JPS6243844B2 - - Google Patents

Info

Publication number
JPS6243844B2
JPS6243844B2 JP53156921A JP15692178A JPS6243844B2 JP S6243844 B2 JPS6243844 B2 JP S6243844B2 JP 53156921 A JP53156921 A JP 53156921A JP 15692178 A JP15692178 A JP 15692178A JP S6243844 B2 JPS6243844 B2 JP S6243844B2
Authority
JP
Japan
Prior art keywords
mixing
section
constriction
mixer
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53156921A
Other languages
Japanese (ja)
Other versions
JPS5584528A (en
Inventor
Shigeru Saeda
Yukinori Susaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP15692178A priority Critical patent/JPS5584528A/en
Priority to GB7943222A priority patent/GB2039225B/en
Priority to US06/104,100 priority patent/US4334783A/en
Priority to DE19792951445 priority patent/DE2951445A1/en
Publication of JPS5584528A publication Critical patent/JPS5584528A/en
Publication of JPS6243844B2 publication Critical patent/JPS6243844B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/32Mixing; Kneading continuous, with mechanical mixing or kneading devices with non-movable mixing or kneading devices
    • B29B7/325Static mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/47Mixing liquids with liquids; Emulsifying involving high-viscosity liquids, e.g. asphalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/432Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4335Mixers with a converging-diverging cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
    • B01F25/452Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces
    • B01F25/4521Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through orifices in elements, e.g. flat plates or cylinders, which obstruct the whole diameter of the tube
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/14Lactams
    • C08G69/16Preparatory processes
    • C08G69/18Anionic polymerisation
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は合成樹脂、合成樹脂と充填材などとの
均一な混合を行なうための混合装置に関する。 (従来の技術) 近年、合成樹脂の用途の拡大、加工技術の進歩
とともに合成樹脂の品質に対する要望は厳しくな
りつつある。この要望に応えるにはただ単一の合
成樹脂で充分であるとは限らず、2種以上の合成
樹脂さらには合成樹脂と無機又は有機充填材など
を混合する場合が多い。 混合装置としては既に各種の混合装置例えば単
軸押出機、2軸押出機、バンバリーミキサーなど
が用いられているが、いずれも分子量、粘性の非
常に異なる多成分の均一な混合には未だ不適当で
ある。勿論これらの装置で繰返し混合すれば均一
性は徐々に改善されるが経済性に乏しくなり実用
的でない。 一方、合成樹脂用混合装置ではないが、たがい
に溶解し合わない二液を乳化混合する装置が特公
昭52−11221号に紹介されているが、これは粘度
の低い液を対象とし、また均一混合ではなく乳化
混合用のものであり、図示されているような急激
に縮径するものでは合成樹脂のような高粘度物の
均一混合には到底利用できない。 (本発明が解決しようとする問題点) 本発明者等は従つて、高密度ポリエチレン、ポ
リプロピレン等の重合後のペレツト製造時、ポリ
プロピレンにゴム成分を混合する場合或いは低密
度ポリエチレンに顔料を分散させる等高粘度材料
を対象とした均一分散等の困難を解決することを
目的とする。 (問題点を解決するための手段) 本発明はこの課題を解決すべく鋭意研究の結果
到達したものであり、その要旨は絞り部及びその
前方に該絞り部に向つて順次縮径する圧縮部を有
してなり、該圧縮部の最大開口断面積S1と、該絞
り部の最小開口断面積S2の比が10:1以上であ
り、2√1の値が前記圧縮部の軸方向の長さ
lの1.5倍未満である混合孔を1個又は並列に2
個以上有する混合器を1個又は直列に2個以上と
りつけてなる混合装置にある。 以下に図面を用いて本発明を詳細に説明する。 第1―A図は本発明での混合孔の一例であり同
一合成樹脂の高分子量成分即ち高粘性成分と低分
子量成分即ち低粘性成分を溶融して混合する状態
を模式的に示す縦断面図である。 導入部1において弱い練りでは高粘性成分は低
粘性分の海の中に島状に塊2として存在するだけ
である。これらの塊2は矢印方向で圧縮部3に入
ると細長く変形され、絞り部4に達するときには
糸状に引伸ばされ、絞り部4を経て拡散部5に至
る。即ち合成樹脂の進行方向に対し絞り部4の前
方に該絞り部4に向つて順次(連続的又は段階的
に)縮径する圧縮部3が位置するが本図において
は更に後方に連続的又は段階的に拡径する拡散部
5が位置するという空間のつながりを有する。 又、第1―B図の縦断面図のように縮径しない
拡散部を設けてもよいが、合成樹脂の流れに滞留
点を生じないような流れをとることが好ましい。
例えば、拡散部においては絞り部からの流出方向
に直交するような流れをとる方が良い。 絞り部の形状は断面が円形、正方形、円環状な
ど種々とれるし、絞り部の軸方向の長さはゼロで
あつてもよいが、逆にあまり長くすると背圧が大
きくなり運転に支障を来たす。 本発明においては、より均一な混合状態を得る
目的において圧縮部入口の断面積即ち最大開口断
面積S1と絞り部の最小開口断面積S2との比S1/S2
が重要な意味を持つ。 S1/S2が小さいと圧縮部での流線形成が良好に
行なわれないため高粘性成分が充分に細く引伸ば
されない。S1/S2が10以上で有効であるが、好ま
しくは50以上さらに好ましくは100以上がよい。 絞り部の最小開口断面積S2があまり大きいと高
粘性成分が細く引伸ばされない。しかしあまり小
さいと塵埃、充填材などにより詰まりを生じ易い
し、背圧も大きくなつて実用的でない。 絞り部の役割は導入部から圧縮部を経て又は導
入部から高粘性成分の流線を形成するための最小
開口部であると同時に混合すべき原材料に高いず
り速度を与えることにある。溶融状態の合成樹脂
に高いずり速度を与えると、溶融破断現象(メル
トフラクチヤー)を起し激しい振動を起すことが
知られている。この現象のために絞り部に達した
細く引伸ばされた高粘性成分は絞り部を出て引き
ちぎられ細分化し低粘性成分と混合する。引きち
ぎられないにしても絞り部出口附近に発生する渦
のためからみ合つた状態になる。 このからみ合いは拡散部を進んでいくことによ
り緩和して低粘性成分と新しいからみ合いを起し
より均一な混合がなされる。拡散部の役割は主と
してこのからみ合いの再形成にある。 圧縮部の軸方向の長さlは或る程度必要であつ
て、これが短かいと圧縮部の通過中に高粘性成分
を引伸ばす時間が不足して不充分な混合状態しか
得られない。本発明において均一な混合状態を得
る目的において、前記S1/S2の比の特定の他に
D1=2√1なるD1が上記lの1.5倍未満であ
ることを必要とする。ここにD1は上記定義から
明らかなごとく圧縮部最大開口断面を同面積の円
形に置きかえた場合の直径即ち等価直径を表わ
す。 本発明における絞り部と前方の縮径状の圧縮部
を有する混合孔、またはこれに更に拡散部を有す
る混合孔が1個のみでは充分な量を混合すること
ができない場合は、この混合孔を例えば1枚のプ
レートに並列に2個以上穿設した混合器を用いれ
ばよい。 一方、より均一に混合させるためにこのような
プレートからなる混合器を直列に2段以上設けて
もよい。但し段数が多い程、圧損失が大きくなつ
て動力費が増大し自己発熱も大きいので5段位迄
が好ましい。 本発明の混合装置を用いる混合の利点には次の
ような例が挙げられる。 合成樹脂として代表的な高密度ポリエチレン、
ポリプロピレンの製造プロセスの主流はスラリー
法であり、重合槽中の重合体は粉状、粒状などで
生成し、これを洗浄、乾燥などの処理をし、最後
に仕上工程によりペレツト化して製品とするのが
普通である。しかし、重合槽を出た粉体や粒体
は、分子量、結晶性などに関して均一ではなく
種々のものの集合体である。又、低密度ポリエチ
レンの塊状重合法、ポリスチレンのビース重合法
などでも同様に均一でい場合が多い。 従つて仕上工程で均一に混合しないと、成形品
に悪影響し例えば、フイルムにフイツシユアイ、
ゲルが発生したり成形ボトルのESCRが低下した
りする。これを避け均一に混合するために本発明
の混合装置が好適に使用される。 又、合成樹脂の強度のような物性はその重量平
均分子量が大きい程優れるが、成形加工性は逆に
低下する。そこで重量平均分子量を変えないで分
子量分布を広くすれば成形加工性が向上できる
が、分子量分布の拡大は触媒によりある程度可能
なものの、非常に広い分子量分布を得るには重量
平均分子量の非常に異なる多成分を混合すること
になる。このような場合も本発明の混合装置を用
いて混合すればよい。 さらに本発明の混合装置は相溶性が乏しく相分
離する系の混合にも有効に用いられる。例えばポ
リプロピレンの耐寒衝撃性を改良するためにエチ
レンプロピレンゴムを混合する場合、相溶せず相
分離した状態で分散しているのが一般であり、耐
寒耐衝撃性改良につながる高分子量即ち高粘性の
エチレンプロピレンゴム程分散が難かしいが、本
発明の混合装置によりポリプロピレン中にエチレ
ンプロピレンゴム粒子が均一に分散する。 一方、本発明の混合装置によつて相溶性が乏し
い系で高粘性成分を適宜選択して樹脂複合体も得
られる。例えば低密度ポリエチレンにナイロン66
を混合しナイロン66の融点以上で本発明の混合装
置を通過させると、ナイロン66が細長く引伸ばさ
れいわばナイロン糸を含んだ樹脂複合体となり、
低密度ポリエチレンの軟かさを失なうことなく強
度の優れた樹脂複合体が得られる。但しこの場合
ずり速度をあまり上げると絞り部での切断効果の
ため強度が多下することもあり得る。 又、合成樹脂に有機又は無機充填材を混合する
場合にも、本発明の混合装置の絞り部、圧縮部お
ける振動、渦流、回転などの作用により良好な混
合効果が得られる。さらに顔料の混合において有
効な分散のため所要量を減少させる効果もある。 以下に実施例、比較例を挙げて本発明をさらに
詳細に説明する。 実施例1 比較例1 第2−A図にその縦断面図の概略を示すように
30mmφ単軸押出機の50mmφヘツド部6に混合器7
を3段直列に挿入装置した。混合器7は第2―B
図にその平面を、第2―B′図にそのA―A′断面
を示すようなものであり、円板状のプレートに同
一形状、寸法の混合孔7′が並列に7個穿設され
ており3段ともに各7個の中心線を一致させ、終
端部8にダイス(図示せず)を連結させた。 各混合孔7′については絞り部は断面円形で軸
方向の長さはゼロ、その(最小)開口断面積S2
0.196mm2であり、圧縮部と拡散部は円錐台状を呈
し圧縮部の最大開口断面積S1は113mm2であつて絞
り部の(最小)開口断面積の577倍である。 一方、圧縮部の軸方向の長さlは10mmであり
D1=2√1=12.0mmであり、従つてD1/l=
1.2である。 なお、混合孔を有するプレートはSNCM8の材
質で作られ、樹脂の通過する面は鏡面仕上をほど
こした。 この押出機を用いて、メルトフローインデツク
ス18g/10minのポリプロピレン80重量部とデカ
リン中135℃の極限粘度4.5のエチレンプロピレン
ゴム20重量部を温度250℃で混合しペレツト化し
た。混合孔の絞り部のずり速度は4.3×103sec-1
であり押出機の押出量は1Kg/Hであつた。 得られた混合樹脂について物性試験をしたとこ
ろ第1表のように脆化温度、伸びに良好な結果を
示した。一方、比較のために混合器を全部除去し
た外は実施例と同様に行なつたところ第1表のよ
うに脆化温度、伸びの改良効果があまり認められ
なかつた。
(Industrial Application Field) The present invention relates to a synthetic resin and a mixing device for uniformly mixing a synthetic resin and a filler. (Prior Art) In recent years, as the uses of synthetic resins have expanded and processing technology has progressed, demands on the quality of synthetic resins have become stricter. In order to meet this demand, a single synthetic resin is not always sufficient, and two or more synthetic resins, or a synthetic resin and an inorganic or organic filler, are often mixed. Various types of mixing devices have already been used, such as single-screw extruders, twin-screw extruders, and Banbury mixers, but they are still unsuitable for uniformly mixing multiple components with very different molecular weights and viscosities. It is. Of course, repeated mixing using these devices will gradually improve the uniformity, but it will be uneconomical and impractical. On the other hand, although it is not a mixing device for synthetic resins, a device for emulsifying and mixing two liquids that do not dissolve in each other is introduced in Japanese Patent Publication No. 11221/1982, but this is intended for liquids with low viscosity and is uniform. It is for emulsification mixing rather than mixing, and a device whose diameter decreases rapidly as shown in the figure cannot be used for uniformly mixing high viscosity materials such as synthetic resins. (Problems to be Solved by the Invention) Therefore, the present inventors have found that when producing pellets after polymerizing high-density polyethylene, polypropylene, etc., when mixing a rubber component with polypropylene, or dispersing pigments into low-density polyethylene, The purpose is to solve difficulties such as uniform dispersion of materials with uniform high viscosity. (Means for Solving the Problem) The present invention was arrived at as a result of intensive research to solve this problem, and its gist is a constriction part and a compression part in front of the constriction part whose diameter is gradually reduced toward the constriction part. The ratio of the maximum opening cross-sectional area S 1 of the compression section to the minimum opening cross-section area S 2 of the constriction section is 10:1 or more, and the value of 2√ 1 is in the axial direction of the compression section. 1 or 2 mixing holes in parallel, the length of which is less than 1.5 times the length l.
The mixing device includes one mixer or two or more mixers connected in series. The present invention will be explained in detail below using the drawings. Figure 1-A is an example of the mixing hole in the present invention, and is a longitudinal sectional view schematically showing a state in which a high molecular weight component, that is, a high viscosity component, and a low molecular weight component, that is, a low viscosity component of the same synthetic resin are melted and mixed. It is. In the case of weak kneading in the introduction section 1, the high viscosity components exist only as island-shaped lumps 2 in a sea of low viscosity components. When these lumps 2 enter the compression section 3 in the direction of the arrow, they are deformed into elongated shapes, and when they reach the constriction section 4, they are stretched into threads, passing through the constriction section 4 and reaching the diffusion section 5. That is, in front of the constricted part 4 with respect to the direction of movement of the synthetic resin, there is a compressed part 3 whose diameter decreases sequentially (continuously or stepwise) toward the constricted part 4, but in this figure, there is a compressed part 3 that decreases in diameter successively (continuously or stepwise) toward the constricted part 4. It has a spatial connection in which a diffusion section 5 whose diameter increases stepwise is located. Further, although a diffusion portion that does not reduce in diameter may be provided as shown in the vertical cross-sectional view of FIG. 1-B, it is preferable that the flow of the synthetic resin is such that no stagnation point occurs.
For example, in the diffusion section, it is better to have a flow perpendicular to the outflow direction from the constriction section. The shape of the throttle section can be various, such as circular, square, or annular in cross section, and the length of the throttle section in the axial direction may be zero, but on the other hand, if it is too long, back pressure will increase, which will interfere with operation. . In the present invention, in order to obtain a more uniform mixing state, the ratio S 1 /S 2 of the cross-sectional area of the inlet of the compression section, that is, the maximum opening cross-sectional area S 1 and the minimum opening cross-sectional area S 2 of the constriction section is determined.
has important meaning. If S 1 /S 2 is small, streamline formation in the compression section is not performed well, and the high viscosity component is not stretched sufficiently thin. S 1 /S 2 of 10 or more is effective, preferably 50 or more, more preferably 100 or more. If the minimum opening cross-sectional area S2 of the constriction part is too large, the high viscosity component will not be stretched thin. However, if it is too small, it is likely to become clogged with dust, filler, etc., and the back pressure will also increase, making it impractical. The role of the constriction part is to provide the smallest opening for forming a streamline of highly viscous components from the introduction part through the compression part or from the introduction part, and at the same time to provide a high shear rate to the raw materials to be mixed. It is known that when a high shear rate is applied to a synthetic resin in a molten state, a melt fracture phenomenon occurs, causing severe vibration. Due to this phenomenon, the thinly drawn high viscosity component that has reached the constriction section exits the constriction section, is torn off into small pieces, and is mixed with the low viscosity component. Even if they are not torn apart, they become entangled due to the vortex generated near the exit of the constriction section. This entanglement is relaxed as it advances through the diffusion section, and new entanglement occurs with the low-viscosity component, resulting in more uniform mixing. The role of the diffusion section is primarily to reshape this entanglement. The axial length l of the compression section is required to a certain extent; if this length is short, there is insufficient time to stretch the highly viscous components during passage through the compression section, resulting in an insufficient mixing state. In the present invention, in order to obtain a uniform mixed state, in addition to specifying the ratio of S 1 /S 2 ,
It is necessary that D 1 = 2√1 , that is, D 1 is less than 1.5 times the above l. As is clear from the above definition, D 1 here represents the diameter when the maximum opening cross section of the compression section is replaced with a circle having the same area, that is, the equivalent diameter. In the present invention, if a sufficient amount of mixing cannot be achieved with only one mixing hole having a constriction part and a front diameter-reduced compression part, or one mixing hole further having a diffusion part, use this mixing hole. For example, a mixer in which two or more holes are bored in parallel on one plate may be used. On the other hand, in order to achieve more uniform mixing, two or more mixers made of such plates may be provided in series. However, the greater the number of stages, the greater the pressure loss, the higher the power cost, and the greater the self-heating, so it is preferable to have up to about 5 stages. Examples of the advantages of mixing using the mixing device of the present invention include: High-density polyethylene is a typical synthetic resin.
The mainstream manufacturing process for polypropylene is the slurry method, in which the polymer in the polymerization tank is produced in the form of powder or granules, which is then processed through washing, drying, etc., and finally transformed into pellets through a finishing process to produce the product. is normal. However, the powder or granules that come out of the polymerization tank are not uniform in terms of molecular weight, crystallinity, etc., but are aggregates of various substances. Similarly, uniformity is often not achieved in bulk polymerization of low-density polyethylene, bead polymerization of polystyrene, and the like. Therefore, if the mixture is not uniformly mixed during the finishing process, it will have a negative impact on the molded product, for example, it will cause spots on the film,
Gel may occur or the ESCR of the molded bottle may decrease. In order to avoid this and mix uniformly, the mixing device of the present invention is preferably used. In addition, the physical properties such as strength of the synthetic resin are better as the weight average molecular weight is larger, but the moldability is conversely lowered. Therefore, molding processability can be improved by widening the molecular weight distribution without changing the weight average molecular weight, but although it is possible to expand the molecular weight distribution to some extent with catalysts, in order to obtain a very wide molecular weight distribution, it is necessary to have very different weight average molecular weights. This will involve mixing multiple components. Even in such a case, mixing may be carried out using the mixing apparatus of the present invention. Further, the mixing device of the present invention can be effectively used for mixing systems that have poor compatibility and undergo phase separation. For example, when mixing ethylene propylene rubber to improve the cold impact resistance of polypropylene, it is common that the rubber is dispersed in a phase-separated state without being miscible with each other. Although dispersion is more difficult than in ethylene propylene rubber, the mixing device of the present invention allows ethylene propylene rubber particles to be uniformly dispersed in polypropylene. On the other hand, by using the mixing apparatus of the present invention, a resin composite can also be obtained by appropriately selecting a highly viscous component in a system with poor compatibility. For example, low density polyethylene and nylon 66
When mixed and passed through the mixing device of the present invention at a temperature higher than the melting point of nylon 66, the nylon 66 is elongated and becomes a resin composite containing nylon threads.
A resin composite with excellent strength can be obtained without losing the softness of low-density polyethylene. However, in this case, if the shear rate is increased too much, the strength may decrease due to the cutting effect at the constricted portion. Also, when mixing an organic or inorganic filler with a synthetic resin, a good mixing effect can be obtained due to the effects of vibration, vortex, rotation, etc. in the constriction section and compression section of the mixing device of the present invention. Furthermore, it has the effect of reducing the amount required for effective dispersion in pigment mixing. The present invention will be explained in more detail by giving Examples and Comparative Examples below. Example 1 Comparative Example 1 As shown in the schematic longitudinal cross-sectional view in Figure 2-A
Mixer 7 is installed in the 50mmφ head section 6 of the 30mmφ single screw extruder.
An insertion device was installed in three stages in series. Mixer 7 is No. 2-B
The plan view is shown in the figure, and the A-A' cross section is shown in Figure 2-B'. Seven mixing holes 7' of the same shape and size are bored in parallel in a disc-shaped plate. The center lines of each of the seven pieces in each of the three stages were aligned, and a die (not shown) was connected to the terminal end 8. For each mixing hole 7', the throttle part has a circular cross-section, the axial length is zero, and its (minimum) opening cross-sectional area S2 is
The compression section and the diffusion section have a truncated cone shape, and the maximum opening cross-sectional area S1 of the compression section is 113 mm 2 , which is 577 times the (minimum) opening cross-section area of the constriction section. On the other hand, the axial length l of the compression part is 10 mm.
D 1 =2√ 1 = 12.0mm, so D 1 /l=
It is 1.2. The plate with the mixing hole was made of SNCM8 material, and the surface through which the resin passed had a mirror finish. Using this extruder, 80 parts by weight of polypropylene having a melt flow index of 18 g/10 min and 20 parts by weight of ethylene propylene rubber having an intrinsic viscosity of 4.5 at 135°C in decalin were mixed at a temperature of 250°C and pelletized. The shear rate at the throttle part of the mixing hole is 4.3×10 3 sec -1
The throughput of the extruder was 1 kg/H. When the obtained mixed resin was subjected to physical property tests, it showed good results in terms of embrittlement temperature and elongation as shown in Table 1. On the other hand, for comparison, the same procedure as in the example was carried out except that the mixer was completely removed, and as shown in Table 1, no significant improvement effect on the embrittlement temperature and elongation was observed.

【表】 実施例2〜4 比較例2 実施例1と同様な押出機を用い、ただ第2―B
図、第2―B′図に示した混合孔の圧縮部の軸方向
の長さ、絞り部の最小開口断面積が種々異なる混
合器を1段〜3段挿入し、実施例1と同様にポリ
プロピレンとエチレン・プロピレンゴムを同じ配
合比として230℃において1Kg/Hの押出量で混
合した。得られた混合物の物性値を第2表に示
す。表中のS1は圧縮部の最大開口断面積、S2は絞
り部の最小開口断面積である。 実施例2〜4で明らかであるように、S1/S2
大きく且つ、D1/lが1.5未満の場合、また混合
器のプレートの段数が多いほど混合物の物性値は
良好となる。一方、比較例2にみられるように
S1/S2が10未満と小さく、且つD1/lが1.5以上
の場合には充分な混合が行なわれないことが明ら
かである。 実施例5〜6、比較例3,4 実施例1と同様な押出機を用い、ただ第2―A
図に示した混合器として第2―C図にその平面、
第2―C′図にそのA―A′断面を示した型のもの
で寸法の種々異なるものを3段挿入して、実施例
1と同様にポリプロピレンとエチレン・プロピレ
ンゴムを同じ配合比として250℃において1Kg/
Hの吐出量で混合した。実施例5、比較例3では
圧縮部と絞り部、実施例6では絞り部と拡散部を
持つように即ち表裏を逆にして挿入した。 得られた混合物の物性値を第2表に示す。実施
例5,6ではかなり良い物性値を示し、混合が良
かつたことを示しているが、S1/S2の値が10未満
の場合はD1/lが1.5未満でも脆化温度と伸び特
に伸びについて劣つた物性値が出ている。比較例
4のようにS1/S2が144と充分大きくてもD1/l
が3.0と大きい場合には充分な混合が行なわれな
い。 実施例7〜8、比較例5〜6 密度0.915g/c.c.で高荷重メルトインデツクス
(ASTM D―1238、21.6Kg荷重)が0.11g/
10minであるエチレン―ブテンコポリマー25重量
部と、密度0.962g/c.c.、メルトインデツクス8.2
g/10minである高密度ポリエチレン75重量部と
を実施例1と同様な混合装置即ち第2―A図の混
合器に第2―B図、第2―B′図で示す混合器を用
いたものを用いて220℃において押出量0.8Kg/H
で混合した。
[Table] Examples 2 to 4 Comparative Example 2 Using the same extruder as in Example 1, only No. 2-B
In the same manner as in Example 1, one to three stages of mixers having different lengths in the axial direction of the compression part of the mixing hole and the minimum opening cross-sectional area of the constriction part shown in Fig. 2-B' are inserted. Polypropylene and ethylene/propylene rubber were mixed at the same blending ratio at 230°C with an extrusion rate of 1 kg/h. Table 2 shows the physical properties of the obtained mixture. In the table, S 1 is the maximum opening cross-sectional area of the compression section, and S 2 is the minimum opening cross-sectional area of the constriction section. As is clear from Examples 2 to 4, when S 1 /S 2 is large and D 1 /l is less than 1.5, and the number of plates in the mixer increases, the physical properties of the mixture become better. On the other hand, as seen in Comparative Example 2
It is clear that when S 1 /S 2 is small, less than 10, and D 1 /l is 1.5 or more, sufficient mixing is not achieved. Examples 5 to 6, Comparative Examples 3 and 4 Using the same extruder as in Example 1, only No. 2-A
As the mixer shown in the figure, its plane is shown in Figure 2-C.
Three stages of the type shown in the A-A' cross section in Figure 2-C' with different dimensions were inserted, and as in Example 1, polypropylene and ethylene/propylene rubber were mixed at the same ratio. 1Kg/at °C
The mixture was mixed at a discharge amount of H. In Example 5 and Comparative Example 3, it was inserted so that it had a compressed part and a constricted part, and in Example 6, it had a constricted part and a diffused part, that is, the front and back sides were reversed. Table 2 shows the physical properties of the obtained mixture. Examples 5 and 6 showed fairly good physical property values, indicating good mixing, but when the value of S 1 /S 2 is less than 10, the embrittlement temperature is reached even if D 1 /l is less than 1.5. Inferior physical property values for elongation, especially elongation, were obtained. Even if S 1 /S 2 is sufficiently large as 144 as in Comparative Example 4, D 1 /l
If is as large as 3.0, sufficient mixing will not occur. Examples 7-8, Comparative Examples 5-6 High load melt index (ASTM D-1238, 21.6Kg load) is 0.11g/cc with a density of 0.915g/cc.
10 min, 25 parts by weight of ethylene-butene copolymer, density 0.962 g/cc, melt index 8.2
g/10min and 75 parts by weight of high-density polyethylene was mixed using the same mixing device as in Example 1, that is, the mixer shown in Fig. 2-A, and the mixer shown in Fig. 2-B and Fig. 2-B'. Extrusion amount 0.8Kg/H at 220℃ using
mixed with.

【表】 得られた混合物の物性値は第3表に示す通りで
ある。表に示したSRとはメルトインデツクスの
測定時に吐出された樹脂の径をD、ダイスの径を
D0とした時に、SR=(D/D0−1)×100で定義さ
れる値である。またESCRとは環境応力亀裂抵抗
値であり、ASTM D―1693の方法に従い50℃に
おいてノニオンNS210(日油化学株式会社製の表
面活性剤)10%中で測定した。 実施例7の3段の混合器をもつ場合も、実施例
8の1段の混合器をもつ場合も非常に良いESCR
を示している。これに対して混合器を全く持たな
い比較例5あるいは絞り部の最小開口断面積の大
きい比較例6では、良いESCRを示さない。
[Table] The physical properties of the obtained mixture are shown in Table 3. The SR shown in the table is the diameter of the resin discharged during melt index measurement, D is the diameter of the die, and the diameter of the die is D.
When D is 0 , it is a value defined by SR=(D/D 0 -1)×100. Further, ESCR is an environmental stress cracking resistance value, and was measured in 10% nonionic NS210 (surfactant manufactured by NOF Chemical Co., Ltd.) at 50°C according to the method of ASTM D-1693. Very good ESCR for both the case with the three-stage mixer as in Example 7 and the one-stage mixer as in Example 8.
It shows. On the other hand, Comparative Example 5, which has no mixer at all, or Comparative Example 6, in which the minimum opening cross-sectional area of the aperture part is large, does not exhibit good ESCR.

【表】 実施例9、比較例7 第3図にその縦断面図の概略を示すように65mm
φ単軸押出機のヘツド部6aで混合器7aをマン
ドレル9と1段直列に連結設置した。混合器7a
は内管壁部に同一形状、寸法の混合孔が最密充填
配列で275個穿設されており、導入部1a、圧縮
部3a、絞り部4a、拡散部5aが順次構成され
る。 275個の各混合孔については、絞り部は投影断
面円形で軸方向の長さはゼロ、その投影最小開口
断面積は0.785mm2であり、圧縮部は円錐台状に近
くその投影最大開口断面積は78.5mm2であつて絞り
部の投影最小開口断面積の100倍である。圧縮部
の軸方向の長さlは15mmであつてD1/lは0.67で
ある。 この押出機を用いて、実施例7と同様にエチレ
ン―ブテンコポリマーと高密度ポリエチレンを同
じ配合比して250℃において70Kg/Hの吐出量で
混合した。 実施例7と同様にして得られた混合物の物性値
は第4表に示す通りである。実施例9の場合は非
常に良いESCRを示している。これに対して混合
器を全く持たない比較例7では、良いESCRを示
さない。
[Table] Example 9, Comparative Example 7 65mm as shown in Figure 3.
A mixer 7a was connected in series with a mandrel 9 in one stage in the head 6a of a φ single-screw extruder. Mixer 7a
275 mixing holes of the same shape and size are bored in the inner tube wall in a close-packed arrangement, and an introduction section 1a, a compression section 3a, a constriction section 4a, and a diffusion section 5a are constructed in this order. For each of the 275 mixing holes, the constriction part has a circular projected cross section, the length in the axial direction is zero, its projected minimum opening cross-sectional area is 0.785 mm 2 , and the compressed part has a truncated conical shape and its projected maximum opening cross-section The area is 78.5 mm 2 , which is 100 times the projected minimum aperture cross-sectional area of the diaphragm. The axial length l of the compression part is 15 mm and D 1 /l is 0.67. Using this extruder, as in Example 7, ethylene-butene copolymer and high-density polyethylene were mixed at the same mixing ratio at 250° C. at a discharge rate of 70 kg/H. The physical properties of the mixture obtained in the same manner as in Example 7 are shown in Table 4. Example 9 shows very good ESCR. On the other hand, Comparative Example 7, which does not have any mixer, does not show good ESCR.

【表】 実施例 10 密度0.915g/c.c.、高荷重メルトインデツクス
0.12g/10minの中密度ポリエチレン25重量部と
密度0.962g/c.c.メルトインデツクス9.0g/
10minの高密度ポリエチレン75重量部を用い、口
径200mmの単軸押出機の先端に第4図に示したよ
うな混合孔を持つ混合器を3段付加して混合を行
つた。 この混合孔のS1は2.16×105mm2、S2は2.25×102
mm2であり、S1/S2は962、lは1029mm、等価直径
D1は525であり従つてD1/lは0.51であつた。 温度220℃で押出量6000Kg/Hで混合を行つ
た。 得られた樹脂のメルトインデツクスは0.23g/
10min、密度は0.950g/c.c.であつた。また、
ASTM D―1693の方法で測定したESCRは
1300Hであり、充分な混合が行なわれたことを示
した。
[Table] Example 10 Density 0.915g/cc, high load melt index
0.12g/10min medium density polyethylene 25 parts by weight and density 0.962g/cc melt index 9.0g/
Mixing was carried out using 75 parts by weight of high-density polyethylene heated for 10 minutes by adding three stages of mixers having mixing holes as shown in FIG. 4 to the tip of a single-screw extruder with a diameter of 200 mm. S 1 of this mixing hole is 2.16×10 5 mm 2 and S 2 is 2.25×10 2
mm 2 , S 1 /S 2 is 962, l is 1029 mm, equivalent diameter
D 1 was 525 and therefore D 1 /l was 0.51. Mixing was carried out at a temperature of 220° C. and an extrusion rate of 6000 kg/h. The melt index of the obtained resin was 0.23g/
10 min, density was 0.950 g/cc. Also,
ESCR measured by ASTM D-1693 method is
1300H, indicating that sufficient mixing was performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1―A図は本発明での混合孔内における混合
状態を示す模式的縦断面図、第1―B図は本発明
での圧縮部と絞り部を有する混合孔、第2―A図
は実施例、比較例での押出機ヘツド部に混合器を
3段直列に挿入した縦断面概略図、第2―B図、
第2―B′図、第2―C図、第2―C′図は実施
例、比較例での混合器の各平面図、各A―A′縦
断面図、第3図は実施例での押出機ヘツド部に混
合器をマンドレルと1段直列に連結設置した縦断
面概略図、第4図は他の実施例での混合孔の縦断
面図である。 1,1a……導入部、2……塊、3,3a……
圧縮部、4,4a……絞り部、5,5a……拡散
部、6,6a……ヘツド部、7,7a……混合
器、7′……混合孔、8……終端部、9……マン
ドレル。
Fig. 1-A is a schematic vertical sectional view showing the mixing state in the mixing hole according to the present invention, Fig. 1-B is a mixing hole having a compressed part and a constricted part according to the present invention, and Fig. 2-A is a schematic longitudinal sectional view showing the mixing state in the mixing hole according to the present invention. A schematic longitudinal cross-sectional view of three stages of mixers inserted in series in the head of an extruder in Examples and Comparative Examples, Figure 2-B,
Figure 2-B', Figure 2-C, and Figure 2-C' are each plan view and each A-A' vertical sectional view of the mixer in the example and comparative example, and Figure 3 is in the example. FIG. 4 is a schematic vertical cross-sectional view showing a mixer connected and installed in one stage in series with a mandrel in the head of an extruder, and FIG. 4 is a vertical cross-sectional view of a mixing hole in another embodiment. 1, 1a...Introduction, 2...Lump, 3,3a...
Compressing section, 4, 4a... Squeezing section, 5, 5a... Diffusion section, 6, 6a... Head section, 7, 7a... Mixer, 7'... Mixing hole, 8... End section, 9... ...Mandrel.

Claims (1)

【特許請求の範囲】[Claims] 1 絞り部及びその前方に該絞り部に向つて順次
縮径する圧縮部を有してなり、該圧縮部の最大開
口断面積S1と、該絞り部の最小開口断面積S2との
比が10:1以上であり、2√1の値が前記圧
縮部の軸方向の長さlの1.5倍未満である混合孔
を1個又は並列に2個以上有する混合器を1個又
は直列に2個以上とりつけてなることを特徴とす
る混合装置。
1 It has a constriction part and a compression part in front of the constriction part whose diameter is gradually reduced toward the constriction part, and the ratio of the maximum opening cross-sectional area S1 of the compression part to the minimum opening cross-sectional area S2 of the constriction part. is 10:1 or more, and the value of 2√1 is less than 1.5 times the axial length l of the compression section. A mixing device characterized by being equipped with two or more.
JP15692178A 1978-12-21 1978-12-21 Mixer Granted JPS5584528A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP15692178A JPS5584528A (en) 1978-12-21 1978-12-21 Mixer
GB7943222A GB2039225B (en) 1978-12-21 1979-12-14 Mixing device
US06/104,100 US4334783A (en) 1978-12-21 1979-12-17 Mixing device
DE19792951445 DE2951445A1 (en) 1978-12-21 1979-12-20 MIXING DEVICE FOR MIXING POLYMERIC SUBSTANCES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15692178A JPS5584528A (en) 1978-12-21 1978-12-21 Mixer

Publications (2)

Publication Number Publication Date
JPS5584528A JPS5584528A (en) 1980-06-25
JPS6243844B2 true JPS6243844B2 (en) 1987-09-17

Family

ID=15638279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15692178A Granted JPS5584528A (en) 1978-12-21 1978-12-21 Mixer

Country Status (3)

Country Link
JP (1) JPS5584528A (en)
DE (1) DE2951445A1 (en)
GB (1) GB2039225B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4352573A (en) * 1980-01-29 1982-10-05 Gaulin Corporation Homogenizing method
JPS57135034A (en) * 1981-02-16 1982-08-20 Showa Denko Kk Mixing method
IT1188154B (en) * 1985-03-25 1988-01-07 Staser Prodotti Petroliferi Sp STATIC FLOW EMULSIFIER FOR NON-MIXABLE LIQUIDS
US4861165A (en) * 1986-08-20 1989-08-29 Beloit Corporation Method of and means for hydrodynamic mixing
GB8709445D0 (en) * 1987-04-21 1987-05-28 Bush S F Fibre separating device
DE3915071A1 (en) * 1989-05-09 1990-11-15 Basf Ag METHOD FOR IMPROVING THE FLOW RESISTANT PROPERTIES OF HIGH MOLECULAR POLYMER SOLUTIONS IN RAW OIL OR REFINERY PRODUCTS
JPH0341819U (en) * 1989-08-28 1991-04-22
DE19626246A1 (en) 1996-06-29 1998-01-08 Buehler Ag Slit mill
DE19637063A1 (en) * 1996-09-12 1998-03-19 Werner & Pfleiderer Extruder for the production of plastic granules
US5749650A (en) 1997-03-13 1998-05-12 Apv Homogenizer Group, A Division Of Apv North America, Inc. Homogenization valve
DE10051925A1 (en) * 2000-10-19 2002-05-02 Krauss Maffei Kunststofftech Static mixing device for the homogenization of polymer melts
CA2443483C (en) 2002-10-02 2011-08-16 Mold-Masters Limited Mixing device
DE10340024B3 (en) * 2003-08-28 2005-04-14 Thomas Funk Device for enriching a liquid with at least one gas
JP4478932B2 (en) * 2004-07-21 2010-06-09 株式会社山武 Micro mixer
JP2008110282A (en) * 2006-10-30 2008-05-15 Nichiraku Kikai Kk Line mixer
JP4692618B2 (en) * 2008-12-10 2011-06-01 コニカミノルタビジネステクノロジーズ株式会社 Method and apparatus for producing polymer composition
JP2010143970A (en) * 2008-12-16 2010-07-01 Konica Minolta Business Technologies Inc Polymer composition, molded product, transferring belt for electrophotography, and image forming apparatus
EP2196502B1 (en) 2008-12-10 2017-11-01 Konica Minolta Business Technologies, Inc. Polymer composition, transferring belt for electrophotography, image-forming apparatus and method for producing polymer composition
JP7291547B2 (en) * 2019-06-11 2023-06-15 東京エレクトロン株式会社 SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD126802A1 (en) * 1976-07-28 1977-08-10

Also Published As

Publication number Publication date
GB2039225A (en) 1980-08-06
GB2039225B (en) 1982-08-04
DE2951445A1 (en) 1980-07-03
JPS5584528A (en) 1980-06-25
DE2951445C2 (en) 1990-03-08

Similar Documents

Publication Publication Date Title
JPS6243844B2 (en)
US4334783A (en) Mixing device
AU2005334397B2 (en) Counter-rotating twin screw extruder
CN101291788B (en) Process for production of thermoplastic resin microporous membranes
JP2000507892A (en) Novel elastomer composite, method and apparatus for its production
CZ297185B6 (en) Elastomer composite blends and processes of their preparation
CN101583476A (en) Thermoplastic articles and improved processes for making the same
JP2009502586A (en) Process for producing extruded composition of extruded die and filled polymer composition
US5451106A (en) Extensional flow mixer
US3937772A (en) Production of mixtures of plastics materials
CN106243516A (en) The Pulvis Talci of a kind of high flowing high-impact strengthens PP material and preparation method
JPS6333896B2 (en)
US3486193A (en) Apparatus for extruding thermoplastic material
CN108342012B (en) mLLDPE resin composition for plastic greenhouse film and preparation method thereof
JP2006514702A (en) Improved processing of bimodal polymers
JPH09104053A (en) Method for extrusion of polyethylene
CN107686595A (en) A kind of red phosphorus flame-retardant masterbatch and its manufacture method
CN104629177A (en) Low-temperature fracture prevented plastics and preparation method thereof
CN108715657A (en) A kind of preparation method of PP composite material for foaming and preparation method thereof and expanded polypropylene beads
CN109159401B (en) Method for blending and compatibilization of high-molecular multiphase multi-component material
Jurkowski et al. Influence of chemical and mechanical compatibilization on structure and properties of polyethylene/polyamide blends
JPS6363021B2 (en)
KR100848026B1 (en) A polyolefin based resin film and a composition for a polyolefin type resin film
CN109796605A (en) A kind of preparation method of aqueous polymer emulsion
KR101731549B1 (en) Resin composition and the manufacturing method for manufacturing high-strength panels