JPS624391B2 - - Google Patents

Info

Publication number
JPS624391B2
JPS624391B2 JP8483181A JP8483181A JPS624391B2 JP S624391 B2 JPS624391 B2 JP S624391B2 JP 8483181 A JP8483181 A JP 8483181A JP 8483181 A JP8483181 A JP 8483181A JP S624391 B2 JPS624391 B2 JP S624391B2
Authority
JP
Japan
Prior art keywords
trioxane
podm
distillation
distillate
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8483181A
Other languages
Japanese (ja)
Other versions
JPS57200382A (en
Inventor
Kazuyoshi Ko
Akitoshi Sugio
Akira Amamya
Takeo Suzumori
Akihiko Konishi
Takeshi Komaki
Shinichi Kaji
Haruaki Eto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP8483181A priority Critical patent/JPS57200382A/en
Publication of JPS57200382A publication Critical patent/JPS57200382A/en
Publication of JPS624391B2 publication Critical patent/JPS624391B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高分子量ポリオキシメチレン重合体又
は共重合体製造用トリオキサンの精製法に関す
る。 一般に、トリオキサンはホルムアルデヒド水溶
液を酸触媒の存在下に加熱することにより合成さ
れる。工業的に有利なトリオキサンの製造方法と
しては、大略40〜70wt%のホルムアルデヒド水
溶液を酸触媒の存在下に加熱蒸留してトリオキサ
ン20〜55wt%、ホルムアルデヒド15〜40wt%、
水20〜50wt%の組成の留出液を得、次いでこの
留出液を水に不溶乃至難溶の溶剤で液々抽出し抽
出液を精留してトリオキサンを分離する方法が知
られている。また、得られたトリオキサンを精製
する方法も数多く提案されており、アニオン交換
樹脂や塩基性アミン類の存在下にトリオキサンを
蒸留精製する方法、活性アルミナやモレキユラー
シーブでトリオキサンを精製する方法、或いは化
学反応を利用して不純物を除去する方法などがあ
げられる。しかしながら、これらの精製法ではト
リオキサン中の水、ギ酸、ホルムアルデヒド等の
不純物を除去することができても次記一般式のポ
リオキシメチレンジメトキシド(以下PODMと略
記する) CH3O(CH2O)nCH3 (式中nは2以上の整数を表わす。トリオキサン
中に含まれるもののnは通常2〜7である。) は除去することはできず、したがつて重合の原料
として好適なトリオキサンは得られなかつた。 本発明者らの知見によれば重合原料として用い
るトリオキサンはその中に含まれるPODMの含量
が700ppm以下、望ましくは500ppm以下のもの
が良い。ところが、このPODM、特に上記一般式
でn=2のものは沸点がトリオキサンの沸点と近
く、且つ化学的性質もトリオキサンと類似してい
るため上述の従来の蒸留、吸着、抽出、反応等に
よる精製法では除去し得なかつた。 PODMを含む粗トリオキサンを一旦冷却し不活
性ガス又は空気雰囲気の開放系下に結晶状態で存
在させることによりPODMを除去する方法(特公
昭55−23855)も知られているが、多量のトリオ
キサンを結晶化させ、不活性ガス等の雰囲気下に
存在させることは取扱上の問題もある。 又反応滞留時間を短くしてPODMの生成を防止
する方法(特開昭50−35177等)も知られている
が薄膜蒸発器や蒸留塔の材質に問題があり工業的
又は経済的に困難な面がある。 本発明者等はトリオキサンからPODM特に前記
一般式でn=2の化合物を効果的に除去すべく鋭
意検討した結果、従来トリオキサンとPODMとは
沸点も近く、且つ物理的性質も類似している為蒸
留操作では分離除去出来ないとされていたが、特
定の条件下で粗トリオキサンを蒸留することによ
りPODMを除去し得ることを見い出し本発明に到
つた。 すなわち本発明は、PODMを含んだ粗トリオキ
サンを蒸留塔の中間部に供給し、塔頂からPODM
に富んだトリオキサン溶液を留去させ塔底から精
トリオキサンを抜出す蒸留方法に於ては、留出液
中のPODMの濃度が高いほどトリオキサンの損失
が少く好ましいが、ある濃度以上ではPODMの除
去率が著しく低下し缶出液中に残存する事実を見
出し完成されたものであり、而して本発明は
PODMを含む粗トリオキサンを理論段数15段以
上、好ましくは20段以上の蒸留塔に於て、還流比
20以上、好ましくは25以上、留出液中のPODM濃
度を30%以下、好ましくは25%以下として蒸留す
る方法である。なお実段数では25段以上、好まし
くは30段以上の蒸留塔が必要である。 留出液中のPODM濃度は、蒸溜塔の理論段数ま
たは還流比を高まると共に高濃度となる。 従つて、蒸溜時に於ける留出液中のPODM濃度
の調節は、還流比を変えることによつて行うこと
となるが、実際には留出液の抜出し量(留出速
度)または塔底液の加熱量を増減させて還流比を
変化させることにより制御する。 即ち、留出速度を増加させるか叉は塔底液の加
熱量を減少させると、還流比が低下して留出液中
のPODM濃度は低下し、一方留出速度を減少させ
るか叉は塔底液の加熱量を増加させると、還流比
が増大して留出液中のPODM濃度は高くなる。 トリオキサン中のPODM濃度は、公知の種々の
分析手段で定量することが出来るが、ガスクロマ
トグラフイーが好適であり、例えばカラムとして
ポリエチレングリコールPEG−6000を液相とす
る充填剤とシリコーンSE−30を液相とする充填
剤との混合物を充填したカラムを、検出器として
炎イオン化検出器(FID)を各々用い、PODMを
含有するトリオキサンをエーテルに溶解したもの
を試料としたガスクロマトグラフイーが好適であ
る。 蒸留塔の種類としては一般のバブルキヤツプ
型、多孔板型、フレキシトレー型等の棚段塔及び
ラシヒリング、マクマホン、ヘリパツク等の充填
塔を使用することが出来る。 蒸留は回分蒸留でもPODMを除去し得るが、工
業的には連続蒸留が好ましい。この場合原料供給
段は粗トリオキサン中のPODM濃度及び留出液と
缶出液の組成、蒸留塔の段数によつて変わつてく
るが、蒸留塔内部の組成と供給液の組成とがほぼ
一致する所に供給するのが良い。 トリオキサンは酸素存在下で分解し易いので酸
素の系内への混入を防止する為に、大気と連結し
ている還流部のガス放出口に窒素等の不活性ガス
を流すのが好ましい。 本発明の方法ではPODMの除去率は高く、メタ
ノール含量の高い一般のホルマリンを原料として
製造した如きPODM含量の高い粗トリオキサンを
供給原料とすることができるが、通常粗トリオキ
サンに含まれているメチラール、水、ギ酸、ギ酸
メチル、ホルムアルデヒド、トリオキサンの製造
に使用する水に不溶ないし難溶性の抽出溶剤等の
トリオキサンより沸点の低い不純物が多量に存在
するとPODMの除去が困難になるので、それらの
低沸点不純物の合計量がトリオキサンの1重量%
以下であることが好ましく、多量に含まれている
場合は予め蒸留等の手段で除去しておくことが好
ましい。例えば前記公知方法におけるトリオキサ
ンの抽出溶媒溶液を蒸留することにより、これら
の不純物を溶媒と共に除去することができる。 本発明の方法によれば蒸留塔塔底部から得られ
るトリオキサン中のPODMを500pppm以下に下
げることが出来、そのまま重合原料として使用可
能である。 蒸留塔留出抜出量は供給する粗トリオキサン中
のPODM含量によつて変化するが、500〜
10000ppmのPODMを含むトリオキサンでは供給
量の0.3〜3%程度であり、トリオキサン損失も
少ない。又還流比が高いものの留出液量が微少で
あるので蒸気使用量も少なく、蒸留という基本的
な単位操作であるので工業上容易に実施可能であ
る。 また前記の如くPODM含量の高い粗トリオキサ
ンでも差支えないため、トリオキサンの製造に際
して一般のメタノール含量の高いホルマリンを原
料とすることができ、原料ホルマリンのメタノー
ル除去装置を使用したり、低メタノールホルマリ
ン製造の為の特殊なホルマリン製造法を採用する
必要がない。 以下実施例で具体例を示す。 なお、PODM濃度は次の条件のガスクロマトグ
ラフイーにより分析した。 装置:(株)島津製作所GC−6A(検出器FID) カラム充填剤:クロモソルブ(Chromos orb
WHP)にシリコーン(SE−30)を20重量%担持
させた充填剤と、セライト(Celite 545SK)に
ポリエチレングリコール(PEG−6000)を20重
量%担持させた充填剤との等重量混合物 カラム温度:60℃ 気化室温度:200℃ キヤリ
ヤーガス及び流量:窒素 40ml/min 試料:エ
ーテル溶液として使用 実施例 1 2のフラスコにPODM1523ppm含む粗トリ
オキサン1800gを仕込み、フラスコをマントルヒ
ーターで加熱し、留出蒸気をヘリパツクを充填し
た理論段数50段、外部加熱保温付の内径30mmのガ
ラス製蒸留塔に導入した。蒸留塔留出蒸気を温水
凝縮器に導き、凝縮液を3時間全還流させた後、
蒸留塔中央部より上記の粗トリオキサンを493
g/hrの速度で供給した。塔頂からの抜出量を
5.4g/hr、還流比117に調節し、塔底から精トリ
オキサンをフラスコの液面が一定になる様抜出し
た。還流部のガス放出口には窒素ガスを流し、酸
素の混入を防止した。 留出液、塔底液を一定時間ごとにサンプリング
及び分析して、定常運転になるまで連続蒸留運転
を行なつた。 定常運転時の塔底液トリオキサン中のPODMは
40ppm、ホルマリン1ppm、ギ酸4ppmでありポ
リオキシメチレン直接重合用原料として使用出来
る高純度のものであつた。なお留出液中のPODM
は13.5%でありフイード量に対する留出液量は
1.1%であつた。 実施例 2 1680ppmのPODMを含む粗トリオキサン2000
gを2のフラスコに仕込み、フラスコをマント
ルヒーターで加熱し、留出蒸気をヘリパツクを充
填した理論段50段の内径30mmのガラス製蒸留塔
(外部加熱保温付)に導入し窒素雰囲気下に蒸留
を行なつた。蒸留塔留出蒸気を温水凝縮器に導
き、凝縮液を5時間全還流させた後還流比50でバ
ツチ蒸留を行なつた。41.1gを留出させて蒸留を
停止した。留出液中のPODMは7.3%、塔底液ト
リオキサン中のPODMは176ppm、ギ酸3ppmホ
ルムアルデヒド2ppmであつた。 実施例 3〜5 蒸留条件及び粗オキシメチレン組成(PODM含
量)を種々変えて、実施例1と同様の連続蒸留し
た結果を第1表に示す。 比較例 1及び2 比較の為、蒸溜装置の理論段数及び還流比を本
発明の範囲外とした場合、及び留出速度を下げて
還流比を上げることにより、留出液中のPODM濃
度を本発明の範囲外とした場合の結果を、第1表
に比較例1及び2として記載した。
The present invention relates to a method for purifying trioxane for producing high molecular weight polyoxymethylene polymers or copolymers. Generally, trioxane is synthesized by heating an aqueous formaldehyde solution in the presence of an acid catalyst. An industrially advantageous method for producing trioxane is to thermally distill an aqueous formaldehyde solution containing approximately 40 to 70 wt% in the presence of an acid catalyst to produce trioxane of 20 to 55 wt%, formaldehyde of 15 to 40 wt%,
A known method is to obtain a distillate with a composition of 20 to 50 wt% water, then extract this distillate liquid-by-liquid with a solvent that is insoluble or poorly soluble in water, and rectify the extract to separate trioxane. . In addition, many methods have been proposed for purifying the obtained trioxane, such as a method of purifying trioxane by distillation in the presence of an anion exchange resin or basic amines, a method of purifying trioxane with activated alumina or molecular sieves, Alternatively, there may be a method of removing impurities using a chemical reaction. However, although these purification methods can remove impurities such as water, formic acid, and formaldehyde in trioxane, polyoxymethylene dimethoxide (hereinafter abbreviated as PODM) of the following general formula CH 3 O (CH 2 O ) nCH 3 (in the formula, n represents an integer of 2 or more. n of those contained in trioxane is usually 2 to 7) cannot be removed, and therefore trioxane suitable as a raw material for polymerization is I couldn't get it. According to the knowledge of the present inventors, the trioxane used as a polymerization raw material should contain PODM in a content of 700 ppm or less, preferably 500 ppm or less. However, this PODM, especially the one with n=2 in the above general formula, has a boiling point close to that of trioxane and has chemical properties similar to trioxane, so it cannot be purified by the conventional distillation, adsorption, extraction, reaction, etc. mentioned above. It could not be removed by law. There is also a known method (Japanese Patent Publication No. 55-23855) in which PODM is removed by cooling crude trioxane containing PODM and allowing it to exist in an open system in an inert gas or air atmosphere in a crystalline state. There is also a problem in handling when crystallizing the material and allowing it to exist in an atmosphere such as an inert gas. Methods of preventing PODM formation by shortening the reaction residence time are also known (Japanese Patent Laid-Open No. 50-35177, etc.), but there are problems with the materials of the thin film evaporator and distillation column, making this method industrially and economically difficult. There is a side. The inventors of the present invention have conducted intensive studies to effectively remove PODM, particularly the compound where n=2 in the general formula above, from trioxane. Although it was believed that PODM could not be separated and removed by distillation, the present inventors discovered that PODM could be removed by distilling crude trioxane under specific conditions, leading to the present invention. That is, in the present invention, crude trioxane containing PODM is supplied to the middle part of the distillation column, and PODM is extracted from the top of the column.
In the distillation method in which a trioxane solution rich in polyoxane is distilled off and purified trioxane is extracted from the bottom of the column, a higher concentration of PODM in the distillate is preferable because the loss of trioxane is smaller, but above a certain concentration, the removal of PODM is The present invention has been completed by discovering the fact that the rate is significantly reduced and remains in the bottom liquid.
Crude trioxane containing PODM is heated at a reflux ratio in a distillation column with 15 or more theoretical plates, preferably 20 or more plates.
This is a method of distilling at a PODM concentration of 20 or more, preferably 25 or more, and a PODM concentration in the distillate of 30% or less, preferably 25% or less. Note that a distillation column with actual plates of 25 or more plates, preferably 30 plates or more is required. The concentration of PODM in the distillate increases as the number of theoretical plates or the reflux ratio of the distillation column increases. Therefore, the PODM concentration in the distillate during distillation is controlled by changing the reflux ratio, but in reality, the amount of distillate withdrawn (distillation rate) or the bottom liquid It is controlled by increasing or decreasing the heating amount and changing the reflux ratio. That is, if the distillation rate is increased or the amount of heating of the column bottom liquid is decreased, the reflux ratio is decreased and the PODM concentration in the distillate is decreased; When the amount of heating of the bottom liquid is increased, the reflux ratio increases and the PODM concentration in the distillate increases. The concentration of PODM in trioxane can be determined by various known analytical methods, but gas chromatography is preferred.For example, a column containing polyethylene glycol PEG-6000 as a liquid phase and silicone SE-30 is Gas chromatography is preferred, using a column packed with a mixture of fillers and a liquid phase, a flame ionization detector (FID) as a detector, and a sample of trioxane containing PODM dissolved in ether. be. As for the type of distillation column, general tray columns such as bubble cap type, perforated plate type, and flexi-tray type, and packed columns such as Raschig ring, McMahon, and helipack types can be used. Although PODM can be removed by batch distillation, continuous distillation is preferred industrially. In this case, the raw material supply stage varies depending on the PODM concentration in the crude trioxane, the composition of the distillate and bottoms, and the number of stages in the distillation column, but the composition inside the distillation column and the composition of the feed liquid are almost the same. It is better to supply it to a place. Since trioxane is easily decomposed in the presence of oxygen, in order to prevent oxygen from entering the system, it is preferable to flow an inert gas such as nitrogen through the gas outlet of the reflux section connected to the atmosphere. In the method of the present invention, the removal rate of PODM is high, and crude trioxane with a high PODM content, such as that produced from general formalin with a high methanol content, can be used as a feedstock. If there are large amounts of impurities with boiling points lower than trioxane, such as water, formic acid, methyl formate, formaldehyde, and extraction solvents that are insoluble or poorly soluble in water used in the production of trioxane, it will be difficult to remove PODM. Total amount of boiling point impurities is 1% by weight of trioxane
It is preferable that the amount is below, and if it is contained in a large amount, it is preferable to remove it in advance by means such as distillation. For example, these impurities can be removed together with the solvent by distilling the extraction solvent solution of trioxane in the above-mentioned known method. According to the method of the present invention, PODM in trioxane obtained from the bottom of the distillation column can be lowered to 500 ppm or less, and it can be used as a polymerization raw material as it is. The amount of distillate extracted from the distillation column varies depending on the PODM content in the crude trioxane supplied, but it is 500~
In the case of trioxane containing 10,000 ppm of PODM, it is about 0.3 to 3% of the supplied amount, and the loss of trioxane is also small. In addition, although the reflux ratio is high, the amount of distillate is small, so the amount of steam used is small, and since it is a basic unit operation of distillation, it can be easily implemented industrially. In addition, as mentioned above, crude trioxane with a high PODM content can be used, so general formalin with a high methanol content can be used as a raw material when producing trioxane, and methanol removal equipment for raw formalin can be used, or formalin with a low methanol content can be produced. There is no need to adopt a special formalin production method for this purpose. Specific examples will be shown below in Examples. Note that the PODM concentration was analyzed by gas chromatography under the following conditions. Equipment: Shimadzu Corporation GC-6A (detector FID) Column packing material: Chromos orb
An equal weight mixture of a packing material in which 20% by weight of silicone (SE-30) is supported on WHP) and a packing material in which 20% by weight of polyethylene glycol (PEG-6000) is supported in Celite (Celite 545SK).Column temperature: 60℃ Vaporization chamber temperature: 200℃ Carrier gas and flow rate: Nitrogen 40ml/min Sample: Used as an ether solution Example 1 1800g of crude trioxane containing 1523ppm of PODM was charged into flasks 1 and 2, the flask was heated with a mantle heater, and the distilled vapor was transported by helicopter. The distillation column was introduced into a glass distillation column with an internal diameter of 30 mm and an external heating and insulation device, which was packed with 50 theoretical plates. The vapor distilled from the distillation column was introduced into a hot water condenser, and the condensate was completely refluxed for 3 hours.
493 ml of the above crude trioxane is extracted from the center of the distillation column.
It was fed at a rate of g/hr. The amount extracted from the top of the tower
The reflux ratio was adjusted to 5.4 g/hr and the reflux ratio was 117, and purified trioxane was extracted from the bottom of the column so that the liquid level in the flask remained constant. Nitrogen gas was flowed through the gas outlet of the reflux section to prevent oxygen from entering. The distillate and column bottom liquid were sampled and analyzed at regular intervals, and continuous distillation operation was performed until steady operation was achieved. PODM in trioxane bottom liquid during steady operation is
The content was 40 ppm, formalin 1 ppm, and formic acid 4 ppm, and was of high purity that could be used as a raw material for direct polymerization of polyoxymethylene. Furthermore, PODM in the distillate
is 13.5%, and the distillate volume relative to the feed volume is
It was 1.1%. Example 2 Crude trioxane 2000 containing 1680 ppm PODM
g into flask No. 2, heat the flask with a mantle heater, and introduce the distilled vapor into a glass distillation column (with external heating and insulation) with 50 theoretical plates and a 30 mm inner diameter filled with a helipad, and distill it under a nitrogen atmosphere. I did this. The vapor distilled from the distillation column was introduced into a hot water condenser, and the condensate was completely refluxed for 5 hours, followed by batch distillation at a reflux ratio of 50. Distillation was stopped after distilling off 41.1 g. PODM in the distillate was 7.3%, PODM in the trioxane bottom liquid was 176 ppm, formic acid 3 ppm, formaldehyde 2 ppm. Examples 3 to 5 Table 1 shows the results of continuous distillation as in Example 1 while varying the distillation conditions and crude oxymethylene composition (PODM content). Comparative Examples 1 and 2 For comparison, when the number of theoretical plates and reflux ratio of the distillation apparatus were set outside the range of the present invention, and by lowering the distillation rate and increasing the reflux ratio, the PODM concentration in the distillate was lowered to the original value. The results for cases outside the scope of the invention are listed in Table 1 as Comparative Examples 1 and 2.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 ポリオキシメチレンジメトキシドを含有する
粗トリオキサンを蒸溜するに際し、理論段数15段
以上の蒸溜塔で、還流比を20以上で且つ留出液中
のポリオキシメチレンジメトキシド濃度が30%以
下となる値に調節しつつ蒸溜することを特徴とす
るトリオキサンの精製法。 2 理論段数20段以上の蒸溜塔で、還流比を25以
上で且つ留出液中のポリオキシメチレンジメトキ
シド濃度が25%以下となる値に調節しつつ蒸溜す
る特許請求の範囲第1項記載の方法。
[Scope of Claims] 1. When crude trioxane containing polyoxymethylene dimethoxide is distilled, the reflux ratio is set to 20 or more in a distillation column having 15 or more theoretical plates, and the polyoxymethylene dimethoxide concentration in the distillate is A method for purifying trioxane, characterized by distilling it while adjusting the value to be 30% or less. 2. Claim 1 describes distillation in a distillation column having 20 or more theoretical plates while controlling the reflux ratio to 25 or more and the concentration of polyoxymethylene dimethoxide in the distillate to 25% or less. the method of.
JP8483181A 1981-06-02 1981-06-02 Purification of trioxan Granted JPS57200382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8483181A JPS57200382A (en) 1981-06-02 1981-06-02 Purification of trioxan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8483181A JPS57200382A (en) 1981-06-02 1981-06-02 Purification of trioxan

Publications (2)

Publication Number Publication Date
JPS57200382A JPS57200382A (en) 1982-12-08
JPS624391B2 true JPS624391B2 (en) 1987-01-30

Family

ID=13841712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8483181A Granted JPS57200382A (en) 1981-06-02 1981-06-02 Purification of trioxan

Country Status (1)

Country Link
JP (1) JPS57200382A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536239Y2 (en) * 1987-06-05 1993-09-13

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536239Y2 (en) * 1987-06-05 1993-09-13

Also Published As

Publication number Publication date
JPS57200382A (en) 1982-12-08

Similar Documents

Publication Publication Date Title
EP3611162A1 (en) Method for distilling dimethylsulfoxide and multistage distillation column
EP2872473B1 (en) Process for the production of methylbutynol
JP4245921B2 (en) Method for producing cyclic formal
US2529622A (en) Formaldehyde purification and polymerization with selective condensation of water vapor
US4934519A (en) Process for working up crude liquid vinyl acetate
JPS624391B2 (en)
US4043873A (en) Plural stage recovery of trioxane in a process having a molecular distillation step
JPH08104659A (en) Purification of methylal
US4090922A (en) Carrier-vapor distillation
US3395157A (en) Plural stage distillation of trioxane in the presence of a water-immiscible solvent
JP2906220B2 (en) Trioxane production method
US4153516A (en) Process for separating alkoxyketone compounds from the corresponding 1-alkoxy-2-alkanol compound
US3686077A (en) Process and apparatus for separating liquids
FI90656B (en) Process for purification of 2- (4-isobutylphenyl) propionic acid
KR100274285B1 (en) Process for the preparation of pure trioxane
US5772854A (en) Use of paired reboilers in the purification of propylene oxide by extractive distillation
CN106397145B (en) A kind of industry dimethoxym ethane raw material dewatering process method
JPS5872535A (en) Removal of methanol from aqueous formaldehyde
JPH06228127A (en) Production of trioxane
US11655263B2 (en) Preparation of isocyanatosilanes
JPH0243750B2 (en) TORIOKISANNOSEIZOHOHO
JPS58198482A (en) Production of trioxane
US2816063A (en) Purification of cyclohexanone oxime
JPH06321861A (en) Production of diacetoxybutene
JPH0733761A (en) Method for purifying trioxane