JPS624386B2 - - Google Patents

Info

Publication number
JPS624386B2
JPS624386B2 JP12402885A JP12402885A JPS624386B2 JP S624386 B2 JPS624386 B2 JP S624386B2 JP 12402885 A JP12402885 A JP 12402885A JP 12402885 A JP12402885 A JP 12402885A JP S624386 B2 JPS624386 B2 JP S624386B2
Authority
JP
Japan
Prior art keywords
formula
acid amide
reaction
pyrrolidinyl
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12402885A
Other languages
Japanese (ja)
Other versions
JPS6140258A (en
Inventor
Shigeru Kurata
Yasushi Suzuki
Takeo Shibata
Kunio Tsukamoto
Rikio Oochi
Hiroshi Ooyabu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECHUUDO SHIANTEIFUIKU E IND DO RIRU DO FURANSU SOC
Original Assignee
ECHUUDO SHIANTEIFUIKU E IND DO RIRU DO FURANSU SOC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECHUUDO SHIANTEIFUIKU E IND DO RIRU DO FURANSU SOC filed Critical ECHUUDO SHIANTEIFUIKU E IND DO RIRU DO FURANSU SOC
Priority to JP12402885A priority Critical patent/JPS6140258A/en
Publication of JPS6140258A publication Critical patent/JPS6140258A/en
Publication of JPS624386B2 publication Critical patent/JPS624386B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pyrrole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、N−(1′−アルキル−2′−ピロリジ
ニル)アルキル安息香酸アミド、及びその製造方
法に関する。 式 式中、R1はアルキレン基を表わし、 R2はアルキル基を表わす、 の1−アルキル−2−アミノアルキルピロリジン
は、各種の医薬品、工業薬品等の合成中間体とし
て公知の化合物であり、従来、例えば1−エチル
−2−アミノメチルピロリジンは、1−エチル−
3−クロロピロリジン塩酸塩をアンモニアと加熱
して得ることが提案されている(米国特許第
3031452号明細書)。しかしこの公知の方法では、
1−エチル−3−ヒドロキシピペリジンが副生
し、その副生物の分離が困難であるため、特に高
純度のものが要求される医薬品の合成中間体とし
ては不適当であるという欠点がある。さらに、上
記公知方法の改良方法として、下記の反応工程に
より前記式()の化合物を製造する方法も提案
されている(特公昭46−27457号公報)。 反応式A 上記式中、R1及びR2は前記定義の通りであ
る。 しかしながら、上記の改良方法は式()の化
合物の収率が低く(原料のテトラヒドロフラニル
アルキルクロリドを基準にして約18〜50%の収
率)、また工業的に高価な試薬(フタルイミドカ
リウム及びヨウ化カリウム)を必要とする、等の
欠点がある。 本発明者らは、上記式()の1−アルキル−
2−アミノアルキルピロリジンの工業的に有利な
製造方法につき種々研究を行なつた結果、工業的
に極めて容易に入手し得る安息香酸と2−テトラ
ヒドロフラニルアルキルアミンとから、以下に述
べる方法により、式()の化合物が極めて高収
率で得ることができることを見い出し、本発明に
到つたものである。 すなわち、本発明によれば、上記式()の1
−アルキル−2−アミノアルキルピロリジンは、
(a)安息香酸又はその反応性誘導体を式 式中、R1は前記定義の通りである、 の2−テトラヒドロフラニルアルキルアミン又は
その反応性誘導体と反応せしめ、 (b) 得られる式 式中、R1は前記定義の通りである、 のN−(2′−テトラヒドロフラニル)アルキル
安息香酸アミドを塩化チオニルと反応せしめ、 (c) 生成する式 式中、R1は前記定義の通りである、 のN−ジクロロアルキル安息香酸アミドを式 R2−NH2 () 式中、R2は前記定義の通りである、 のアルキルアミンと反応せしめ、 (d) 次いでかくして得られる式 式中、R1及びR2は前記定義の通りである、 のN−(1′−アルキル−2′−ピロリジニル)ア
ルキル安息香酸アミドをアルカリ金属水酸化物
で処理してアミド結合を開裂せしめることによ
り製造される。本発明の化合物は、上記の方法
において使用される中間体化合物である。 本明細書において、「アルキル基」は直鎖状又
は分岐鎖状のいずれであつてもよく、炭素原子数
10個まで、特に炭素原子数5個までの低級のもの
が好ましく、例えばメチル、エチル、n−もしく
はiso−プロピル、n−、iso−、sec−もしくは
tert−ブチル、n−ペンチル等が包含され、R2
対しては特にエチルが好ましい。また、「アルキ
レン基」は直鎖状又は分岐鎖のいずれであつても
よく、特に炭素原子数5個までの低級のものが好
適であり、例えば、メチレン、エチレン、プロピ
レン、メチルエチレン、ブチレン、メチルプロピ
レン、ジメチルエチレン等が挙げられるが、R1
に対しては就中メチレンが好ましい。 本発明において先ず、安息香酸又はその反応性
誘導体が前記式()の2−テトラヒドロフラニ
ルアルキルアミン又はその反応性誘導体と反応せ
しめられる。 安息香酸の反応性誘導体としては、ペプチド化
学の分野においてアミド化反応を行なうに際しカ
ルボキシル基の活性化に使用されているものはい
ずれも使用可能であり、例えば次のものが挙げら
れる。 (iv) 酸ハライド 式中、X1はハロゲン原子、特に塩素原子で
ある、 (ii) エステル 式中、R1は低級アルキル基、特にメチル基
又はエチル基;又は活性エステル残基、例えは
−CH2CN、
The present invention relates to N-(1'-alkyl-2'-pyrrolidinyl)alkylbenzoic acid amide and a method for producing the same. formula In the formula, R 1 represents an alkylene group, and R 2 represents an alkyl group. The 1-alkyl-2-aminoalkylpyrrolidine is a compound known as a synthetic intermediate for various pharmaceuticals, industrial chemicals, etc. , for example 1-ethyl-2-aminomethylpyrrolidine is 1-ethyl-2-aminomethylpyrrolidine.
It has been proposed to obtain 3-chloropyrrolidine hydrochloride by heating with ammonia (U.S. Pat.
3031452 specification). However, in this known method,
Since 1-ethyl-3-hydroxypiperidine is produced as a by-product and it is difficult to separate the by-product, it has the disadvantage that it is unsuitable as a synthetic intermediate for pharmaceuticals that particularly require high purity. Furthermore, as an improvement on the above-mentioned known method, a method for producing the compound of formula () using the following reaction steps has also been proposed (Japanese Patent Publication No. 46-27457). Reaction formula A In the above formula, R 1 and R 2 are as defined above. However, the above improved method has a low yield of the compound of formula () (about 18-50% yield based on the raw material tetrahydrofuranylalkyl chloride) and requires industrially expensive reagents (potassium phthalimide and iodine). There are drawbacks such as the need for potassium oxide). The present inventors have discovered that 1-alkyl- of the above formula ()
As a result of conducting various studies on industrially advantageous production methods for 2-aminoalkylpyrrolidine, we found that from benzoic acid and 2-tetrahydrofuranylalkylamine, which are extremely easily available industrially, the formula We have discovered that the compound () can be obtained in extremely high yield, and have arrived at the present invention. That is, according to the present invention, 1 of the above formula ()
-Alkyl-2-aminoalkylpyrrolidine is
(a) Benzoic acid or its reactive derivative with the formula (b) is reacted with 2-tetrahydrofuranylalkylamine or a reactive derivative thereof, in which R 1 is as defined above, and (b) the resulting formula is In the formula, R 1 is as defined above, the N-(2'-tetrahydrofuranyl)alkylbenzoic acid amide of is reacted with thionyl chloride, and (c) the formula to produce reacting an N-dichloroalkylbenzoic acid amide of the formula R 2 -NH 2 (), wherein R 1 is as defined above, with an alkylamine of the formula R 2 -NH 2 (), where R 2 is as defined above; (d) Then the formula thus obtained In the formula, R 1 and R 2 are as defined above. Treating the N-(1'-alkyl-2'-pyrrolidinyl)alkylbenzoic acid amide with an alkali metal hydroxide to cleave the amide bond. Manufactured by. The compounds of the invention are intermediate compounds used in the above methods. In this specification, the "alkyl group" may be linear or branched, and the number of carbon atoms
Lower ones with up to 10, especially up to 5 carbon atoms are preferred, such as methyl, ethyl, n- or iso-propyl, n-, iso-, sec- or
Included are tert-butyl, n-pentyl and the like, with ethyl being particularly preferred for R2 . Further, the "alkylene group" may be linear or branched, and lower alkylene groups having up to 5 carbon atoms are particularly preferred, such as methylene, ethylene, propylene, methylethylene, butylene, Examples include methylpropylene, dimethylethylene, etc., but R 1
Among these, methylene is preferred. In the present invention, first, benzoic acid or a reactive derivative thereof is reacted with 2-tetrahydrofuranylalkylamine of the formula () or a reactive derivative thereof. As reactive derivatives of benzoic acid, any of those used for activating carboxyl groups during amidation reactions in the field of peptide chemistry can be used, and examples include the following. (iv) Acid halide (ii) ester where R 1 is a lower alkyl group, especially a methyl or ethyl group; or an active ester residue, such as -CH 2 CN,

【式】 又は【formula】 or

【式】 である、 (iii) 混合酸無水物 式中、R4は有機又は無機の酸残基、例えば
アセチル、プロピオニル等のアシル基;基−
COOR5(式中、R5は炭素数6以下の低級アル
キル基である);又は
[Formula], (iii) mixed acid anhydride In the formula, R 4 is an organic or inorganic acid residue, such as an acyl group such as acetyl or propionyl;
COOR 5 (wherein R 5 is a lower alkyl group having 6 or less carbon atoms); or

【式】 (式中、R6及及びR7は同一もしくは相異なり、
各々アルキル基、アリール基又はアラールキル
基を表わすか、或いはR6とR7とは一緒になつ
てアルキレン基又はo−フエニレン基を表わ
す)である、 (iv) 活性アミド 式中、R3は置換又は未置換の1−イミダゾ
リル基又は1−ピラゾリル基を表わす、 (v) 酸アジド また、前記式()のアミン反応性誘導体と
しては、ペプチド化学の分野においてアミド化
反応を行なうに際しアミノ基の活性化に使用さ
れているものはいずれも使用可能であり、例え
ば次のものが挙げられる。 (i) イソシアネート(又はイソチオシアネート) 式中、R1は前記定義の通りである、 (ii) フオスフアゾ化合物 又は 式中、R1は前記定義の通りである、 (iii) フオスフオロアミダイト化合物 式中、R1、R6及びR7は前記定義の通りであ
る。 (iv) フオスフオロアミデート化合物 又は 式中、R1、R6及びR7は前記定義の通りであ
る。 安息香酸又はその反応性誘導体と式()のア
ミン又はその反応性誘導体とのアミド化反応はそ
れ自体公知の種々の方法に従つて行なうことがで
きる。 例えば、該アミド化は安息香酸と式()のア
ミンとの直接縮合により行なうことができる。反
応は無溶媒の状態で行なうこともできるが、一般
に不活性有機溶媒中、例えばベンゼン、トルエ
ン、キシレンの如き炭化水素;テトラヒドロフラ
ン、ジオキサン、ジメトキシエタン、ダイグライ
ムの如きエーテル類;ジメチルホルムアミド、ジ
メチルアセトアミドの如きアミド類;ジクロロメ
タン、クロロホルムの如きハロゲン化炭化水素;
ジメチルスルホキシドなどの中で行なうのが好ま
しい。反応温度及び圧力には特に制約はなく、使
用する原料物質等に応じて広範に変化させること
ができるが、通常反応温度は約0℃乃至反応混合
物の還流温度、好ましくは室温乃至200℃であ
り、圧力は有利には常圧である。また、反応は必
要に応じて、縮合剤の存在下に実施することがで
き、使用し得る縮合剤としては、例えばルイス
酸、特に四塩化硅素、トリクロロフエニルシラン
及び四塩化チタン等、N−エチル−N′−ジエチ
ルアミノプロピルカルボジイミド、N・N′−ジ
シクロヘキシルカルボジイミド等;トリアリール
フオスフインとジスルフイドとの組合せ;アンバ
ーライトIR−120等の強酸性イオン交換樹脂が挙
げられる。 また、前記アミド化は、安息香酸の前述した如
き反応性誘導体と前記式()の遊離アミンとの
間で、或いは遊離の置換安息香酸と前記式()
のアミンの前述した如き反応性誘導体との間で行
なうこともできる。本アミド化もまた、必要に応
じて溶媒を用いずに行なうこともできるが、通常
上記した如き不活性有機溶媒又は高沸点のアルコ
ール類(例えばエチレングリコール、グリセリン
等)中で行なうのが有利である。反応温度及び圧
力は臨界的ではないが、通常反応温度としては、
約−20℃乃至反応混合物の還流温度、好ましくは
0℃乃至180℃であり、圧力は有利には常圧であ
る。 かくして、前記式()のN−(2′−テトラヒ
ドロフラニル)アルキル安息香酸アミドが得られ
る。このものはそのまま又は単離した後に次の反
応に供することができる。反応後の反応混合物か
らの式()の化合物の分離及び精製はそれ自体
公知の方法、例えば過、抽出、再結晶、クロマ
トグラフイー等の方法で容易に行なうことができ
る。 得られる式()のN−(2′−テトラヒドロフ
ラニル)アルキル安息香酸アミドは従来の文献に
未載の新規な化合物であり、その代表例を示せば
次の通りである。 N−(2′−テトラヒドロフラニル)メチル安息
香酸アミド、 N−(2′−テトラヒドロフラニル)エチル安息
香酸アミド、 N−(2′−テトラヒドロフラニル)プロピル安
息香酸アミド、 N−〔1′−(2″−テトラヒドロフラニル)エチ
ル〕安息香酸アミド。 これらのうち、N−(2′−テトラヒドロフラニ
ル)メチル安息香酸アミドが特に好適である。 上記で得られる式()の化合物は、塩化チオ
ニル(SOCl2)と反応せしめることにより、前記
式()のN−ジクロロアルキル安息香酸アミド
に変えられる。 式()の化合物と塩化チオニルとの反応は、
溶媒の存在下に行なうこともできるが、一般に溶
媒の不存在下で行なうのが有利である。溶媒を用
いる場合に使用し得る溶媒としては、ベンゼン、
トルエン、キシレン等の芳香族炭化水素;四塩化
炭素、クロロホルム、クロロベンゼン等のハロゲ
ン化炭化水素等が挙げられる。 該反応の温度は臨界的ではないが、一般に約60
℃以上の加熱下に行なうのが好ましく、反応混合
物の還流温度において有利に行なわれる。 塩化チオニルの使用量もまた臨界的なものでは
ないが、一般に式()の化合物1モルに対し
て、少なくとも3モル、好ましくは4〜6モルの
過剰量で使用するのが好適である。 かくして、本反応により、実質的に無水の条件
下に式 式中、R1は前記定義の通りである、 の化合物が生成し、この式()の化合物は反応
系から単離することができるが、反応混合物に水
を加えれば直ちに前記式()の化合物に変る。 生成する式()の化合物はそのまま次の反応
に供するか、或いは反応混合物から一旦単離する
ようにしてもよい。式()の化合物の分離及び
精製はそれ自体公知の方法で行なうことができ、
例えば過、遠心分離、抽出、クロマトグラフイ
ー、再結晶等の手段を用いることができる。 かくして得られた前記式()のN−ジクロル
アルキル安息香酸アミドもまた、従来の文献に未
載の新規な化合物であり、その代表例を示せば次
の通りである。 N−(2′・5′−ジクロルペンチル)安息香酸ア
ミド、 N−(3′・6′−ジクロルヘキシル)安息香酸ア
ミド、 N−(4′・7′.ジクロルヘプチル)安息香酸アミ
ド、 N−(2′・5′−ジクロル−1−メチルペンチ
ル)安息香酸アミド。 これら化合物のうち N−(2′・5′−ジクロルペンチル)安息香酸ア
ミド が特に好適な化合物である。 かくして生成せしめられた式()のN−ジク
ロロアルキル安息香酸アミドは、次いで式 R2−NH2 () 式中、R2は前記定義の通りである、 のアルキルアミンと反応せしめることにより、式 式中、R1及びR2は前記定義の通りである、 のN−(1′−アルキル−2′−ビロリジニル)アル
キル安息香酸アミドにすることができる。 式()の化合物と式()のアルキルアミン
との反応は、溶媒の存在下は不存在下のいずれの
状態においても行なうことができる。溶媒を使用
する場合に用いうる溶媒としては、例えばエタノ
ール、イソプロパノール、n−ブタノール、tert
−ブタノール、エチレングリコールの如きアルコ
ール類;テトラヒドロフラン、ジオキサン、ジメ
トキシエタンの如きエーテル類;ジメチルホルム
アミド、ジメチルアセトアミド等のアミド類;ジ
メチルスルホキシド(DMSO);トリエチルアミ
ン、ピリジン、コリジン、ピコリンの如き有機ア
ミン類;水、等の極性溶媒が好適に使用される。 反応温度は厳密ではないが、一般に加熱下、好
ましくは約60℃以上特に80℃以上反応混合物の還
流温度までの温度において反応を行なうのが有利
である。また反応の圧力も特に制限はなく通常常
圧で行なわれるが、必要に応じて減圧又は加圧下
に行なつてもよい。 式()のアルキルアミンの使用量も臨界的で
はなく、式()の化合物及び/又は式()の
アルキルアミンの種類、反応条件等に応じて広範
に変えることができるが、通常、式()の化合
物1モルに対して少なくとも等モル、好ましくは
3モル以上であり、上限は特に制限はないが、必
要以上に多量に使つても無駄であり、10モル以下
で充分である。また、反応に際しては、該アルキ
ルアミンを過剰に使用する代りに、酸結合剤を使
用してもよい。 式()の化合物から式()の化合物への閉
環反応の機構は正確にはわからないが、例えば
R1がメチレン基である場合には、式()の化
合物から式()の化合物への閉環反応におい
て、中間で式 及び 式中、R2は前記定義の通りである、 の化合物の存在が認められる。 かくの如くして得られる式()の化合物は必
要に応じて反応混合物から分離した後、本発明の
最終工程の反応に供することができる。該分離は
常法に従つて、例えば過、遠心分離、クロマト
グラフイー、抽出、蒸留等の手段により行なうこ
とができる。 得られる式()の化合物もまた、従来の文献
に未載の新規な化合物であり、その代表的なもの
を例示すれば次の通りである。 N−(1′−エチル−2′−ピロリジニル)メチル
安息香酸アミド、 N−(1′−メチル−2′−ピロリジニル)メチル
安息香酸アミド、 N−(1′−プロピル−2′−ピロリジニル)メチ
ル安息香酸アミド、 N−(1′−イソプロピル−2′−ピロリジニル)
メチル安息香酸アミド、 N−(1′−ブチル−2′−ピロリジニル)メチル
安息香酸アミド、 N−(1′−エチル−2′−ピロリジニル)エチル
安息香酸アミド、 N−(1′−ブチル−2′−ピロリジニル)エチル
安息香酸アミド、 N−(1′−エチル−2′−ピロリジニル)プロピ
ル安息香酸アミド、 N−(1′−プロピル−2′−ピロリジニル)プロ
ピル安息香酸アミド、 N−〔1′−(1″−プロピル−2″−ピロリジニル)
エチル〕安息香酸アミド、 N−(1′−(1″−エチル−2″−ピロリジニル)エ
チル〕安息香酸アミド。 上記化合物中式 式中、R21は低級アルキル基を表わす、 の化合物が好適であり、就中N−(1′−エチル−
2′−ピロリジニル)メチル安息香酸アミドが好ま
しい化合物である。 上記の如くして得られた式()の化合物は、
本発明によれば、アルカリ金属水酸化物で処理す
ることにより、アミド結合が開裂せしめられ、目
的とする式()の1−アルキル−2−アミノア
ルキルアミンにされる。 該アルカリ金属水酸化物による処理は、該アル
カリ金属水酸化物の少なくとも一部を溶解し得
る、実質的に水を含まない不活性有機溶媒中で行
なうのが有利である。かかる不活性有機溶媒とし
ては、メタノール、エタノール、n−プロパノー
ル、n−ブタノール、メトキシエタノール、エト
キシエタノール、エチレングリコール、プロピレ
ングリコール、ジエチレングリコール、グリセリ
ン等の如き低級アルコールが最も適している。こ
れらのうち、特にメタノール、エタノール、エチ
レングリコール及びグリセリンが便利に用いられ
る。これら溶媒は無水であることが望ましいが、
反応を大きく阻害しない程度の少量(通常5重量
%まで)の水の存在は許容しうる。 使用し得るアルカリ金属水酸化物としては、水
酸化ナトリウム、水酸化カリウム、水酸化リチウ
ム等が挙げられるが、本発明においては殊に前2
者の使用が望ましい。 上記の処理の際の温度は厳密ではなく、使用す
る式()の化合物及び/又はアルカリ金属水酸
化物の種類や他の反応条件等に応じて広範に変え
ることができるが、一般に約50℃以上、特に60℃
以上反応混合物の還流温度までの範囲の温度を使
用することが有利である。該処理の際の圧力も特
に制約はないが、通常大気圧で充分であり、必要
に応じて減圧又は加圧を用いることができる。 上記アルカリ金属水酸化物の使用量もまた臨界
的ではなく、式()の化合物及び/又はアルカ
リ金属水酸化物の種類や反応条件に応じて広範に
変えることができるが、一般に該アルカリ金属水
酸化物を過剰に使用するのが適当であり、例えば
式()の化合物1モルに対して、アルカリ金属
水酸化物少なくとも5当量、好適には8〜15当量
の範囲で用いるのが有利である。 かくして、前記式()の1−アルキル−2−
アミノアルキルピロリジンを高収率で生成せしめ
ることができる。この式()の化合物の反応混
合物からの単離は、それ自体公知の方法、例えば
抽出、クロマトグラフイー、蒸留等の手段を用い
て容易に行なうことができる。 本発明により提供される式()の化合物は、
各種工業薬品、医薬品の合成中間体として使用す
ることができる。 以下、実施例により本発明をさらに説明する。 実施例 1 塩化ベンゾイル(14.15g)をベンゼン(42.4
ml)に溶かし、テトラヒドロフルフリルアミン
(10.1g)およびトリエチルアミン(10.1g)を
冷却下に滴加する。室温にて2時間撹拌した後、
反応液に水を加える。有機層を水洗し、芒硝で乾
燥する。減圧下に溶媒を留去するとN−(2′−テ
トラヒドロフラニル)メチル安息香酸アミド
(20.1g)が結晶として得られる。融点88〜90℃
NMR(CDCl3、δ);1.9付近(4H、多重線)、
3.1〜4.2(5H、多重線)、6.8(1H、多重線)、7.3
〜7.9(5H、多重線)。 N−(2′−テトラヒドロフラニル)メチル安息
香酸アミドは以下の方法によつても製造される。
すなわち、安息香酸(12.2g)をジメチルホルム
アミド(60ml)およびトリエチルアミン(10.6
g)に溶かし、クロルギ酸イソプロピル(12.85
g)を冷却下に滴加する。室温にて1時間撹拌し
た後、再び冷却し、テトラヒドロフルフリルアミ
ン(10.6g)を滴加する。室温にて2時間撹拌し
た後、反応液を水にあけ、ベンゼンで抽出する。
有機層を水洗し、芒硝で乾燥する。溶媒を留去す
るとN−(2′−テトラヒドロフラニル)メチル安
息香酸アミド(20.0g)が得られる。融点88〜90
℃。 上で得られるN−(2′−テトラヒドロフラニ
ル)メチル安息香酸アミド(40g)を塩化チオニ
ル(76.7g)とともに4時間加熱還流する。反応
液を氷水にあけ、炭酸カリウムで中和する。析出
する結晶を取し、水洗した後乾燥するとN−
(2′・5′−ジクロルペンチル)安息香酸アミド
(47.2g)が得られる。融点56〜57℃。NMR
(CDCl3、δ);2.0付近(4H、多重線)、3.3〜
4.3(5H、多重線)、6.9付近(1H、多重線)、7.3
〜7.9(5H、多重線)。 上で得られるN−(2′・5′−ジクロルベンチ
ル)安息香酸アミド(23.9g)を70%エチルアミ
ン溶液(23.9ml)およびエタノール(23.9ml)と
ともに20時間加熱する。エチルアミンを減圧下に
出来るだけ留去し、4時間加熱する。反応液に4
%苛性ソーダ溶液を加えた後で抽出する。有機層
を水洗後芒硝で乾燥する。溶媒を留去するとN−
(1′−エチル−2′−ピロリジニル)メチル安息香
酸アミド(18.9g)が油状物として得られる。
NMR(CDCl3、δ);1.11(3H、三重線、J=
7Hz)、1.8付近(4H、多重線)、1.9〜3.5(7H、
多重線)、7.3〜7.9(5H、多重線)。 N−(1′−エチル−2′−ピロリジニル)メチル
安息香酸アミド(120g)をエタノール(600ml)
および水酸化カリウム(300g)とともに4時間
加熱還流する。析出する結晶を去し、液の溶
媒を減圧下にできるだけ留去した後ベンゼンで抽
出する。水洗した後芒硝で乾燥し、溶媒を留去す
る。残留物を減圧蒸留するとbp2060〜61℃の油
(60.8g)を得る。NMR(CDCl3、δ);1.09
(3H、三重線、J=7Hz)、1.5〜3.8(11H、多重
線)。
[Formula] (In the formula, R 6 and R 7 are the same or different,
each represents an alkyl group, an aryl group or an aralkyl group, or R 6 and R 7 together represent an alkylene group or an o-phenylene group); In the formula, R 3 represents a substituted or unsubstituted 1-imidazolyl group or 1-pyrazolyl group, (v) acid azide Furthermore, as the amine-reactive derivative of the above formula (), any derivative used for activating an amino group during an amidation reaction in the field of peptide chemistry can be used; for example, the following may be used: It will be done. (i) Isocyanate (or isothiocyanate) where R 1 is as defined above, (ii) phosphazo compound or In the formula, R 1 is as defined above; (iii) phosphoroamidite compound In the formula, R 1 , R 6 and R 7 are as defined above. (iv) Phosfluoramidate compounds or In the formula, R 1 , R 6 and R 7 are as defined above. The amidation reaction between benzoic acid or its reactive derivative and the amine of formula () or its reactive derivative can be carried out according to various methods known per se. For example, the amidation can be carried out by direct condensation of benzoic acid with an amine of formula (). Although the reaction can be carried out without a solvent, it is generally carried out in an inert organic solvent, such as hydrocarbons such as benzene, toluene and xylene; ethers such as tetrahydrofuran, dioxane, dimethoxyethane and diglyme; dimethylformamide and dimethylacetamide. amides such as; halogenated hydrocarbons such as dichloromethane and chloroform;
Preferably, the reaction is carried out in dimethyl sulfoxide or the like. The reaction temperature and pressure are not particularly limited and can be varied widely depending on the raw materials used, but the reaction temperature is usually about 0°C to the reflux temperature of the reaction mixture, preferably room temperature to 200°C. , the pressure is advantageously normal pressure. Further, the reaction can be carried out in the presence of a condensing agent, if necessary. Examples of condensing agents that can be used include Lewis acids, particularly silicon tetrachloride, trichlorophenylsilane, titanium tetrachloride, etc. Examples include ethyl-N'-diethylaminopropylcarbodiimide, N.N'-dicyclohexylcarbodiimide, etc.; a combination of triarylphosphin and disulfide; and strongly acidic ion exchange resins such as Amberlite IR-120. The amidation may be carried out between a reactive derivative of benzoic acid as described above and a free amine of the formula (), or between a free substituted benzoic acid and a free amine of the formula ().
It can also be carried out with reactive derivatives of amines such as those mentioned above. This amidation can also be carried out without using a solvent if necessary, but it is usually advantageous to carry out in an inert organic solvent such as those mentioned above or a high boiling point alcohol (e.g. ethylene glycol, glycerin, etc.). be. Although the reaction temperature and pressure are not critical, the reaction temperature is usually
The reflux temperature of the reaction mixture is between about -20°C and preferably between 0°C and 180°C, and the pressure is advantageously normal. In this way, N-(2'-tetrahydrofuranyl)alkylbenzoic acid amide of the formula () is obtained. This product can be subjected to the next reaction as it is or after isolation. After the reaction, the compound of formula () can be easily separated and purified from the reaction mixture by methods known per se, such as filtration, extraction, recrystallization, and chromatography. The resulting N-(2'-tetrahydrofuranyl)alkylbenzoic acid amide of formula () is a novel compound that has not been described in conventional literature, and representative examples thereof are as follows. N-(2'-tetrahydrofuranyl)methylbenzoic acid amide, N-(2'-tetrahydrofuranyl)ethylbenzoic acid amide, N-(2'-tetrahydrofuranyl)propylbenzoic acid amide, N-[1'-(2 ″-tetrahydrofuranyl)ethyl]benzoic acid amide. Among these, N- ( 2′-tetrahydrofuranyl)methylbenzoic acid amide is particularly preferred. ), it can be converted to N-dichloroalkylbenzoic acid amide of formula ().The reaction of the compound of formula () with thionyl chloride is as follows:
Although it is possible to carry out the process in the presence of a solvent, it is generally advantageous to carry out the process in the absence of a solvent. Examples of solvents that can be used include benzene,
Examples include aromatic hydrocarbons such as toluene and xylene; halogenated hydrocarbons such as carbon tetrachloride, chloroform and chlorobenzene. The temperature of the reaction is not critical, but is generally about 60
It is preferable to carry out the reaction under heating above .degree. C., advantageously carried out at the reflux temperature of the reaction mixture. The amount of thionyl chloride used is also not critical, but it is generally preferred to use it in an excess of at least 3 moles, preferably from 4 to 6 moles, per mole of the compound of formula (). Thus, this reaction allows the formula In the formula, R 1 is as defined above. A compound of the formula () is produced, and the compound of the formula () can be isolated from the reaction system, but as soon as water is added to the reaction mixture, the compound of the formula () is formed. turns into a compound. The generated compound of formula () may be directly subjected to the next reaction, or may be temporarily isolated from the reaction mixture. Separation and purification of the compound of formula () can be carried out by methods known per se,
For example, means such as filtration, centrifugation, extraction, chromatography, and recrystallization can be used. The N-dichloroalkylbenzoic acid amide of the formula () thus obtained is also a novel compound that has not been described in conventional literature, and representative examples thereof are as follows. N-(2′・5′-dichloropentyl)benzoic acid amide, N-(3′・6′-dichlorohexyl)benzoic acid amide, N-(4′・7′.dichlorheptyl)benzoic acid amide, N-(2'·5'-dichloro-1-methylpentyl)benzoic acid amide. Among these compounds, N-(2'.5'-dichloropentyl)benzoic acid amide is particularly preferred. The N-dichloroalkylbenzoic acid amide of the formula () thus produced is then reacted with an alkylamine of the formula R 2 -NH 2 (), where R 2 is as defined above, to form a compound of the formula In the formula, R 1 and R 2 can be N-(1'-alkyl-2'-pyrrolidinyl)alkylbenzoic acid amide, as defined above. The reaction between the compound of formula () and the alkylamine of formula () can be carried out either in the presence or absence of a solvent. Examples of solvents that can be used include ethanol, isopropanol, n-butanol, tert.
- Alcohols such as butanol and ethylene glycol; ethers such as tetrahydrofuran, dioxane, and dimethoxyethane; amides such as dimethylformamide and dimethylacetamide; dimethyl sulfoxide (DMSO); organic amines such as triethylamine, pyridine, collidine, and picoline; Polar solvents such as water are preferably used. Although the reaction temperature is not critical, it is generally advantageous to carry out the reaction under heating, preferably at a temperature of about 60° C. or higher, particularly 80° C. or higher, up to the reflux temperature of the reaction mixture. Further, the reaction pressure is not particularly limited and is usually carried out at normal pressure, but it may be carried out under reduced pressure or increased pressure if necessary. The amount of the alkylamine of formula () used is also not critical and can be varied widely depending on the type of compound of formula () and/or the alkylamine of formula (), reaction conditions, etc.; The amount is at least equal to 1 mole, preferably 3 moles or more, per mole of the compound (2), and although there is no particular upper limit, it is wasteful to use a larger amount than necessary, and 10 moles or less is sufficient. Furthermore, in the reaction, an acid binder may be used instead of using an excessive amount of the alkylamine. Although the mechanism of the ring-closing reaction from a compound of formula () to a compound of formula () is not precisely known, for example,
When R 1 is a methylene group, in the ring-closing reaction from a compound of formula () to a compound of formula (), an intermediate compound of formula as well as The presence of a compound in which R 2 is as defined above is recognized. The compound of formula () thus obtained can be separated from the reaction mixture if necessary and then subjected to the reaction in the final step of the present invention. The separation can be carried out according to conventional methods, such as filtration, centrifugation, chromatography, extraction, and distillation. The resulting compound of formula () is also a novel compound that has not been described in conventional literature, and representative examples thereof are as follows. N-(1'-ethyl-2'-pyrrolidinyl)methylbenzoic acid amide, N-(1'-methyl-2'-pyrrolidinyl)methylbenzoic acid amide, N-(1'-propyl-2'-pyrrolidinyl)methyl Benzoic acid amide, N-(1'-isopropyl-2'-pyrrolidinyl)
Methylbenzoic acid amide, N-(1'-butyl-2'-pyrrolidinyl)methylbenzoic acid amide, N-(1'-ethyl-2'-pyrrolidinyl)ethylbenzoic acid amide, N-(1'-butyl-2 '-pyrrolidinyl)ethylbenzoic acid amide, N-(1'-ethyl-2'-pyrrolidinyl)propylbenzoic acid amide, N-(1'-propyl-2'-pyrrolidinyl)propylbenzoic acid amide, N-[1' -(1″-propyl-2″-pyrrolidinyl)
Ethyl]benzoic acid amide, N-(1′-(1″-ethyl-2″-pyrrolidinyl)ethyl)benzoic acid amide. The above compound has the formula In the formula, R 21 represents a lower alkyl group, and compounds of the following are preferred, especially N-(1'-ethyl-
2'-pyrrolidinyl)methylbenzoic acid amide is a preferred compound. The compound of formula () obtained as above is
According to the present invention, the amide bond is cleaved by treatment with an alkali metal hydroxide to form the desired 1-alkyl-2-aminoalkylamine of formula (). The treatment with the alkali metal hydroxide is advantageously carried out in a substantially water-free inert organic solvent which is capable of dissolving at least a portion of the alkali metal hydroxide. As such an inert organic solvent, lower alcohols such as methanol, ethanol, n-propanol, n-butanol, methoxyethanol, ethoxyethanol, ethylene glycol, propylene glycol, diethylene glycol, glycerin, etc. are most suitable. Among these, methanol, ethanol, ethylene glycol and glycerin are particularly conveniently used. These solvents are preferably anhydrous, but
The presence of small amounts of water (usually up to 5% by weight) can be tolerated without significantly inhibiting the reaction. Examples of alkali metal hydroxides that can be used include sodium hydroxide, potassium hydroxide, lithium hydroxide, etc. In the present invention, the former two
It is preferable to use the The temperature during the above treatment is not critical and can vary widely depending on the type of compound of formula () and/or alkali metal hydroxide used and other reaction conditions, but is generally about 50°C. above, especially 60℃
It is advantageous to use temperatures in the range above up to the reflux temperature of the reaction mixture. There are no particular restrictions on the pressure during this treatment, but atmospheric pressure is usually sufficient, and reduced pressure or increased pressure can be used as necessary. The amount of the alkali metal hydroxide used is also not critical and can vary widely depending on the type and reaction conditions of the compound of formula () and/or the alkali metal hydroxide, but generally the alkali metal hydroxide is It is appropriate to use the oxide in excess, for example it is advantageous to use at least 5 equivalents of alkali metal hydroxide, preferably in the range from 8 to 15 equivalents, per mole of compound of formula (). . Thus, 1-alkyl-2- of the formula ()
Aminoalkylpyrrolidine can be produced in high yield. Isolation of the compound of formula () from the reaction mixture can be easily carried out using methods known per se, such as extraction, chromatography, distillation, and the like. The compounds of formula () provided by the present invention are:
It can be used as a synthetic intermediate for various industrial chemicals and pharmaceuticals. The present invention will be further explained below with reference to Examples. Example 1 Add benzoyl chloride (14.15g) to benzene (42.4g).
ml), and tetrahydrofurfurylamine (10.1 g) and triethylamine (10.1 g) are added dropwise under cooling. After stirring at room temperature for 2 hours,
Add water to the reaction solution. The organic layer is washed with water and dried with Glauber's salt. The solvent was distilled off under reduced pressure to obtain N-(2'-tetrahydrofuranyl)methylbenzoic acid amide (20.1 g) as crystals. Melting point 88~90℃
NMR (CDCl 3 , δ); around 1.9 (4H, multiplet),
3.1~4.2 (5H, multiplet), 6.8 (1H, multiplet), 7.3
~7.9 (5H, multiplet). N-(2'-tetrahydrofuranyl)methylbenzoic acid amide can also be produced by the following method.
That is, benzoic acid (12.2 g) was mixed with dimethylformamide (60 ml) and triethylamine (10.6 g).
g) and isopropyl chloroformate (12.85
g) is added dropwise while cooling. After stirring at room temperature for 1 hour, it is cooled again and tetrahydrofurfurylamine (10.6 g) is added dropwise. After stirring at room temperature for 2 hours, the reaction solution was poured into water and extracted with benzene.
The organic layer is washed with water and dried with Glauber's salt. When the solvent was distilled off, N-(2'-tetrahydrofuranyl)methylbenzoic acid amide (20.0 g) was obtained. Melting point 88-90
℃. N-(2'-tetrahydrofuranyl)methylbenzoic acid amide (40 g) obtained above was heated under reflux with thionyl chloride (76.7 g) for 4 hours. Pour the reaction solution into ice water and neutralize with potassium carbonate. When the precipitated crystals are collected, washed with water and dried, N-
(2',5'-dichloropentyl)benzoic acid amide (47.2 g) is obtained. Melting point 56-57℃. NMR
(CDCl 3 , δ); around 2.0 (4H, multiplet), 3.3~
4.3 (5H, multiplet), around 6.9 (1H, multiplet), 7.3
~7.9 (5H, multiplet). The N-(2'.5'-dichlorobentyl)benzoic acid amide (23.9 g) obtained above is heated with 70% ethylamine solution (23.9 ml) and ethanol (23.9 ml) for 20 hours. Ethylamine is distilled off as much as possible under reduced pressure and heated for 4 hours. 4 to the reaction solution
% caustic soda solution and then extraction. The organic layer was washed with water and dried with sodium sulfate. When the solvent is distilled off, N-
(1'-Ethyl-2'-pyrrolidinyl)methylbenzoic acid amide (18.9 g) is obtained as an oil.
NMR (CDCl 3 , δ); 1.11 (3H, triplet, J=
7Hz), around 1.8 (4H, multiplet), 1.9 to 3.5 (7H,
multiplet), 7.3-7.9 (5H, multiplet). N-(1'-ethyl-2'-pyrrolidinyl)methylbenzoic acid amide (120 g) was dissolved in ethanol (600 ml).
and potassium hydroxide (300 g) under reflux for 4 hours. The precipitated crystals are removed, and the solvent of the liquid is distilled off as much as possible under reduced pressure, followed by extraction with benzene. After washing with water, drying with sodium sulfate and distilling off the solvent. Distillation of the residue under reduced pressure yields an oil (60.8 g) with a bp 20 of 60-61°C. NMR ( CDCl3 , δ); 1.09
(3H, triplet, J=7Hz), 1.5-3.8 (11H, multiplet).

Claims (1)

【特許請求の範囲】 1 式 で表わされるN−(1′−アルキル−2′−ビロリジ
ニル)アルキル安息香酸アミド。但し、式中R1
はアルキレン基を表わし、R2はアルキル基を表
わす。 2 特許請求の範囲第1項において、R1がメチ
レン基である、N−(1′−アルキル−2′−ピロリ
ジニル)メチル安息香酸アミド。 3 特許請求の範囲第1項において、R2はエチ
ル基である、N−(1′−エチル−2′−ピロリジニ
ル)アルキル安息香酸アミド。 4 特許請求の範囲第1項において、R1がメチ
レン基であり、R2がエチル基である、N−(1′−
エチル−2′−ピロリジニル)メチル安息香酸アミ
ド。 5 式 で表わされるN−ジクロロアルキル安息香酸アミ
ドを式 R2−NH2 () で表わされるアルキルアミンと反応せしめること
を特徴とする式 で表わされるN−(1′−アルキル−2′−ピロリジ
ニル)アルキル安息香酸アミドの製造方法。但
し、式中R1はアルキレン基を表わし、R2はアル
キル基を表わす。 6 上記反応を溶媒の存在又は不存在下に行な
う、特許請求の範囲第5項に記載する方法。 7 溶媒が極性溶媒である、特許請求の範囲第6
項に記載する方法。 8 上記反応を約60℃乃至反応混合物の還流温度
の温度範囲において行なう、特許請求の範囲第5
項に記載する方法。 9 式()のアルキルアミンを式()のN−
ジクロロアルキル安息香酸アミド1モルに対して
少なくとも3モル使用する、特許請求の範囲第5
項に記載する方法。 10 (a) 安息香酸又はその反応性誘導体を式 で表わされる2−テトラヒドロフラニルアルキ
ルアミン又はその反応性誘導体と反応せしめ、 (b) 得られる式 で表わされるN−(2′−テトラヒドロフラニ
ル)アルキル安息香酸アミドを塩化チオニルと
反応せしめ、 (c) 生成する式 で表わされるN−ジクロロアルキル安息香酸ア
ミドを式 R2−NH2 () で表わされるアルキルアミンと反応せしめるこ
とを特徴とする式 で表わされるN−(1′−アルキル−2′−ピロリ
ジニル)アルキル安息香酸アミドの製造方法。
但し、R1はアルキレン基を表わし、R2はアル
キル基を表わす。 11 上記(b)の反応を溶媒の不存在下に行なう、
特許請求の範囲第10項に記載する方法。 12 上記(b)の反応を反応混合物の還流温度にお
いて行なう、特許請求の範囲第10項に記載する
方法。 13 上記(b)の反応における塩化チオニルを式
()で表わされるN−(2′−テトラヒドロフラニ
ル)アルキル安息香酸アミド1モルに対して少な
くとも3モル、好ましくは4−6モル使用する、
特許請求の範囲第10項に記載する方法。 14 上記(b)の反応生成物を水で処理する、特許
請求の範囲第10項に記載する方法。
[Claims] 1 formula N-(1'-alkyl-2'-pyrrolidinyl)alkylbenzoic acid amide represented by: However, in the formula R 1
represents an alkylene group, and R 2 represents an alkyl group. 2. N-(1'-alkyl-2'-pyrrolidinyl)methylbenzoic acid amide, wherein R 1 is a methylene group, as set forth in claim 1. 3. In claim 1, R 2 is an ethyl group, N-(1'-ethyl-2'-pyrrolidinyl)alkylbenzoic acid amide. 4 In claim 1 , N- ( 1'-
Ethyl-2'-pyrrolidinyl)methylbenzoic acid amide. 5 formula A formula characterized by reacting an N-dichloroalkylbenzoic acid amide represented by the formula with an alkylamine represented by the formula R 2 -NH 2 () A method for producing N-(1'-alkyl-2'-pyrrolidinyl)alkylbenzoic acid amide represented by However, in the formula, R 1 represents an alkylene group, and R 2 represents an alkyl group. 6. The method according to claim 5, wherein the reaction is carried out in the presence or absence of a solvent. 7 Claim 6, wherein the solvent is a polar solvent
The method described in section. 8. Claim 5, wherein the reaction is carried out at a temperature range of about 60°C to the reflux temperature of the reaction mixture.
The method described in section. 9 Alkylamine of formula () is replaced with N- of formula ()
Claim 5, wherein at least 3 moles are used per mole of dichloroalkylbenzoic acid amide.
The method described in section. 10 (a) Benzoic acid or its reactive derivative with the formula (b) the resulting formula: When N-(2'-tetrahydrofuranyl)alkylbenzoic acid amide represented by is reacted with thionyl chloride, (c) the formula to be produced is A formula characterized by reacting an N-dichloroalkylbenzoic acid amide represented by the formula with an alkylamine represented by the formula R 2 -NH 2 () A method for producing N-(1'-alkyl-2'-pyrrolidinyl)alkylbenzoic acid amide represented by
However, R 1 represents an alkylene group, and R 2 represents an alkyl group. 11 The reaction of (b) above is carried out in the absence of a solvent,
A method according to claim 10. 12. The method according to claim 10, wherein the reaction (b) is carried out at the reflux temperature of the reaction mixture. 13. At least 3 mol, preferably 4-6 mol of thionyl chloride in the reaction (b) above is used per 1 mol of N-(2'-tetrahydrofuranyl)alkylbenzoic acid amide represented by formula (),
A method according to claim 10. 14. The method according to claim 10, wherein the reaction product of (b) above is treated with water.
JP12402885A 1985-06-07 1985-06-07 N_(1'_alkyl_2'_pyrrolidinyl)alkylbenzoic acid amide and manufacture Granted JPS6140258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12402885A JPS6140258A (en) 1985-06-07 1985-06-07 N_(1'_alkyl_2'_pyrrolidinyl)alkylbenzoic acid amide and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12402885A JPS6140258A (en) 1985-06-07 1985-06-07 N_(1'_alkyl_2'_pyrrolidinyl)alkylbenzoic acid amide and manufacture

Publications (2)

Publication Number Publication Date
JPS6140258A JPS6140258A (en) 1986-02-26
JPS624386B2 true JPS624386B2 (en) 1987-01-30

Family

ID=14875243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12402885A Granted JPS6140258A (en) 1985-06-07 1985-06-07 N_(1'_alkyl_2'_pyrrolidinyl)alkylbenzoic acid amide and manufacture

Country Status (1)

Country Link
JP (1) JPS6140258A (en)

Also Published As

Publication number Publication date
JPS6140258A (en) 1986-02-26

Similar Documents

Publication Publication Date Title
EP0095778B1 (en) 2-oxo-1-azetidinesulfonic acid derivatives, process for production thereof, and use thereof
US2543345A (en) Method of preparing glutamic acid amides
JPS6124379B2 (en)
US11498917B2 (en) Process for the preparation of lifitegrast
US5461157A (en) Process for preparing pyrrolidinylacetamide derivatives
JPS6132314B2 (en)
JPS624386B2 (en)
EP0839800B1 (en) Process for preparing halogenoacetamide derivatives
CN112272665B (en) Process for preparing ritalst
KR20010102569A (en) 1,3,4-oxadiazole derivatives and process for producing the same
JPS6056706B2 (en) Method for producing 1-alkyl-2-aminoalkylpyrrolidine
JPH09301965A (en) Production of 5-amiono-1,2,4-thiadiazole acetic acid derivative
KR860001568B1 (en) Process for the preparation of phenylenedi amine by selectively sulfonating
KR870000271B1 (en) Process for preparing n-(3-(3-(1-piperidinyl methyl)phenoxy)propyl)acetoxyacetamide hydrochloride
EP0034421B1 (en) N-phenyl-n'-cyano-0-phenylisoureas and process for their preparation
JPH06340623A (en) Production of benzylsuccinic acid derivative and intermediate for its synthesis
US5672711A (en) Process for manufacturing cephem derivatives
JP3538889B2 (en) Method for producing alkylthioacetamide
JPS6259707B2 (en)
JPH0576473B2 (en)
US4250110A (en) Method of preparing metoclopramide
JP3486922B2 (en) Method for producing acid amide
JP4172931B2 (en) Process for producing 1-alkyl-5-hydroxypyrazole
KR810000462B1 (en) Preparing process for novel benzoic amides
US4992588A (en) Preparation of o-acylaminomethylbenzyl halides