chorioallantoic membrane, approximately 0.5°C).
99-1CNC-1-423) and the selection method of the recombinant vaccinia virus was changed as follows. ) was obtained.

組換え体の選択法: 6−のべ) IJ皿に培養されたTK陰性(TK−)1
43細胞に上記プラーク形成ウィルスを接種し、45分
後1%寒天、12チ牛脂児血清、15μVmjBudR
加Eagle MEMを積層し、3日間培養後、同じ組
成の避Mを積層し、さらに3日間培養した。
Recombinant selection method: 6-plate) TK negative (TK-) 1 cultured in IJ dish
43 cells were inoculated with the above plaque-forming virus, and 45 minutes later, the cells were inoculated with 1% agar, 12% tallow serum, and 15μVmjBudR.
Eagle MEM with additives was layered and cultured for 3 days, then Evacuation MEM of the same composition was layered and cultured for an additional 3 days.

その後、感染細胞を0.01%中性紅で染色し、以下、
実施例1と同様に処理した。
Then, the infected cells were stained with 0.01% neutral scarlet, and the following
It was treated in the same manner as in Example 1.

比較例1 ワクチニアウィルスとしてリスター原株(LO株、ウサ
ギ腎細胞における増殖不能温度〉41℃、郷化鶏卵漿尿
膜上でのポックサイズ4■)を用いること以外は実施例
1と同様にして実験を行い、組換えワクチニアウィルス
(rLo株)を得た。
Comparative Example 1 The same procedure as in Example 1 was carried out, except that Lister original strain (LO strain, temperature incapable of proliferation in rabbit kidney cells > 41°C, pock size 4 on the chorioallantoic membrane of grown chicken eggs) was used as the vaccinia virus. An experiment was conducted to obtain a recombinant vaccinia virus (rLo strain).

比較例2 ワクチニアウィルスとしてWR株(ウサギ腎細胞におけ
る増殖不能温度〉41℃)を用いること以外は実施例1
と同様にして実験を行い、組換えワクチニアウィルス(
rWR株)ヲ得*。
Comparative Example 2 Example 1 except that the WR strain (temperature incapable of growth in rabbit kidney cells > 41°C) was used as the vaccinia virus.
Experiments were carried out in the same manner as above, and recombinant vaccinia virus (
rWR stock) wo profit*.

実施例3 組換え体の細胞での発現 25 cm”の培養瓶に培養され九RK−13細胞に0
、 I PFUO組換え体及び親株を接種し、1時間ウ
ィルス吸着後、10%牛脂児血清を含むイーグル(Ea
gle ) MEM培地を加え、37℃、14日間培養
した。対照として、非感染RK−13細胞をシいた。培
養後、凍結融解を3回行い、超音波処理後、遠心(3,
000rpm、10分)によシ細胞破片を除去し、上清
中のHBsAg量を酵素抗体法(EIA。
Example 3 Expression of recombinant cells in 9RK-13 cells cultured in a 25 cm culture bottle.
, I PFUO recombinant and parent strain were inoculated, and after virus adsorption for 1 hour, Eagle (Ea
gle) MEM medium was added and cultured at 37°C for 14 days. As a control, uninfected RK-13 cells were seeded. After culturing, freeze-thaw three times, sonicate, and centrifuge (3,
000 rpm, 10 minutes) to remove cell debris, and the amount of HBsAg in the supernatant was determined by enzyme-linked immunosorbent assay (EIA).

Abott Lab )で測定した。抗)tBaAg抗
体で;−トされたビーズを0.2dの遠心上清とともに
、15時間室温で静置し、ペルオキダーゼ標識抗HBs
Agヤギ抗血清0.21dを加え40℃、1時間反応さ
せた。5ゴの蒸留水でビーズを3回洗浄後、−酵素反応
用試験管に移し、オルトフェニサルジアミンニ塩酸塩を
含む過酸化水素水0.31!7!を加えて30分反応嘔
せ、INの硫酸IWLtを加え酵素反応を停止させた。
Abbott Lab). The beads treated with anti-)tBaAg antibody were allowed to stand at room temperature for 15 hours with the centrifuged supernatant for 0.2 d, and the beads were incubated with peroxidase-labeled anti-HBs.
0.21 d of Ag goat antiserum was added and reacted at 40°C for 1 hour. After washing the beads three times with 5 g of distilled water, transfer them to a test tube for enzyme reaction and add 0.31!7! of hydrogen peroxide solution containing orthophenysaldiamine dihydrochloride. was added to react for 30 minutes, and IN sulfate IWLt was added to stop the enzyme reaction.

波長492 nmにおける吸光度を測定し、HBiAg
抗原量は同時に実施したHBsAg陽性・陰性対照を参
照にして算出した。その成績は表2のとおシである。
The absorbance at a wavelength of 492 nm was measured, and HBiAg
The antigen amount was calculated with reference to HBsAg positive and negative controls that were performed at the same time. The results are shown in Table 2.

表2 組換体からのHB畠Ag産生 実施例4 in vivoマーカー確認試験 親株のin vivo マーカーと、HBaAg遺伝子
が挿入された組換え体のin vlvoの性状との差異
を確認するため、ウサギの中枢神経系病原性試験及び属 マウスの末枢感染による中枢神経系への侵襲性試験を実
施した。
Table 2 HB Hatake Ag Production from Recombinant Example 4 In Vivo Marker Confirmation Test In order to confirm the difference between the in vivo marker of the parent strain and the in vlvo properties of the recombinant into which the HBaAg gene has been inserted, rabbit central A nervous system pathogenicity test and a central nervous system invasiveness test by peripheral infection of mice of the genus were conducted.

ィ)ウサギの中枢神経系病原性試験 2.0〜2.5 kIIの健康な日本白色様ウサギに、
各種ワクチニアウィルスを10  # 10  TCI
D5oノ’フィルス液0.25dずつ脳内に接種し、6
日間臨床観察後、生残ウサギはと殺し脳からウィルス回
収、病理組織学的検査を実施した。その成績は表3のと
シりである。なお、表3中の+は軽度、丑は中等度、+
は中等度〜高度、曲は高度であることを示す。
b) Rabbit central nervous system pathogenicity test 2.0 to 2.5 kII healthy Japanese white-like rabbits.
10 various vaccinia viruses #10 TCI
Inoculate 0.25 d of D5o no'filus solution into the brain, and
After clinical observation for one day, the surviving rabbits were sacrificed, virus was recovered from the brain, and histopathological examination was performed. The results are shown in Table 3. In addition, + in Table 3 means mild, ox means moderate, +
indicates that the song is moderate to advanced, and the song is advanced.

本発明の組換え体はWR株や斡箕すスター原株の組換え
体に比較して脳からのウィルス回収量は少く、中枢神経
系病原性が著しく弱い。また、親株との比較においても
、組換え体の方が髄膜・脈絡叢及び実質病変とも親株に
比較して弱い傾向がみられた。とくにルBの場合にその
傾向が顕著である。
The recombinant strain of the present invention has a smaller amount of virus recovered from the brain and is significantly less pathogenic to the central nervous system than the recombinant strain WR strain or the original Star strain. Furthermore, in comparison with the parent strain, the recombinant strain showed a tendency to have weaker meningeal, choroid plexus, and parenchymal lesions than the parent strain. This tendency is particularly noticeable in the case of LeB.

口)マウスの末梢感染による中枢神経系への侵襲性試験 4週齢のddYマウスに各種ワクチニアウィルス107
3TCより5oを腹腔内に、2〜の酢酸コルテゾンを皮
下に同時に接種し、ウィルスがウィレミーによυ末梢か
ら中枢神経系へ侵入して増殖するか調゛べた。接種後3
 、4 、5 、64び7日月に採血、採脳し、血中及
び脳内のウィルス量を測定した。
Mouth) Invasiveness test on the central nervous system by peripheral infection of mice.
5O from 3TC was inoculated intraperitoneally and 2~ subcutaneously with cortezone acetate at the same time to examine whether the virus invaded the central nervous system from the periphery and multiplied by Willemy. After vaccination 3
, 4th, 5th, 64th, and 7th, blood and brain samples were collected, and the amount of virus in the blood and brain was measured.

その成績は辰4のとおりである。The results are as follows.

本発明の組換えワクチニアウィルス及びその親株はとも
に血液及び脳からウィルスは回収されなかった。一方、
WR株の組換え体は血液及び脳からウィルスが回収され
、両法における中枢神経系へのウィルスの侵襲性及びそ
こでのウィルス増殖性に大きな差が認められた。
No virus was recovered from the blood or brain of the recombinant vaccinia virus of the present invention or its parent strain. on the other hand,
Virus was recovered from the blood and brain of the recombinant WR strain, and a large difference was observed in the ability of the virus to invade the central nervous system and the ability of the virus to multiply there in both methods.

種痘後脳炎・脳症はワクチニアウィルスがウィレミーに
よって増殖の場として髄膜・脈絡叢に到着し炎症変化を
起すことによってその発生機構が説明されてきた。上記
の動物試験は種痘後脳炎・脳症の発生機構の解析モデル
系と考えられ、中枢神経系病原性が弱く、中枢神経系侵
襲性をみない組換え体は安全性の高いウィルスで、生ワ
クチンとして利用することも可能であろう。
The mechanism of occurrence of post-vaccination encephalitis and encephalopathy has been explained by the fact that vaccinia virus reaches the meninges and choroid plexus as a breeding ground by Willemy and causes inflammatory changes. The above animal test is considered to be a model system for analyzing the developmental mechanism of post-vaccination encephalitis and encephalopathy, and the recombinant virus has low central nervous system pathogenicity and does not show central nervous system invasiveness, and is a highly safe virus that can be used as a live vaccine. It may also be possible to use it as

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の操作手順の概略を示す図面であシ、第
2図は実施例1における操作手順を示す図面である。
FIG. 1 is a drawing showing an outline of the operating procedure of the present invention, and FIG. 2 is a drawing showing the operating procedure in Embodiment 1.

Claims (1)

【特許請求の範囲】 1、ウサギ腎細胞において高温増殖性を示さず孵化鶏卵
漿尿膜上でのポックスサイズが小さい弱毒性リスター温
度感受性変異ワクチニアウィルス株の非必須DNA領域
に外来性DNAが組み込まれた組換えワクチニアウィル
ス。 2、リスター温度感受性変異ワクチニアウィルス株のウ
サギ腎細胞における増殖不能温度が41℃である特許請
求の範囲第1項記載の組換えワクチニアウィルス。 3、リスター温度感受性変異ワクチニアウィルスの孵化
鶏卵漿尿膜上でのポックサイズが3mm以下である特許
請求の範囲第2項記載の組換えワクチニアウィルス。 4、リスター温度感受性変異ワクチニアウィルス株の非
必須DNA領域がチミジンキナーゼをコードするDNA
領域である特許請求の範囲第1項記載の組み換えワクチ
ニアウィルス。 5、外来性DNAが感染症病原体のタンパクをコードす
るDNAである特許請求の範囲第1項記載の組換えワク
チニアウィルス。 6、タンパクがB型肝炎表面抗原である特許請求の範囲
第5項記載の組換えワクチニアウィルス。
[Scope of Claims] 1. Foreign DNA is present in the non-essential DNA region of an attenuated Lister temperature-sensitive mutant vaccinia virus strain that does not show high-temperature growth in rabbit kidney cells and has a small pox size on the chorioallantoic membrane of hatched chicken eggs. Integrated recombinant vaccinia virus. 2. The recombinant vaccinia virus according to claim 1, wherein the temperature at which the Lister temperature-sensitive mutant vaccinia virus strain cannot grow in rabbit kidney cells is 41°C. 3. The recombinant vaccinia virus according to claim 2, wherein the pock size of the Lister temperature-sensitive mutant vaccinia virus on the chorioallantoic membrane of hatched chicken eggs is 3 mm or less. 4. The non-essential DNA region of Lister temperature-sensitive mutant vaccinia virus strain is DNA encoding thymidine kinase
The recombinant vaccinia virus according to claim 1, which is a region of the invention. 5. The recombinant vaccinia virus according to claim 1, wherein the foreign DNA is DNA encoding a protein of an infectious disease pathogen. 6. The recombinant vaccinia virus according to claim 5, wherein the protein is a hepatitis B surface antigen.
JP60184590A 1985-08-22 1985-08-22 Recombinant vaccinia virus Pending JPS6244178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60184590A JPS6244178A (en) 1985-08-22 1985-08-22 Recombinant vaccinia virus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60184590A JPS6244178A (en) 1985-08-22 1985-08-22 Recombinant vaccinia virus

Publications (1)

Publication Number Publication Date
JPS6244178A true JPS6244178A (en) 1987-02-26

Family

ID=16155867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60184590A Pending JPS6244178A (en) 1985-08-22 1985-08-22 Recombinant vaccinia virus

Country Status (1)

Country Link
JP (1) JPS6244178A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0263591A2 (en) * 1986-09-04 1988-04-13 Director General Of National Institute Of Health Recombinant vaccinia virus
GB2209764A (en) * 1987-09-16 1989-05-24 Nippon Zeon Co Recombinant vaccinia virus
CN1055249C (en) * 1998-07-15 2000-08-09 沈继平 Analgesia medicine and its mfg. method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0263591A2 (en) * 1986-09-04 1988-04-13 Director General Of National Institute Of Health Recombinant vaccinia virus
GB2209764A (en) * 1987-09-16 1989-05-24 Nippon Zeon Co Recombinant vaccinia virus
US5021347A (en) * 1987-09-16 1991-06-04 Nippon Zeon Co., Ltd. Recombinant vaccinia virus expressing E-protein of Japanese encephalitis virus
GB2209764B (en) * 1987-09-16 1992-05-20 Nippon Zeon Co "a japanese encephalitis virus antigen-expressing vaccinia recombinant"
CN1055249C (en) * 1998-07-15 2000-08-09 沈继平 Analgesia medicine and its mfg. method

Similar Documents

Publication Publication Date Title
US4722848A (en) Method for immunizing animals with synthetically modified vaccinia virus
US5110587A (en) Immunogenic composition comprising synthetically modified vaccinia virus
EP0083286B1 (en) Modified vaccinia virus and methods for making and using the same
US6998252B1 (en) Recombinant poxviruses having foreign DNA expressed under the control of poxvirus regulatory sequences
JP3334876B2 (en) Recombinant herpes simplex virus vaccine and method
US9809803B2 (en) Mitogen-activated protein kinase-dependent recombinant vaccinia virus (MD-RVV) and use thereof
JPS60500518A (en) Method for producing poxvirus recombinants for foreign gene expression
JPH01112986A (en) Recombined virus vector
JPH05103667A (en) Recombinant herpes virus of turkey and bacterial vector vaccine of the virus origin
JPH02430A (en) Recombinant poultry pock virus
JP3159476B2 (en) Recombinant Marek&#39;s disease virus
JPH084508B2 (en) Recombinant vaccinia virus
US7767449B1 (en) Methods using modified vaccinia virus
US5037742A (en) Pseudorabies virus recombinants and their use in the production of proteins
JPH04504357A (en) Vaccinia vector, vaccinia gene and its expression product
JPH01168279A (en) Recombinant avipoxvirus
JPH02500327A (en) Genetically engineered vaccines against mycobacteria
JP3375347B2 (en) Recombinant vaccine against Marek&#39;s disease
JPS6244178A (en) Recombinant vaccinia virus
JP2781605B2 (en) Recombinant avipox virus
JPH09206084A (en) Use of recombinant vaccinia virus multipliable in cho cell
JP2819023B2 (en) Viral vectors and recombinant DNAs encoding one or more of the measles virus genus structural proteins (HA, F and / or NP), infected cell cultures, proteins obtained therefrom, vaccines and antibodies
JPH03504196A (en) New recombinant vaccinia virus expression vector and its selection method
US5286639A (en) Recombinant avipoxvirus
JPH07236489A (en) Vaccine for protecting horse against horse herpes virus infection