JPS6243944B2 - - Google Patents

Info

Publication number
JPS6243944B2
JPS6243944B2 JP20196081A JP20196081A JPS6243944B2 JP S6243944 B2 JPS6243944 B2 JP S6243944B2 JP 20196081 A JP20196081 A JP 20196081A JP 20196081 A JP20196081 A JP 20196081A JP S6243944 B2 JPS6243944 B2 JP S6243944B2
Authority
JP
Japan
Prior art keywords
colloidal silica
polyethylene oxide
fibers
composition
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20196081A
Other languages
Japanese (ja)
Other versions
JPS58104059A (en
Inventor
Seiji Sakurai
Kaoru Unno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP20196081A priority Critical patent/JPS58104059A/en
Publication of JPS58104059A publication Critical patent/JPS58104059A/en
Publication of JPS6243944B2 publication Critical patent/JPS6243944B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols

Description

【発明の詳細な説明】 本発明は、コロイダルシリカで結合せしめた無
機繊維組成物、特に無機繊維をコロイダルシリカ
と均一かつ強固に結合させて得た高温用途に適し
た成形体用組成物に関する。 従来、無機繊維とコロイダルシリカ結合剤から
なるペーパー、ボード、マツトあるいはチユー
ブ、ロツド、ブロツク等の成形物を得る方法は
種々提案されている。例えば、最も簡単な方法と
しては、無機繊維成形物にコロイダルシリカの懸
濁液をそのまま途布あるいは含浸させる方法があ
る。しかしながら、この方法によれば、コロイダ
ルシリカのマイグレーシヨンが起り、結合が成形
物の表面に集中し、均一な硬さの成形物を得るこ
とができず、またコロイダルシリカの定着量を精
確に制御することが困難なため、得られた成形物
は非常に品質にバラツキの多いものとなつてしま
う不利があつた。 こうした不利を改善する方法として米国特許第
3702279号公報には無機繊維材料にコロイダルシ
リカを含浸せしめた後、(NH42CO3のような塩
基性塩、あるいはアンモニアガス等を作用させて
コロイダルシリカをゲル化させてマイグレーシヨ
ンを防ぎ、乾燥及び焼成して成形物を得る方法が
示されている。しかしながら、この方法ではゲル
化処理が厄介であり、マイグレーシヨンを充分に
防いで均一な結合を得ることは困難である。また
米国特許第3224927号公報には無機繊維スラリー
にカチオン性の澱粉を結合助剤として添加し、次
でアニオン性コロイダルシリカを添加し、更に酸
を加えてスラリーのPHを3〜5とし、得られたス
ラリーを過した後、乾燥して成形物を得る方法
が示されている。しかしながら、この方法では添
加したコロイダルシリカの全量を繊維表面に定着
させることは困難であり、相当量が未定着のまま
溶液中に残存してしまう不利がある。 本発明は前述した従来技術の欠点を改善し、無
機繊維にコロイダルシリカを均一、かつ強固に結
合させて得た高温用途に適した成形体用組成物に
関する。 すなわち、本発明は、無機繊維、コロイダルシ
リカ、凝結剤、高分子量ポリエチレンオキサイ
ド、および必要量の充填材からなる組成物を提供
するものである。より詳細にいえば、無機繊維お
よび必要な量の充填材とコロイダルシリカを水中
に分散せしめてスラリーとし、次で凝結剤および
高分子量ポリエチレンオキサイド溶液を添加して
コロイダルシリカを該繊維に定着せしめて得たス
ラリー状組成物を提供するものである。 本発明組成物は無機繊維を主成分とし、そして
無機繊維は鉱物繊維、珪酸アルミニウム、ガラ
ス、アルミナ、ジルコニア、酸化硼素、炭化硼
素、シリカ、窒化珪素、炭化珪素、珪酸アルミニ
ウムカルシウムの各繊維およびそれらの混合物よ
り成る群から選択が可能である。また該組成物の
物性を調整あるいは改善するために必要に応じて
耐火性無機物、可燃性有機物を更に含むことがで
きる。 無機繊維および必要な量の充填材をスラリーと
するのに必要な分散媒としては水が好適である
が、メタノール、エタノール、エチレングリコー
ル、ジエチレングリコール、およびこれらの混合
物もまた、単独もしくは水との混合物として使用
することができる。分散媒の量は該繊維の嵩およ
びコロイダルシリカの量に応じて調整されるが、
少なくとも該繊維が充分に分散される量が必要で
ある。例えば、無機繊維に対して50倍前後(重
量)が好ましい。 バインダーとして作用するコロイダルシリカの
量は、目的とする成形体の所望強度および成形方
法に応じて調整される。例えば、吸引過による
成形方法の場合には、好ましい該シリカ量は3〜
20%(該繊維量基準)である。即ちコロイダルシ
リカの量が少ないと成形物のハンドリングに必要
な強度が得られず、20%以上とした場合には、
過性の点で困難が生ずる。しかしながらプレス方
式による成形方法の場合には、該繊維量と同量も
しくはそれ以上の量(固形分として)とすること
が可能である。ここで本発明でいうコロイダルシ
リカとはSiO2を基本単位とする水分散体(いわ
ゆるシリカゾル)を意味する。コロイダルシリカ
の平均粒子径は通常4〜100ミリミクロンである
が、本発明には、できるだけ粒径の小さいものが
好適である。これは粒径が小さい程、結合力が強
いという理由による。 本発明に好適な凝結剤としては酸(例えば鉱
酸、カルボン酸)、塩(例えば食塩、硫酸アル
ミ)、電解質(例えばアルミナゾル)等があげら
れるが、酸または酸性塩およびカチオン性のアル
ミナゾルが特に好ましい。ここで「凝結」とはシ
リカ粒子間の結合を意味する。即ち、凝結剤の添
加目的はコロイダルシリカ粒子表面の電位を低下
せしめて、ポリエチレンオキサイドへの凝集を可
能にするためである。凝結剤を添加しない場合に
は、コロイダルシリカをポリエチレンオキサイド
へ凝集させることは殆んど不可能であり、コロイ
ダルシリカの大部分は該繊維に未定着のまま該ス
ラリー中に残存してしまう。それ故、本発明では
凝結剤の添加は不可欠である。 本発明の最も大きな特徴は、高分子量ポリエチ
レンオキサイドによつてコロイダルシリカを繊維
表面に定着せしめる点にあり、種々検討した結
果、凝結剤によつてコロイダルシリカ粒子を凝結
せしめ、しかる後に高分子量ポリエチレンオキサ
イドを添加することによつて、コロイダルシリカ
を殆んど完全に繊維表面へ均一、かつ強固に定着
できることを認め、それにもとづいて本発明をな
すに至つた。 本発明に使用する高分子量ポリエチレンオキサ
イドは本質的にノニオン性であるが、鎖中に分布
した酸素は水溶液中においてオキソニウムカチオ
ンを形成する結果、コロイダルシリカ粒子はポリ
エチレンオキサイドと顕著に凝集し、得られたポ
リエチレンオキサイド−コロイダルシリカ凝集体
と繊維はスラリー中でからみ合いこの結果、コロ
イダルシリカは殆んど完全に繊維に定着される。 本発明に使用するポリエチレンオキサイドにつ
いて更に言えば、前記した溶媒とあらかじめ混合
撹拌して必要な濃度の溶液として使用する。溶液
の粘度はポリエチレンオキサイドの分子量によつ
て大きく変化する。更に本発明で使用するポリエ
チレンオキサイドは分子量約10万以上のものに制
限され、好ましくは分子量25万以上のものであ
る。該分子量が約10万以下の場合には該繊維への
コロイダルシリカの定着が極めて悪くなる。理論
的にはまだ解明されていないが、これは該コロイ
ダルシリカと該ポリエチレンオキサイドとの凝集
体と該繊維とのからみ合いが悪くなるためと思わ
れる。同様の理由から、ポリエチレンオキサイド
はできるだけ分岐が少なく、直鎖状で、分子鎖の
長いものが好ましい。また、ポリエチレンオキサ
イドの添加量はシリカに対して0.1重量%以上が
好ましい。 前記ポリエチレンオキサイドに代えてポリアク
リルアミドの使用も考えられるが、それは次の理
由で使用できない。 すなわち、ポリアクリルアミドは中性域では非
イオン性であるが、アルカリ域ではアミド基
(CO・NH2)が加水分解されるため、カルボキシ
ル基を生じアニオン性となる。この場合、カルボ
キシル基のイオン電荷はPH8付均で最大となるこ
とから、凝集効果もこのPH域で発揮される。従つ
て、ポリアクリルアミドを使用する場合にはアン
モニア水または苛性ソーダによるPH調節が不可欠
となるため次のような不利がある。 すなわち、PH調節にアンモニア水を使用する場
合には、取扱い時に一部気化蒸発するため作業環
境を悪化させ、また苛性ソーダを使用する場合に
は成形物の含アルカリ金属量が増加し、高温用途
に成形物を適用する際に融剤として作用するた
め、成形物の耐熱性、耐久性を損う不利がある。 本発明になる組成物から成形体を得る方法とし
ては、例えばペーパーあるいはボードの製造の場
合には、該組成物のスラリーを金網上で過し、
圧縮ローラーで水を脱水するか、あるいは吸引脱
水により水を除去して成形する。他の成形体の場
合には、該組成物のスラリーを過してケーキと
し、適当な型に入れて成形することができる。得
られた繊維質成形体は乾燥した後使用に供され
る。 本発明によれば、広範囲の種類の無機繊維に無
機結合剤としてのコロイダルシリカを定着させる
ことができ、該繊維に定着できるコロイダルシリ
カの量は繊維重量と同量もしくはそれ以上まで可
能であり、得られた組成物は乾燥によつて全くマ
イグレーシヨンを起さず、内・表面とも殆んど均
一な硬さを保ち、強度の高い、高温使用に適した
成形体を製造するために使用できる。 以下、本発明を実施例により説明するが、本発
明はそれに限定されるものではない。 実施例 1 ケイ酸アルミニウム繊維1Kgと水50Kgとアニオ
ン性のコロイダルシリカ(固形分30%)400gを
5分間撹拌してスラリーを調整し、次でこのスラ
リーに硫酸アルミニウム25%液を50g添加してコ
ロイダルシリカをゲル化させ、最後に分子量30万
のポリエチレンオキサイド2%液を80g添加し、
得られたスラリー状組成物から真空成形によつて
成形物をつくり更に乾燥した。それによつて得ら
れた成形体の密度、強度、収縮特性を下記に示
す。 乾燥後密度(110℃24時間、Kg/m3)=260 乾燥後曲げ強度(110℃24時間、Kg/cm2)=9.2 焼成後 〃 (1100℃3時間、Kg/cm2)=4.5 焼成後 〃 (1200℃3時間、Kg/cm2)=4.0 焼成後線収縮(1100℃3時間、%)=2.1 焼成後 〃 (1200℃3時間、%)=2.9 実施例 2〜5 繊維、コロイダルシリカ、凝結剤、ポリエチレ
ンオキサイドの各量を変えて、実施例1と同様の
操作を繰返して成形体を得た。それらの物性を下
表に示す。ただし、実施例4、5はプレス成形に
よつて得たものである。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an inorganic fiber composition bonded with colloidal silica, and particularly to a molded body composition suitable for high-temperature applications obtained by uniformly and firmly bonding inorganic fibers with colloidal silica. Conventionally, various methods have been proposed for obtaining molded articles such as paper, board, mat, tube, rod, and block made of inorganic fibers and colloidal silica binders. For example, the simplest method is to directly apply or impregnate an inorganic fiber molded product with a suspension of colloidal silica. However, according to this method, migration of colloidal silica occurs and bonds concentrate on the surface of the molded product, making it impossible to obtain molded products with uniform hardness, and it is difficult to precisely control the amount of colloidal silica fixed. Since it is difficult to do so, the obtained molded products have a disadvantage that the quality varies greatly. As a way to improve these disadvantages, the US patent
Publication No. 3702279 discloses that after an inorganic fiber material is impregnated with colloidal silica, a basic salt such as (NH 4 ) 2 CO 3 or ammonia gas is applied to gel the colloidal silica to prevent migration. , a method of obtaining a molded article by drying and firing is shown. However, with this method, the gelation process is troublesome, and it is difficult to sufficiently prevent migration and obtain uniform bonding. Furthermore, US Pat. No. 3,224,927 discloses that cationic starch is added as a binding agent to an inorganic fiber slurry, then anionic colloidal silica is added, and then acid is added to adjust the pH of the slurry to 3 to 5. A method is shown in which a molded article is obtained by filtering the slurry and then drying it. However, this method has the disadvantage that it is difficult to fix the entire amount of added colloidal silica on the fiber surface, and a considerable amount remains unfixed in the solution. The present invention improves the above-mentioned drawbacks of the prior art and relates to a composition for molded bodies suitable for high-temperature applications, which is obtained by uniformly and firmly bonding colloidal silica to inorganic fibers. That is, the present invention provides a composition comprising inorganic fibers, colloidal silica, a coagulant, high molecular weight polyethylene oxide, and a required amount of filler. More specifically, the inorganic fibers and the required amount of filler and colloidal silica are dispersed in water to form a slurry, and then a coagulant and a high molecular weight polyethylene oxide solution are added to fix the colloidal silica to the fibers. The obtained slurry composition is provided. The composition of the present invention has inorganic fibers as a main component, and the inorganic fibers include mineral fibers, aluminum silicate, glass, alumina, zirconia, boron oxide, boron carbide, silica, silicon nitride, silicon carbide, aluminum calcium silicate fibers, and the like. A selection is possible from the group consisting of a mixture of. Further, in order to adjust or improve the physical properties of the composition, a refractory inorganic substance or a combustible organic substance can be further included as necessary. Although water is preferred as the dispersion medium necessary to slurry the inorganic fibers and the required amount of filler, methanol, ethanol, ethylene glycol, diethylene glycol, and mixtures thereof, alone or in admixture with water, are also suitable. It can be used as The amount of dispersion medium is adjusted depending on the bulk of the fiber and the amount of colloidal silica,
At least an amount in which the fibers are sufficiently dispersed is required. For example, it is preferably about 50 times (by weight) the amount of inorganic fiber. The amount of colloidal silica that acts as a binder is adjusted depending on the desired strength of the molded article and the molding method. For example, in the case of a molding method using suction, the preferable amount of silica is 3 to 3.
20% (based on the amount of fiber). In other words, if the amount of colloidal silica is small, the strength necessary for handling the molded product cannot be obtained, and if the amount is 20% or more,
Difficulties arise in terms of hypersensitivity. However, in the case of a press molding method, the amount (in terms of solid content) can be equal to or greater than the amount of fibers. Colloidal silica as used herein means an aqueous dispersion (so-called silica sol) having SiO 2 as a basic unit. The average particle size of colloidal silica is usually 4 to 100 millimicrons, but for the present invention, particles with as small a particle size as possible are preferred. This is because the smaller the particle size, the stronger the bonding force. Suitable coagulants for the present invention include acids (e.g. mineral acids, carboxylic acids), salts (e.g. common salt, aluminum sulfate), electrolytes (e.g. alumina sol), but acids or acidic salts and cationic alumina sol are particularly preferred. preferable. Here, "condensation" means bonding between silica particles. That is, the purpose of adding a coagulant is to lower the potential on the surface of colloidal silica particles, thereby enabling coagulation into polyethylene oxide. If no coagulant is added, it is almost impossible to aggregate colloidal silica into polyethylene oxide, and most of the colloidal silica remains unfixed to the fibers in the slurry. Therefore, the addition of a coagulant is essential in the present invention. The most significant feature of the present invention is that colloidal silica is fixed on the fiber surface using high molecular weight polyethylene oxide.As a result of various studies, we found that the colloidal silica particles are coagulated using a coagulant, and then the high molecular weight polyethylene oxide It has been recognized that by adding colloidal silica, it is possible to almost completely fix colloidal silica uniformly and firmly to the fiber surface, and based on this, the present invention was completed. Although the high molecular weight polyethylene oxide used in the present invention is essentially nonionic, the oxygen distributed in the chains forms oxonium cations in an aqueous solution, and as a result, the colloidal silica particles significantly aggregate with the polyethylene oxide, resulting in The polyethylene oxide-colloidal silica aggregates and fibers are entangled in the slurry, so that the colloidal silica is almost completely fixed to the fibers. Regarding the polyethylene oxide used in the present invention, it is mixed and stirred with the above-mentioned solvent in advance and used as a solution at the required concentration. The viscosity of the solution varies greatly depending on the molecular weight of the polyethylene oxide. Further, the polyethylene oxide used in the present invention is limited to a molecular weight of about 100,000 or more, preferably 250,000 or more. If the molecular weight is less than about 100,000, the adhesion of colloidal silica to the fibers will be extremely poor. Although it has not yet been theoretically elucidated, this is thought to be due to poor entanglement between the aggregates of the colloidal silica and the polyethylene oxide and the fibers. For the same reason, polyethylene oxide preferably has as few branches as possible, is linear, and has a long molecular chain. Further, the amount of polyethylene oxide added is preferably 0.1% by weight or more based on silica. Although it is possible to use polyacrylamide in place of the polyethylene oxide, it cannot be used for the following reasons. That is, polyacrylamide is nonionic in a neutral range, but in an alkaline range, the amide group (CO·NH 2 ) is hydrolyzed to produce a carboxyl group and becomes anionic. In this case, since the ionic charge of the carboxyl group reaches its maximum at pH 8, the aggregation effect is also exhibited in this pH range. Therefore, when polyacrylamide is used, it is essential to adjust the pH using aqueous ammonia or caustic soda, resulting in the following disadvantages. In other words, when ammonia water is used to adjust the pH, some of the water evaporates during handling, worsening the working environment, and when caustic soda is used, the amount of alkali metals in the molded product increases, making it difficult to use in high-temperature applications. Since it acts as a flux when applying a molded product, it has the disadvantage of impairing the heat resistance and durability of the molded product. As a method for obtaining a molded article from the composition of the present invention, for example, in the case of manufacturing paper or board, a slurry of the composition is passed through a wire mesh,
Water is removed using a compression roller, or water is removed by suction and molded. In the case of other molded bodies, the composition can be slurried to form a cake, placed in a suitable mold, and molded. The obtained fibrous molded product is used after drying. According to the present invention, colloidal silica as an inorganic binder can be fixed to a wide range of types of inorganic fibers, and the amount of colloidal silica that can be fixed to the fibers can be equal to or more than the weight of the fibers, The obtained composition does not undergo any migration upon drying, maintains almost uniform hardness both inside and on the surface, and can be used to produce molded articles with high strength and suitable for high-temperature use. . EXAMPLES The present invention will be explained below with reference to Examples, but the present invention is not limited thereto. Example 1 A slurry was prepared by stirring 1 kg of aluminum silicate fiber, 50 kg of water, and 400 g of anionic colloidal silica (solid content 30%) for 5 minutes, and then 50 g of a 25% aluminum sulfate solution was added to this slurry. Colloidal silica is gelled, and finally 80g of 2% polyethylene oxide solution with a molecular weight of 300,000 is added.
A molded article was made from the obtained slurry composition by vacuum forming and further dried. The density, strength, and shrinkage characteristics of the molded product thus obtained are shown below. Density after drying (110°C 24 hours, Kg/m 2 ) = 260 Bending strength after drying (110°C 24 hours, Kg/cm 2 ) = 9.2 After firing (1100°C 3 hours, Kg/cm 2 ) = 4.5 After 〃 (1200℃ 3 hours, Kg/cm 2 ) = 4.0 Linear shrinkage after firing (1100℃ 3 hours, %) = 2.1 After calcination 〃 (1200℃ 3 hours, %) = 2.9 Examples 2 to 5 Fiber, colloidal A molded article was obtained by repeating the same operation as in Example 1 while changing the amounts of silica, coagulant, and polyethylene oxide. Their physical properties are shown in the table below. However, Examples 4 and 5 were obtained by press molding. 【table】

Claims (1)

【特許請求の範囲】 1 無機繊維とコロイダルシリカを分散媒中に分
散せしめてなるスラリーに凝結剤を添加し、次い
でポリエチレンオキサイドを添加して該コロイダ
ルシリカを該繊維に定着せしめてスラリー状組成
物を得ることを特徴とする繊維質成形体用組成
物。 2 無機繊維は鉱物繊維、珪酸アルミニウム、ガ
ラス、アルミナ、ジルコニア、酸化硼素、炭化硼
素、シリカ、窒化珪素、炭化珪素、珪酸アルミニ
ウムカルシウム、およびそれらの混合物より成る
群から選択した特許請求の範囲第1項記載の組成
物。 3 凝結剤は酸、塩、電解質およびこれらの混合
物より成る群から選択した特許請求の範囲第1項
記載の組成物。 4 スラリー状組成物が耐火性無機物、可燃性有
機物を更に含む特許請求の範囲第1項〜第3項の
いずれかに記載の組成物。 5 少なくとも100000の分子量をもつポリエチレ
ンオキサイドを使用する特許請求の範囲第1項〜
第4項のいずれかに記載の組成物。 6 少なくとも250000の分子量をもつポリエチレ
ンオキサイドを使用する特許請求の範囲第5項に
記載の組成物。
[Scope of Claims] 1. A slurry composition is produced by adding a coagulant to a slurry made by dispersing inorganic fibers and colloidal silica in a dispersion medium, and then adding polyethylene oxide to fix the colloidal silica to the fibers. A composition for a fibrous molded article, characterized in that it obtains the following. 2. The inorganic fibers are selected from the group consisting of mineral fibers, aluminum silicate, glass, alumina, zirconia, boron oxide, boron carbide, silica, silicon nitride, silicon carbide, calcium aluminum silicate, and mixtures thereof. Compositions as described in Section. 3. The composition of claim 1, wherein the coagulant is selected from the group consisting of acids, salts, electrolytes, and mixtures thereof. 4. The composition according to any one of claims 1 to 3, wherein the slurry composition further contains a refractory inorganic substance and a combustible organic substance. 5. Claims 1 to 5 which use polyethylene oxide having a molecular weight of at least 100,000.
The composition according to any of paragraph 4. 6. Composition according to claim 5, using polyethylene oxide with a molecular weight of at least 250,000.
JP20196081A 1981-12-15 1981-12-15 Fibrous formed body composition Granted JPS58104059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20196081A JPS58104059A (en) 1981-12-15 1981-12-15 Fibrous formed body composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20196081A JPS58104059A (en) 1981-12-15 1981-12-15 Fibrous formed body composition

Publications (2)

Publication Number Publication Date
JPS58104059A JPS58104059A (en) 1983-06-21
JPS6243944B2 true JPS6243944B2 (en) 1987-09-17

Family

ID=16449611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20196081A Granted JPS58104059A (en) 1981-12-15 1981-12-15 Fibrous formed body composition

Country Status (1)

Country Link
JP (1) JPS58104059A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651595B2 (en) * 1985-06-26 1994-07-06 三菱化成株式会社 Method for manufacturing fireproof insulation board
US6569233B2 (en) * 2001-09-25 2003-05-27 W. R. Grace & Co.-Conn. Pumpably verifiable fluid fiber compositions
US6790275B2 (en) 2001-09-25 2004-09-14 W. R. Grace & Co.-Conn. Pumpably verifiable fluid fiber compositions
JP6537286B2 (en) * 2015-02-02 2019-07-03 ニチアス株式会社 Unshaped refractory composition for metal casting, method for producing the same, cured product of unshaped refractory composition for metal casting

Also Published As

Publication number Publication date
JPS58104059A (en) 1983-06-21

Similar Documents

Publication Publication Date Title
JP2533025B2 (en) Insulation product based on inorganic fiber and manufacturing method thereof
US3920578A (en) Colloidal silica-based binder vehicles and gels
US3775141A (en) Hardened inorganic refractory fibrous compositions
US6287994B1 (en) Ceramic fiber insulation material
US3835054A (en) Method for preparation of thermal insulation board
JPS62226875A (en) Lightweight heat insulating board and manufacture
US3785838A (en) Inorganic refractory fibrous compositions
JP2681067B2 (en) Ceramic foam filter and method for manufacturing the same
JPS6243944B2 (en)
JPS6140721B2 (en)
SE463151B (en) PROCEDURES FOR PREPARING HEAT-INSULATING FORM
JPS60246251A (en) Calcium silicate moldings
FI93757C (en) Paper, board or cardboard raw material and method of making it
JPS59187700A (en) Production of heat resistant fiber molded article
JPS623109B2 (en)
JP3300118B2 (en) Manufacturing method of calcium silicate plate
JPH05311596A (en) Ceramic sheet and its production and heat insulator using the same sheet
JPS6033244A (en) Manufacture of inorganic fiber formed body
JPH02210711A (en) Manufacture of thermal resistant electrical insulating material
JP3351599B2 (en) Foam board
JPS6163557A (en) Manufacture of fiber reinforced cement board
JP2606618B2 (en) Manufacturing method of cement structure
JP4198868B2 (en) Manufacturing method of fiber reinforced inorganic board
JP3207819B2 (en) Insulation material composition
JP3181964B2 (en) Composition for manufacturing lightweight and high-strength silica moldings