JPS6243976B2 - - Google Patents

Info

Publication number
JPS6243976B2
JPS6243976B2 JP22919282A JP22919282A JPS6243976B2 JP S6243976 B2 JPS6243976 B2 JP S6243976B2 JP 22919282 A JP22919282 A JP 22919282A JP 22919282 A JP22919282 A JP 22919282A JP S6243976 B2 JPS6243976 B2 JP S6243976B2
Authority
JP
Japan
Prior art keywords
reaction
boiling
aqueous solution
isoprene
acidic aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22919282A
Other languages
Japanese (ja)
Other versions
JPS59116236A (en
Inventor
Yoichi Ninagawa
Takayoshi Oosaki
Koichi Kushida
Osamu Yamada
Tsumoru Tsureshita
Sunao Kyo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP22919282A priority Critical patent/JPS59116236A/en
Priority to US06/540,870 priority patent/US4511751A/en
Publication of JPS59116236A publication Critical patent/JPS59116236A/en
Publication of JPS6243976B2 publication Critical patent/JPS6243976B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明はイソプレンの製造時に反応帯域に蓄積
する高沸点副生成物の分離方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process for separating high-boiling by-products that accumulate in a reaction zone during the production of isoprene.

先に本発明者らはイソブテンおよび/または第
3級ブタノール(これらをC4と呼称することが
ある)とホルムアルデヒドを液相で反応させるこ
とによりイソプレンを合成する方法について検討
を行ない、C4とホルムアルデヒド源を水と共に
酸性水溶液中に連続的または断続的に供給し、生
成するイソプレンならびに未反応原料を水と共に
留出させ、その際に供給するC4のモル数とホル
ムアルデヒドのモル数の比および反応圧力を特定
の範囲に保つことにより好収率でイソプレンが生
成することを見出した(特開昭59−70623号)。こ
の方法により長期間反応を行うと反応帯域に高沸
点の副生成物が蓄積してくる。この高沸点副生成
物は酸性水溶液と相分離するが、酸性水溶液との
比重差がきわめて小さいため、そのままの状態で
は、通常行われるデカンテーシヨンなどの比重差
を利用した分液操作により分離することは難し
い。また該高沸点副生成物は室温下で固化する性
質を有するため、分離後の取り扱いが極めて厄介
である。
Previously, the present inventors investigated a method for synthesizing isoprene by reacting isobutene and/or tertiary butanol (sometimes referred to as C 4 ) with formaldehyde in the liquid phase, and found that C 4 and A formaldehyde source is continuously or intermittently supplied into an acidic aqueous solution together with water, and the produced isoprene and unreacted raw materials are distilled out together with water, and the ratio of the number of moles of C4 supplied at that time to the number of moles of formaldehyde and It has been discovered that isoprene can be produced in good yield by keeping the reaction pressure within a specific range (Japanese Patent Application Laid-open No. 70623/1983). If the reaction is carried out for a long period of time using this method, high boiling point by-products will accumulate in the reaction zone. This high-boiling byproduct undergoes phase separation from the acidic aqueous solution, but the difference in specific gravity between it and the acidic aqueous solution is extremely small, so if it remains as it is, it can be separated by a liquid separation operation that takes advantage of the difference in specific gravity, such as decantation. That's difficult. Furthermore, since the high-boiling by-product has the property of solidifying at room temperature, it is extremely difficult to handle it after separation.

本発明者らは上記高沸点副生物を有利に分離す
る方法を探索した結果、反応により生成し、留出
した副生成物が酸性水溶液との分液が容易で比重
差が十分にあり、反応温度付近では無論のこと室
温でも高沸点副生成物を良く溶解させることを見
出し、これを溶剤として用いる下記本発明方法を
完成するに至つた。
The present inventors searched for a method to advantageously separate the high-boiling point by-products, and found that the by-products produced by the reaction and distilled out were easy to separate from the acidic aqueous solution and had a sufficient difference in specific gravity. We have found that high-boiling byproducts can be well dissolved not only at room temperature but also at room temperature, and have completed the following method of the present invention using this as a solvent.

すなわち、本発明によれば、イソブテンおよ
び/または第3級ブタノール、ホルムアルデヒド
源および水を酸性水溶液中に連続的または断続的
に供給し、生成イソプレン、低沸点副生成物、水
および未反応原料を含む混合物を留出させながら
反応させることによりイソプレンを製造する方法
において反応帯域に蓄積する高沸点副生成物を分
離するに際し、反応混合液またはその一部に上記
反応時の留出物の有機層から未反応原料およびイ
ソプレンを留去して得られる残留物またはその一
部の成分(以下これを単に溶剤と呼称する)を加
え、該高沸点副生成物を含む有機層と酸性水溶液
とに分離することにより、反応帯域に蓄積する高
沸点副生成物を容易に酸性水溶液から分離するこ
とができる。本発明方法によれば酸性水溶液の状
態を実質的に変化させずに長期間安定した運転を
行うことができる。
That is, according to the present invention, isobutene and/or tertiary butanol, a formaldehyde source, and water are continuously or intermittently fed into an acidic aqueous solution to remove produced isoprene, low-boiling byproducts, water, and unreacted raw materials. In a method for producing isoprene by reacting a mixture containing the mixture with distillation, when separating high-boiling byproducts that accumulate in the reaction zone, an organic layer of the distillate from the above reaction is added to the reaction mixture or a part thereof. The residue obtained by distilling off unreacted raw materials and isoprene, or some components thereof (hereinafter simply referred to as solvent), is added to separate the organic layer containing the high-boiling by-products and an acidic aqueous solution. By doing so, high-boiling byproducts that accumulate in the reaction zone can be easily separated from the acidic aqueous solution. According to the method of the present invention, stable operation can be performed for a long period of time without substantially changing the state of the acidic aqueous solution.

本発明方法において用いられる溶剤は一部消費
されるが、反応による副生成物であるため消費さ
れても差支えない。該溶剤は、具体的には反応に
より留出した有機層を蒸留し、未反応原料および
イソプレンを留出させた後の蒸留残渣として得ら
れる。この中に含まれる化合物としては、4−メ
チル−5・6−ジヒドロ−2H−ピラン、メチル
イソプロピルケトン、2−メチルブタナール、
2・6−ジメチル−2・5−ヘプタジエン、2・
6−ジメチル−1・5−ヘプタジエン、3−メチ
ル−3−ブテン−1−オール、2−メチル−3−
ブテン−2−オールなどがあるが、その他にも炭
素数4〜15の種々の官能基を持つた化合物が含ま
れている。この蒸留残渣はこのまま溶剤として添
加することもできるが、一部の化合物を分離した
残りの成分を使用することもできる。
A portion of the solvent used in the method of the present invention is consumed, but since it is a by-product of the reaction, there is no problem even if it is consumed. Specifically, the solvent is obtained as a distillation residue after distilling an organic layer distilled from the reaction and distilling off unreacted raw materials and isoprene. Compounds included in this include 4-methyl-5,6-dihydro-2H-pyran, methyl isopropyl ketone, 2-methylbutanal,
2,6-dimethyl-2,5-heptadiene, 2.
6-dimethyl-1,5-heptadiene, 3-methyl-3-buten-1-ol, 2-methyl-3-
Examples include buten-2-ol, but other compounds with various functional groups having 4 to 15 carbon atoms are also included. This distillation residue can be added as it is as a solvent, but it is also possible to use the remaining components after some of the compounds have been separated.

溶剤の添加量について特に制限はないが、この
量が少なすぎると酸性水溶液との比重差が小さく
なり、また分離した高沸点副生成物の粘度が高く
なつて取り扱い操作上不利である。また溶剤の添
加量が多すぎると酸性水溶液中に溶解しているイ
ソプレンその他の有効成分が抽出されてしまい、
その回収が必要となつてくる。これらの点から溶
剤は、通常、供給するホルムアルデヒド1Kg当り
20〜500gの割合で添加される。
There is no particular restriction on the amount of solvent added, but if this amount is too small, the difference in specific gravity with the acidic aqueous solution will be small, and the viscosity of the separated high-boiling by-product will be high, which is disadvantageous in terms of handling. Also, if too much solvent is added, isoprene and other active ingredients dissolved in the acidic aqueous solution will be extracted.
It becomes necessary to recover it. From these points, the solvent is usually
It is added at a rate of 20-500g.

酸性水溶液から高沸点副生成物を分離する方法
としては、反応器中で反応液を静置する方法、反
応液の一部を抜き取つてデカンター、抽出塔など
に送り、そこで高沸点副生成物を分離する方法な
どがある。溶剤を添加する場所はこれらの分離方
法によつて適宜選択される。
Methods for separating high-boiling byproducts from acidic aqueous solutions include leaving the reaction solution still in a reactor, or extracting a portion of the reaction solution and sending it to a decanter, extraction tower, etc., where high-boiling byproducts are separated. There are ways to separate them. The location where the solvent is added is appropriately selected depending on these separation methods.

本発明方法を実施するに際し、供給するC4
モル数と供給するホルムアルデヒド源をホルムア
ルデヒドに換算した場合のモル数の比(以下これ
をC4/FAと記す)が少なくとも3であることが
好ましい。C4/FAが3に満たないとイソプレン
の収率が低下する。反応収率の観点からはC4
FAが大きいほど好ましく、この値について厳密
な意味での上限はないが、これらを徒らに大きく
してもイソプレンの収率の向上効果は小さく、か
えつて使用熱量が増大して経済的に不利となるの
で、C4/FAは一般に20を越えないのがよい。本
発明においてはこのようにホルムアルデヒドに対
してC4を過剰に用いるので、酸性水溶液中に供
給したC4の大部分は未反応のまま留出するが、
このものは他の成分から分離したのち再使用する
ことができる。未反応のC4は反応条件下におけ
るイソブテンと第3級ブタノールの平衡組成に近
い組成を有するので、未反応のC4を反応に循環
する限り、出発物質としてイソブテンおよび第3
級ブタノールのうちいずれか一方を反応液に仕込
んだ場合でも、結局はイソブテンと第3級ブタノ
ールの混合物を反応原料として用いることにな
る。
When carrying out the method of the present invention, it is preferable that the ratio of the number of moles of C 4 supplied to the number of moles of formaldehyde source supplied converted to formaldehyde (hereinafter referred to as C 4 /FA) is at least 3. . When C 4 /FA is less than 3, the yield of isoprene decreases. From the viewpoint of reaction yield, C 4 /
The larger the FA is, the better it is, and there is no upper limit in the strict sense of the word, but even if these values are increased unnecessarily, the effect of improving the yield of isoprene will be small, and the amount of heat used will increase, which is economically disadvantageous. Therefore, C 4 /FA should generally not exceed 20. In the present invention, since C 4 is used in excess of formaldehyde as described above, most of the C 4 supplied to the acidic aqueous solution is distilled out unreacted.
This material can be reused after being separated from other components. Since unreacted C 4 has a composition close to the equilibrium composition of isobutene and tertiary butanol under the reaction conditions, as long as unreacted C 4 is recycled to the reaction, isobutene and tertiary butanol are used as starting materials.
Even if one of the tertiary butanols is added to the reaction solution, a mixture of isobutene and tertiary butanol will ultimately be used as the reaction raw material.

酸性水溶液中にC4、FA源および水を供給しな
がらイソプレンおよび低沸点成分を水と共に反応
帯域外に留出させる反応方法を採用した場合、反
応系内の圧力を調整することにより反応帯域から
蒸発する各成分と水との比率を規定することがで
き、該圧力が高いと留出物中の水以外の成分の合
計に対する水の割合が減少し、該圧力が低いとこ
れと逆の現象が起る。イソプレンを好収率で得る
ためには反応系内の圧力(ただし反応条件下で不
活性な低沸点化合物を原料と共に供給した場合は
その分圧を差し引いた圧力)が好ましくは酸性水
溶液の反応温度における蒸気圧の1.1〜2.5倍の範
囲内にあるのがよい。なお酸性水溶液の反応温度
における蒸気圧(以下これをPwと記す)は該酸
性水溶液に含まれる酸性物質の種類と濃度によつ
て一義的に決まる物理定数である。反応系内の圧
力がPwの2.5倍を越えるとイソプレンの収率が顕
著に低下する。反応系内の圧力がPwの1.1倍に満
たない場合にはイソプレンの顕著な低下はみられ
ないが、FAの転化率が低下し、また留出物中の
イソプレンに対する水の割合が増加して反応に消
費される熱量が増大する。
When adopting a reaction method in which isoprene and low-boiling components are distilled out of the reaction zone together with water while supplying C 4 , FA source, and water in an acidic aqueous solution, the pressure inside the reaction system can be adjusted to remove them from the reaction zone. The ratio of each component to be evaporated to water can be regulated; when the pressure is high, the proportion of water to the total of components other than water in the distillate decreases, and when the pressure is low, the opposite phenomenon occurs. happens. In order to obtain isoprene in a good yield, the pressure within the reaction system (however, if a low-boiling compound that is inactive under the reaction conditions is supplied with the raw material, the pressure after subtracting its partial pressure) is preferably adjusted to the reaction temperature of the acidic aqueous solution. It is preferable that the vapor pressure is within the range of 1.1 to 2.5 times the vapor pressure. Note that the vapor pressure (hereinafter referred to as Pw) of an acidic aqueous solution at the reaction temperature is a physical constant uniquely determined by the type and concentration of the acidic substance contained in the acidic aqueous solution. When the pressure inside the reaction system exceeds 2.5 times Pw, the yield of isoprene decreases significantly. When the pressure in the reaction system is less than 1.1 times Pw, no significant decrease in isoprene is observed, but the conversion rate of FA decreases and the ratio of water to isoprene in the distillate increases. The amount of heat consumed in the reaction increases.

本発明の方法においては酸性水溶液中に反応原
料のほかに所望により反応条件下で不活性な低沸
点化合物をも供給しながら反応を行うことが可能
である。ここで使用しうる反応条件下で不活性な
低沸点化合物とは反応の前後で実質的に変化しな
い化合物であり、具体的にはn−プロパン、n−
ブタン、n−ヘキサン、シクロヘキサンなどで代
表される炭素数1〜10の炭化水素類、窒素などの
不活性ガスを例示することができる。
In the method of the present invention, it is possible to carry out the reaction while supplying in addition to the reaction raw materials into the acidic aqueous solution, if desired, a low-boiling compound that is inactive under the reaction conditions. The low boiling point compound that is inactive under the reaction conditions that can be used here is a compound that does not substantially change before and after the reaction, and specifically, n-propane, n-
Examples include hydrocarbons having 1 to 10 carbon atoms such as butane, n-hexane, and cyclohexane, and inert gases such as nitrogen.

本発明方法において用いられる触媒は無機酸、
有機酸およびそれらの塩類などの酸性物質であ
り、これらは反応帯域において水溶液の形で用い
られる。これら酸性水溶液の酸強度は酸性物質の
種類、反応温度、ホルムアルデヒド源の供給速度
などにより異なるが、通常、PH0.5〜2.5の範囲か
ら選ばれる。該酸性物質としては反応条件下にお
いて低揮発性もしくは非揮発性のものが好まし
く、具体的には燐酸、硫酸、硼酸などの無機酸、
ケイタングステン酸、リンタングステン酸などの
ヘテロポリ酸、p−トルエンスルホン酸、ベンゼ
ンスルホン酸、トリフルオロメタンスルホン酸、
シユウ酸などの有機酸、ならび硫酸に水素ナトリ
ウムなどの酸性塩を挙げることができる。
The catalyst used in the method of the present invention is an inorganic acid,
Acidic substances such as organic acids and their salts, which are used in the reaction zone in the form of aqueous solutions. The acid strength of these acidic aqueous solutions varies depending on the type of acidic substance, reaction temperature, supply rate of formaldehyde source, etc., but is usually selected from a pH range of 0.5 to 2.5. The acidic substance is preferably one that is low volatile or nonvolatile under the reaction conditions, and specifically includes inorganic acids such as phosphoric acid, sulfuric acid, and boric acid;
Heteropolyacids such as silicotungstic acid and phosphotungstic acid, p-toluenesulfonic acid, benzenesulfonic acid, trifluoromethanesulfonic acid,
Organic acids such as oxalic acid, and acid salts such as sodium hydrogen sulfuric acid may be mentioned.

本発明の方法に使用するホルムアルデヒド源と
してはホルムアルデヒド水溶液、ホルムアルデヒ
ドガスなどが挙げられ、このほか反応条件下で分
解してホルムアルデヒドを与えるトリオキサン、
パラホルムアルデヒドなどを用いることもでき
る。またメチラールその他のホルマール類も使用
可能である。反応器に水が供給され、ホルムアル
デヒドは反応域内において水溶液の形をとるの
で、ホルムアルデヒド源としてホルムアルデヒド
水溶液を用いるのが反応操作上有利である。
Formaldehyde sources used in the method of the present invention include formaldehyde aqueous solutions, formaldehyde gas, etc. In addition, trioxane, which decomposes under the reaction conditions to give formaldehyde,
Paraformaldehyde and the like can also be used. Methyral and other formals can also be used. Since water is supplied to the reactor and formaldehyde takes the form of an aqueous solution in the reaction zone, it is advantageous in terms of reaction operation to use an aqueous formaldehyde solution as the formaldehyde source.

本発明方法において使用するイソブテンおよび
第3級ブタノールには他の炭化水素類、3−メチ
ル−1・3−ブタンジオール、3−メチル−2−
ブテン−1−オール、3−メチル−3−ブテン−
1−オール、3−メチル−1−ブテン−3−オー
ル、メチルイソプロピルケトン、2−メチルブタ
ナール、メチル第3級ブチルホルマール、4・4
−ジメチル−1・3−ジオキサン、4−メチル−
5・6−ジヒドロ−2H−ピランなどが含まれて
いてもよい。また反応条件下でイソブテンおよび
第3級ブタノールを与えるメチル第3級ブチルエ
ーテルなどのアルキル第3級ブチルエーテルを使
用することもできる。
The isobutene and tertiary butanol used in the process of the invention may contain other hydrocarbons, 3-methyl-1,3-butanediol, 3-methyl-2-
Buten-1-ol, 3-methyl-3-butene-
1-ol, 3-methyl-1-buten-3-ol, methyl isopropyl ketone, 2-methylbutanal, methyl tert-butyl formal, 4.4
-dimethyl-1,3-dioxane, 4-methyl-
5,6-dihydro-2H-pyran and the like may be included. It is also possible to use alkyl tertiary butyl ethers, such as methyl tertiary butyl ether, which gives isobutene and tertiary butanol under the reaction conditions.

本発明方法において好適な反応温度は酸性水溶
液の酸強度を考慮して決定され、通常、150〜220
℃の範囲から選ばれる。反応温度を150℃未満に
すると、反応速度を一定の水準に維持するために
酸性水溶液の濃度を高めてもイソプレンの収率の
低下を招く。反応温度が220℃を越えてもイソプ
レンの収率が著しく低下することはないが、最適
選択率を与える条件でのホルムアルデヒドの転化
率が低下する。ホルムアルデヒドの転化率が高く
なるような反応条件を選ぶとイソプレンからの遂
次反応が増大し、イソプレンの選択率の低下をき
たす。
The reaction temperature suitable for the method of the present invention is determined by considering the acid strength of the acidic aqueous solution, and is usually 150 to 220°C.
Selected from the range of °C. If the reaction temperature is less than 150°C, the yield of isoprene will decrease even if the concentration of the acidic aqueous solution is increased to maintain the reaction rate at a constant level. Even if the reaction temperature exceeds 220°C, the yield of isoprene does not decrease significantly, but the conversion rate of formaldehyde under conditions that give the optimum selectivity decreases. If reaction conditions are selected to increase the conversion rate of formaldehyde, the sequential reaction from isoprene will increase, resulting in a decrease in the selectivity of isoprene.

酸性水溶液へのホルムアルデヒド源の好ましい
供給速度は酸性水溶液の酸強度、反応温度および
反応圧力を考慮して決定される。ホルムアルデヒ
ド源の供給速度を大きくするには酸性水溶液の酸
強度を上げるか、あるいは反応温度を高める必要
があり、この場合反応器の腐蝕の問題が生じる。
したがつて、ホルムアルデヒド源の供給速度は、
通常、該ホルムアルデヒド源をホルムアルデヒド
に換算した場合に酸性水溶液1Kgにつき1時間あ
たり3モル以下であるのがよい。ホルムアルデヒ
ド源の供給速度について厳密な意味での下限はな
いが、該供給速度を徒らに小さくすると反応器が
大型化し装置面で不利となるので、ホルムアルデ
ヒド源の供給速度は該ホルムアルデヒド源をホル
ムアルデヒドに換算した場合に酸性水溶液1Kgに
つき1時間あたり0.2モル以上であるのがよい。
The preferred rate of supply of the formaldehyde source to the acidic aqueous solution is determined by taking into account the acid strength of the acidic aqueous solution, the reaction temperature, and the reaction pressure. In order to increase the supply rate of the formaldehyde source, it is necessary to increase the acid strength of the acidic aqueous solution or to increase the reaction temperature, and in this case, the problem of corrosion of the reactor arises.
Therefore, the supply rate of the formaldehyde source is
Usually, when the formaldehyde source is converted to formaldehyde, it is preferably 3 mol or less per hour per 1 kg of acidic aqueous solution. There is no strict lower limit for the supply rate of the formaldehyde source, but if the supply rate is unnecessarily reduced, the reactor will become larger and disadvantageous in terms of equipment. When converted, it is preferably 0.2 mol or more per hour per 1 kg of acidic aqueous solution.

以下に実施例を示し、本発明を具体的に示す。 Examples are shown below to specifically illustrate the present invention.

実施例 1 (i) 留出副生物の採取 原料導入口、留出管、留出物凝縮器、撹拌
器、温度計、圧力計、触媒水抜取口、触媒水循
環ライン、高沸物分離デカンター、熱交換器、
デカンター式の留出液受槽を装着した内容積
120のハステロイG−3製の反応器を使用し
た。触媒水循環ラインと熱交換器の容積は25
、高沸物分離デカンターの容積は20であ
る。反応器、循環ライン、熱交換器および高沸
物デカンターに合計120Kgの3%燐酸水を入
れ、撹拌しながら循環ラインを通して熱交換器
より加熱し、16.0Kg/cm2の圧力下に反応器の内
温を178℃とした。次いでイソブテンをイソブ
テン蒸発器に31Kg/hrの速度で供給して気化さ
せ、これを水蒸発器を通して反応器に供給し
た。水蒸発器には水を8.0Kg/hrの速度で供給
しイソブテンと共に気化させ、反応器に供給し
た。次いで27.67%のホルムアルデヒド水溶液
を7.5Kg/hrの速度で反応器に供給し反応を開
始させた。反応器から留出するガスは凝縮器で
凝縮させ、デカンター式の留出液受槽に送り、
有機相と水相に分離させた。分離した有機相は
蒸留塔に送り、連続蒸留でイソブテンを留出さ
せた。蒸留缶液は冷却してドラム缶に抜き取つ
た。反応器の温度および圧力を一定に保つて反
応およびイソブテンの回収蒸留を100時間実施
した。この間、酸性水溶液を15/hrの速度で
160℃に保持したオーバーフロー形式の高沸物
デカンターに循環させたが、高沸物のオーバー
フローは見られなかつた。この間にイソブテン
回収蒸留の缶液680Kgが採取された。このもの
について更に蒸留を行ないイソプレンおよび第
3級ブタノールを留出させ、蒸留残渣105Kgを
得た。該蒸留残渣はガスクロマトグラフイーに
より分析し、下記の成分を含むことを確認し
た。
Example 1 (i) Collection of distillation by-products Raw material inlet, distillation pipe, distillate condenser, stirrer, thermometer, pressure gauge, catalyst water outlet, catalyst water circulation line, high boiling product separation decanter, Heat exchanger,
Internal volume equipped with a decanter-type distillate tank
A 120 Hastelloy G-3 reactor was used. The volume of the catalyst water circulation line and heat exchanger is 25
, the volume of the high boiler separation decanter is 20. A total of 120 kg of 3% phosphoric acid water was put into the reactor, circulation line, heat exchanger and high-boiling decanter, heated by the heat exchanger through the circulation line while stirring, and the reactor was heated under a pressure of 16.0 kg/ cm2. The internal temperature was 178°C. Isobutene was then fed to an isobutene evaporator at a rate of 31 Kg/hr for vaporization, and was then fed to the reactor through a water evaporator. Water was supplied to the water evaporator at a rate of 8.0 kg/hr, vaporized together with isobutene, and supplied to the reactor. Next, a 27.67% formaldehyde aqueous solution was supplied to the reactor at a rate of 7.5 Kg/hr to start the reaction. The gas distilled from the reactor is condensed in a condenser and sent to a decanter-type distillate receiving tank.
Separated into organic and aqueous phases. The separated organic phase was sent to a distillation column, and isobutene was distilled off by continuous distillation. The still liquid was cooled and drained into a drum. The reaction and recovery distillation of isobutene were carried out for 100 hours while keeping the temperature and pressure of the reactor constant. During this time, the acidic aqueous solution was added at a rate of 15/hr.
The mixture was circulated through an overflow-type high-boiling decanter maintained at 160°C, but no overflow of high-boiling substances was observed. During this period, 680 kg of bottom liquid from isobutene recovery distillation was collected. This product was further distilled to distill out isoprene and tertiary butanol, yielding 105 kg of distillation residue. The distillation residue was analyzed by gas chromatography and confirmed to contain the following components.

4−メチル−5・6−ジヒドロー4H−ピラン
24.0% メチルイソプロピルケトン 11.4% 2・6−ジメチル−2・5−ヘプタジエン
5.7% 2・6−ジメチル−1・5−ヘプタジエン
3.1% 2−メチル−3−ブテン−2−オール 3.0% 3−メチル−3−ブテン−1−オール 2.1% 一方、反応終了後に高沸物デカンター内の液
を抜き取り、タール状の高沸物8.3Kgを得た。
このものは室温まで冷却すると固化して流動性
を失つた。
4-Methyl-5,6-dihydro 4H-pyran
24.0% Methyl isopropyl ketone 11.4% 2,6-dimethyl-2,5-heptadiene
5.7% 2,6-dimethyl-1,5-heptadiene
3.1% 2-Methyl-3-buten-2-ol 3.0% 3-Methyl-3-buten-1-ol 2.1% On the other hand, after the reaction was completed, the liquid in the high-boiling decanter was extracted and the tar-like high-boiling material 8.3 Got Kg.
When this material was cooled to room temperature, it solidified and lost fluidity.

(ii) 上記(i)により得られた蒸留残渣を300g/hr
の速度で高沸物デカンター行きの循環ラインに
供給した以外は上記(i)と同一の条件で反応を行
なつた。反応開始後20時間後より高沸物デカン
ターから油状物のオーバーフローが見られ、反
応開始後100時間後までに27Kgの油状物が得ら
れた。このものは室温まで冷却しても固化しな
かつた。
(ii) 300g/hr of the distillation residue obtained in (i) above.
The reaction was carried out under the same conditions as in (i) above, except that the high boiling material was fed to the circulation line to the decanter at a rate of . An overflow of oil was observed from the high-boiling decanter 20 hours after the start of the reaction, and 27 kg of oil was obtained by 100 hours after the start of the reaction. This product did not solidify even when cooled to room temperature.

実施例 2 実施例1の(i)で得られた蒸留残渣の中の50Kgを
取り、蒸留により沸点122℃までの留分を留出さ
せ、残渣33.5Kgを得た。これによりメチルイソプ
ロピルケトン、2−メチル−3−ブテン−2−オ
ールおよび大部分の4−メチル−5・6−ジヒド
ロ−4H−ピランが除かれた。このものを150g/
hrの速度で高沸物デカンター行きの循環ラインに
供給した以外は実施例1の(i)と同一の条件で反応
を行なつた。反応開始後18時間後より高沸物デカ
ンターから油状物のオーバーフローが見られ、反
応開始後100時間後までに18Kgの油状物が得られ
た。このものは室温まで冷却しても固化しなかつ
た。
Example 2 50 kg of the distillation residue obtained in (i) of Example 1 was taken, and fractions up to a boiling point of 122°C were distilled off to obtain 33.5 kg of residue. This removed methyl isopropyl ketone, 2-methyl-3-buten-2-ol and most of 4-methyl-5,6-dihydro-4H-pyran. 150g of this stuff/
The reaction was carried out under the same conditions as in (i) of Example 1, except that the mixture was fed to the circulation line to the high-boiling decanter at a rate of hr. An overflow of oily material was observed from the high-boiling material decanter 18 hours after the start of the reaction, and 18 kg of oily material was obtained by 100 hours after the start of the reaction. This product did not solidify even when cooled to room temperature.

Claims (1)

【特許請求の範囲】[Claims] 1 イソブテンおよび/または第3級ブタノー
ル、ホルムアルデヒド源および水を酸性水溶液中
に連続的または断続的に供給し、生成イソプレ
ン、低沸点副生成物、水および未反応原料を含む
混合物を留出させながら反応させることによりイ
ソプレンを製造する方法において反応帯域に蓄積
する高沸点副生成物を分離するに際し、反応混合
液またはその一部に上記反応時の留出物の有機層
から未反応原料およびイソプレンを留去して得ら
れる残留物またはその一部の成分を加え、該高沸
点副生成物を含む有機層と酸性水溶液とに分離す
ることを特徴とする高沸点副生成物の分離方法。
1. Continuously or intermittently feeding isobutene and/or tertiary butanol, a formaldehyde source, and water into an acidic aqueous solution while distilling a mixture containing formed isoprene, low-boiling byproducts, water, and unreacted raw materials. When separating high-boiling byproducts that accumulate in the reaction zone in a method for producing isoprene by reaction, unreacted raw materials and isoprene are added to the reaction mixture or a part thereof from the organic layer of the distillate from the reaction. A method for separating high-boiling by-products, which comprises adding a residue obtained by distillation or a part thereof, and separating the organic layer containing the high-boiling by-product and an acidic aqueous solution.
JP22919282A 1982-10-14 1982-12-24 Separation of high-boiling by-product Granted JPS59116236A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP22919282A JPS59116236A (en) 1982-12-24 1982-12-24 Separation of high-boiling by-product
US06/540,870 US4511751A (en) 1982-10-14 1983-10-11 Process for producing isoprene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22919282A JPS59116236A (en) 1982-12-24 1982-12-24 Separation of high-boiling by-product

Publications (2)

Publication Number Publication Date
JPS59116236A JPS59116236A (en) 1984-07-05
JPS6243976B2 true JPS6243976B2 (en) 1987-09-17

Family

ID=16888242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22919282A Granted JPS59116236A (en) 1982-10-14 1982-12-24 Separation of high-boiling by-product

Country Status (1)

Country Link
JP (1) JPS59116236A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293156U (en) * 1989-01-13 1990-07-24

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293156U (en) * 1989-01-13 1990-07-24

Also Published As

Publication number Publication date
JPS59116236A (en) 1984-07-05

Similar Documents

Publication Publication Date Title
EP0570719B1 (en) Process for producing acetaldehyde dimethylacetal
US4511751A (en) Process for producing isoprene
JP3923472B2 (en) Method for isolating trimethylolpropane from a reaction mixture
US6670489B2 (en) Process for producing cyclic formal
JP2000119211A (en) Production of citral
EP1614671B1 (en) Process for producing isoprene
JPS6243976B2 (en)
US2667516A (en) Process for making chloromethyl
EP0106323A1 (en) Process for producing isoprene
CN101784510A (en) Process for dehydration of hexafluoroacetone hydrate
US4593145A (en) Process for producing isoprene
EP0030109B1 (en) Process for producing isoprene
US3956074A (en) Recovery of methylglyoxal acetal by plural stage distillation with intermediate phase separation
US4254289A (en) Process for the production of alkene-1,5-diols
JPH0320367B2 (en)
JPS6245213B2 (en)
JPS6243973B2 (en)
JPS6315249B2 (en)
JPH09110773A (en) Purification of methylal
JPH0320368B2 (en)
JPH0254836B2 (en)
JPS6245211B2 (en)
JPS6243974B2 (en)
JPS6245212B2 (en)
JPS6128651B2 (en)