JPS6243528A - Mixing type apparatus for measuring temperature of fluid - Google Patents

Mixing type apparatus for measuring temperature of fluid

Info

Publication number
JPS6243528A
JPS6243528A JP60183676A JP18367685A JPS6243528A JP S6243528 A JPS6243528 A JP S6243528A JP 60183676 A JP60183676 A JP 60183676A JP 18367685 A JP18367685 A JP 18367685A JP S6243528 A JPS6243528 A JP S6243528A
Authority
JP
Japan
Prior art keywords
fluid
cover
temp
chamber
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60183676A
Other languages
Japanese (ja)
Inventor
Yoshiaki Makihara
義明 牧原
Masaya Hoshi
雅也 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Atomic Power Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Atomic Power Industries Inc filed Critical Mitsubishi Atomic Power Industries Inc
Priority to JP60183676A priority Critical patent/JPS6243528A/en
Publication of JPS6243528A publication Critical patent/JPS6243528A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To make it possible to easily and positively measure the average temp. of matter to be measured, by providing the cover mounted on the pipe body constituting the flow passage of a fluid in a fluid-tight state so as to be protruded to the flow passage and the orifice mounted in the interior of the cover. CONSTITUTION:A cover 2 is mounted on a primary main cooling pipe 105 so as to pass through the wall of the piping 105 and be inserted in the mount hole 3 of said piping 105. An orifice plate 8 is mounted in the interior of the cover 2 and a plurality of fluid inflow ports 16 are formed in the wall of the leading end side 11 of the cover 2 in a piercing state. A part of the cooling material flowing through a flow passage 5 flows in a plenum chamber 12 from the inflow ports 16 of the cover 2. The cooling material 4 passing through the inflow ports 16 shows different temps. according to the positions of the inflow ports 16 but the flowing in streams are mixed by the vortex stream generated in the chamber 12. The cooling material 14 mixed in the chamber 12 flows in a temp. measuring chamber 14 through the orifice 15 of the orifice plate 8 and collected to one place when passing through the orifice 15 to further promote mixing. The cooling material flowing in the temp. measuring chamber 14 is subjected to the measurement of temp. by the temp.-sensitive part 21 of a temp. measuring device 18 and flows out from a fluid outflow port 17 to be returned to the flow passage 5.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は流体の温度を測定するための流体温度測定装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fluid temperature measuring device for measuring the temperature of a fluid.

このような流体温度測定装置は各種の化学プラントや加
圧水型原子炉の1次冷却系に使用される。
Such fluid temperature measuring devices are used in various chemical plants and primary cooling systems of pressurized water reactors.

[従来の技術] 第4図に加圧水型原子炉(PWR)の1次冷却系の系統
図を示す。原子炉容器101より流れ出た1次冷却材は
1次系主冷却材配管105を通り、蒸気発生器103に
入る。蒸気発生器103より出た1次冷却材はポンプ1
04を通り、原子炉容器101にもどる。また1次系は
加圧器102により加圧されている。
[Prior Art] Fig. 4 shows a system diagram of a primary cooling system of a pressurized water reactor (PWR). The primary coolant flowing out of the reactor vessel 101 passes through the primary system main coolant pipe 105 and enters the steam generator 103 . The primary coolant discharged from the steam generator 103 is sent to the pump 1.
04 and return to the reactor vessel 101. Further, the primary system is pressurized by a pressurizer 102.

このような1次系の冷却材温度を測定する方法として、
従来のプラントでは、蒸気発生器103をバイパスする
蒸気発生器バイパス系統108を設け、その途中に抵抗
温度計の如き、温度計107を設置し、この温度計10
7により蒸気発生器バイパス系統108内の冷却材の温
度を測定して1次系主冷却材配管105内の1次冷却材
の温度を推定している。
As a method of measuring the coolant temperature of such a primary system,
In a conventional plant, a steam generator bypass system 108 is provided that bypasses the steam generator 103, and a thermometer 107 such as a resistance thermometer is installed in the middle of the system.
7, the temperature of the coolant in the steam generator bypass system 108 is measured to estimate the temperature of the primary coolant in the primary main coolant pipe 105.

第5図に蒸気発生器バイパス系統108の冷却材取入口
を示す。
FIG. 5 shows the coolant intake of the steam generator bypass system 108.

蒸気発生器バイパス系統108の配管113の壁を貫通
して多数本の取入管109が設置されており、それぞれ
の取入管109には数ケ所の取入口110が設けられる
。1次冷却材111は取入口110から取入管109に
入る。多数本の取入管109から入った冷却材は1本の
配管112に合流したのち、温度計107により温度が
測定される。
A large number of intake pipes 109 are installed penetrating the wall of the piping 113 of the steam generator bypass system 108, and each intake pipe 109 is provided with several intake ports 110. Primary coolant 111 enters intake pipe 109 through intake port 110 . The coolant that has entered through the multiple intake pipes 109 joins one pipe 112, and then the temperature is measured by a thermometer 107.

第6図に取入管109の蒸気発生器バイパス系統108
の配管113への取付は方法の詳細を示す。すなわち、
取入管109は配管113に開けた穴に配管113の外
側から押入され、溶接114により接合される。
FIG. 6 shows the steam generator bypass system 108 of the intake pipe 109.
The details of the method of attachment to the pipe 113 are shown below. That is,
The intake pipe 109 is pushed into a hole made in the pipe 113 from the outside of the pipe 113, and is joined by welding 114.

1次系主冷却材配管105内の1次冷却材には配管の軸
方向に垂直な断面内で温度分布が存在する。その最高と
最低の温度の差は原子炉容器101の出入口の温度差の
約10%程度である。
The primary coolant in the primary main coolant pipe 105 has a temperature distribution within a cross section perpendicular to the axial direction of the pipe. The difference between the highest and lowest temperatures is about 10% of the temperature difference between the entrance and exit of the reactor vessel 101.

従って、この出入口の温度差の約10%以内の精度で測
定するためには、何等かの方法で温度分布を平均化して
測定する必要がある。このため従来は、取入管109が
同一平面内に多数段けられ、更に、それぞれの取入管1
09には多数ケ所の取入口110が設けられている。
Therefore, in order to measure the temperature difference between the entrance and exit with an accuracy of within about 10%, it is necessary to measure the temperature distribution by averaging it in some way. For this reason, conventionally, a large number of intake pipes 109 are arranged in the same plane, and each intake pipe 109 is
09 is provided with multiple intake ports 110.

[発明が解決しようとする問題点] このような従来の冷部材温度測定装置では、蒸気発生器
バイパス系統108を必要とするため、系統が増え、設
備費用が増大すること、及び、この蒸気発生器バイパス
系統108は1次冷却材が流れているため、周囲のtI
iC)l線しベルが高く、ブランドの保守、点検等の作
業時に作業員の被曝mが増えることが考えられる、この
点の解決技術の開発が望まれている。
[Problems to be Solved by the Invention] Such a conventional cold member temperature measuring device requires the steam generator bypass system 108, which increases the number of systems and equipment costs. Since the primary coolant is flowing through the bypass system 108, the surrounding tI
iC) The radiation level is high, and it is thought that the radiation exposure of workers during brand maintenance, inspection, etc. will increase.There is a desire to develop a technology to solve this problem.

また特開昭59−171823号公報に示されるように
、フローガイドを用いてスクープで採集した冷却材を1
点に導き、その点で温度測定を行い、これによって蒸気
発生器バイパス系統を削除することも提案されているが
、この場合には、フローガイド内の流れが1点に集めら
れるだけで、流れの混合が行なわれないために、流れの
中に層状の温度分布が存在することとなり、1次冷却材
の平均温度を測定することができない。また、このフロ
ーガイドを用いる方法は、そのフローガイドの構造が第
6図に示す取入管109に比べて大型であるため、取入
管109を取り外して、代りにフローガイドを取付ける
ことは不可能であり、従って、取入管109を用いてい
る現在稼働中のプラントについて容易に改造することが
できないという問題点もある。
Furthermore, as shown in Japanese Patent Application Laid-open No. 59-171823, a flow guide is used to collect coolant collected with a scoop.
It has also been proposed to conduct a temperature measurement at that point, thereby eliminating the steam generator bypass system, but in this case the flow in the flow guide is only concentrated at one point, and the flow Since the mixing of the primary coolant is not performed, a stratified temperature distribution exists in the flow, and the average temperature of the primary coolant cannot be measured. Furthermore, in the method using this flow guide, since the structure of the flow guide is larger than the intake pipe 109 shown in FIG. 6, it is impossible to remove the intake pipe 109 and install a flow guide in its place. Therefore, there is also the problem that a currently operating plant using the intake pipe 109 cannot be easily modified.

この発明は上記の如き事情に鑑みてなされたものであっ
て、簡単な構成で被測定流体の平均温度を容易かつ確実
に測定することができ、特に加圧水型原子炉プラントに
適用した場合には蒸気発生器バイパス系統を設けずに1
次冷却材の温度を測定することができ、従って設備を簡
略化することができ、また、1次冷却材の流れる系統が
減るので、保守管理時の作業員の被曝jを低減させるこ
とができ、更に、主冷却材配管内の1次冷却材の温度分
布が一様でない場合でも、容易に平均値を測定すること
ができ、かつ在来プラントにも適用することができる流
体温度測定装置を提供することを目的とするものである
This invention was made in view of the above-mentioned circumstances, and can easily and reliably measure the average temperature of a fluid to be measured with a simple configuration, and is especially suitable when applied to a pressurized water reactor plant. 1 without installing a steam generator bypass system
It is possible to measure the temperature of the secondary coolant, thus simplifying the equipment, and reducing the number of systems through which the primary coolant flows, reducing the radiation exposure of workers during maintenance management. Furthermore, the present invention provides a fluid temperature measuring device that can easily measure the average value even when the temperature distribution of the primary coolant in the main coolant piping is not uniform, and can also be applied to conventional plants. The purpose is to provide

(ロ)発明の構成 [問題を解決するための手段] この目的に対応して、この発明の混合型流体温度測定装
置は、筒状体をなし流体の流路を構成する管体に流体密
に取付けられて前記流路内に突出しているカバーと、前
記カバーの内部に取付けられ前記カバーの内部空間を突
出先端側のブレナム室と基端側の測fA交とに区画して
いるオリフィスと、前記カバーの壁を貫通して前記流路
と前記プレナム室とを連通させる流体流入口と、前記カ
バーの壁を貫通して前記流路と前記測温室とを連通させ
る流体流出口と、及び前記測温室内の流体の温度を測定
する測温部材とを婦えることを特徴としている。
(B) Structure of the Invention [Means for Solving the Problem] In response to this objective, the mixed-type fluid temperature measuring device of the present invention has a cylindrical body and a fluid-tight tube body constituting a fluid flow path. a cover attached to the cover and protruding into the flow path; an orifice attached to the inside of the cover and dividing the internal space of the cover into a blemish chamber on the protruding tip side and a measurement fA intersection on the proximal side; , a fluid inlet that penetrates a wall of the cover and communicates the flow path with the plenum chamber; a fluid outlet that penetrates a wall of the cover and connects the flow path with the measuring room; It is characterized by comprising a temperature measuring member for measuring the temperature of the fluid within the temperature measuring chamber.

以下、この発明の詳細を加圧水型原子炉の1次系主冷却
材の温度を測定するための温度測定装置に適用した一実
施例を示す図面について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the details of the present invention will be described with reference to a drawing showing an embodiment in which the present invention is applied to a temperature measuring device for measuring the temperature of a primary main coolant of a pressurized water reactor.

第1図において、1は流体温度測定装置である。In FIG. 1, 1 is a fluid temperature measuring device.

流体温度測定装置1はカバー2を協えている。カバー2
は1次系主冷却材配管105の壁を貫通して形成された
取付孔3に挿入されて取付けられている。1次系主冷却
材配管105の内部は冷部材4を通す流路5を構成する
The fluid temperature measuring device 1 has a cover 2 attached thereto. cover 2
is inserted into and attached to the attachment hole 3 formed through the wall of the primary system main coolant pipe 105. The inside of the primary main coolant pipe 105 constitutes a flow path 5 through which the cold member 4 passes.

カバー2は先端6が閉じた筒状をなしており、取付孔3
を通して流路5内に突出しており、また、1次系主冷却
材配管105とは溶接部7において流体密に溶接取付け
られている。カバー2の内部にはオリフィス板8が取付
けられており、このオリフィス板8はカバー2の内部空
間を先端側11のプレナム室12と基端側13の測温室
14とに区画している。プレナム室12と測温室14と
はオリフィス板8のオリフィス孔15を通して連通して
いる。
The cover 2 has a cylindrical shape with a closed tip 6, and has a mounting hole 3.
It protrudes into the flow path 5 through the welding portion 7 and is welded to the primary main coolant pipe 105 in a fluid-tight manner. An orifice plate 8 is attached inside the cover 2, and this orifice plate 8 divides the interior space of the cover 2 into a plenum chamber 12 on the distal end side 11 and a measuring chamber 14 on the proximal end side 13. The plenum chamber 12 and the measuring chamber 14 communicate through an orifice hole 15 of the orifice plate 8.

カバー2の先端側11の壁には複数の流体流入口16が
貫通形成されていて、この流体流入口16が流路5とプ
レナム室12とを連通する。流体流入口16はカバー2
の壁の流路5の上流側に面する側に、流路5の径方向に
間隔を置いて形成されている。
A plurality of fluid inlets 16 are formed through the wall of the distal end side 11 of the cover 2, and these fluid inlets 16 communicate the flow path 5 and the plenum chamber 12. The fluid inlet 16 is connected to the cover 2
They are formed on the side of the wall facing the upstream side of the flow path 5 at intervals in the radial direction of the flow path 5.

カバー2の基端側13の壁には流体流出口17が形成さ
れていて、この流体流出口17が流路5と測温室14と
を連通している。流体流出口17はカバー2の壁の流路
5の下流側に面する側に形成されている。
A fluid outlet 17 is formed in the wall of the base end 13 of the cover 2, and this fluid outlet 17 communicates the flow path 5 with the measuring chamber 14. The fluid outlet 17 is formed on the side of the wall of the cover 2 facing the downstream side of the flow path 5.

測温室14内には測温装e118の感温部21が挿入さ
れており、カバー2と測温¥i置18との間の間隙は栓
体22によって閏じられている。
A temperature sensing portion 21 of a temperature measuring device e118 is inserted into the temperature measuring chamber 14, and a gap between the cover 2 and the temperature measuring device 18 is filled with a plug 22.

[作用] このように構成された流体温度測定装置においては、流
路5内を流れる冷却材4の一部分がカバー2の流体流入
口16からプレナム室12に流入する。流体流入口16
を通る冷却材は流体流入口16の位置によって異なった
温度を呈するが、プレナム室12に流入しプレナム室1
2内に生じた渦流によって混合される。
[Operation] In the fluid temperature measuring device configured as described above, a portion of the coolant 4 flowing in the flow path 5 flows into the plenum chamber 12 from the fluid inlet 16 of the cover 2. Fluid inlet 16
The coolant flowing through the plenum chamber 12, which has a different temperature depending on the location of the fluid inlet 16, enters the plenum chamber 12.
The mixture is mixed by the vortex generated in the 2.

プレナム室12内で混合された冷却材はオリフィス孔1
5を通して測温室14に流入する。このオリフィス孔1
5を通るとき、冷却材は1ケ所に集められるので、更に
混合が促進される。測温室14に流入した冷却材は測温
装2!18の感温部21によって測温された後、流体流
出口17から流出して流路5に戻る。
The coolant mixed in the plenum chamber 12 flows through the orifice hole 1.
5 into the measuring room 14. This orifice hole 1
5, the coolant is concentrated in one place, further promoting mixing. The temperature of the coolant flowing into the temperature measuring chamber 14 is measured by the temperature sensing part 21 of the temperature measuring device 2!18, and then flows out from the fluid outlet 17 and returns to the flow path 5.

なお、この実施例では流体流入口16を直接にカバー2
の壁に形成したが、第2図に示すようにカバー2の壁を
貫通させて、取入ノズル23を取付けてもよい。この場
合には取入ノズル23のノズル孔24が流体流入口16
として機能する。このとき、複数のノズル孔24(流体
流入口16)のそれぞれの向きを、そこを流れる冷却材
の流れの方向が交差する向きに形成しておけば、プレナ
ム室12内での冷部材の流れの混合は一層促進される。
In this embodiment, the fluid inlet 16 is directly connected to the cover 2.
Although the intake nozzle 23 is formed on the wall, the intake nozzle 23 may be attached by penetrating the wall of the cover 2 as shown in FIG. In this case, the nozzle hole 24 of the intake nozzle 23 is connected to the fluid inlet 16.
functions as At this time, if each of the plurality of nozzle holes 24 (fluid inlet 16) is formed in a direction that intersects the flow direction of the coolant flowing therethrough, the flow of the cooling member in the plenum chamber 12 can be improved. mixing is further promoted.

このことは第3図に示すように、取入ノズル23を用い
ずに、流体流入口16を直接にカバー2の壁に形成する
場合でも同様である。
This also applies to the case where the fluid inlet 16 is formed directly on the wall of the cover 2 without using the intake nozzle 23, as shown in FIG.

(ハ)発明の効果 このように、この発明によれば簡単な構成で被測定流体
の平均温度を容易かつ確実に測定することができ、特に
加圧木型原子炉プラントに適用した場合には蒸気発生器
バイパス系統を設けずに1次冷却材の温度を測定するこ
とができ、従って設備を簡略化することができ、また、
1次冷却材の流れる系統が減るので、保守管理時の作業
員の被1llffiを低減させることができ、更に、主
冷却材配管内の1次冷却材の温度分布が一様でない場合
でも、容易に平均値を測定することができ、かつ在来プ
ラントにも改造適用することができる流体温度測定装置
を得ることができる。
(c) Effects of the invention As described above, according to the present invention, the average temperature of the fluid to be measured can be easily and reliably measured with a simple configuration, and especially when applied to a pressurized wooden nuclear reactor plant. The temperature of the primary coolant can be measured without providing a steam generator bypass system, and therefore the equipment can be simplified, and
Since the number of systems through which the primary coolant flows is reduced, it is possible to reduce the burden on workers during maintenance management.Furthermore, even if the temperature distribution of the primary coolant in the main coolant piping is not uniform, it can be easily fixed. Thus, it is possible to obtain a fluid temperature measuring device that can measure the average value of the temperature and can also be retrofitted to conventional plants.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係わる混合型流体温度測
定装置を示す拡大縦断面説明図、第2図はこの発明の他
の実施例に係わる混合型流体温度測定装置を示す拡大縦
断面説明図、第3図はこの発明の他の実施例に係わる混
合型流体温度測定装置を示す拡大縦断面説明図、第4図
は加圧木型原子炉の1次系を示す系統図、第5図は従来
の流体温度測定装置を示す断面説明図、及び第6図は従
来の流体温度測定装置を示す縦断面拡大説明図である。 1・・・流体温度測定装!2・・・カバー  3・・・
取付孔  4・・・冷却材  5・・・流路  6・・
・先端7・・・溶接部  8・・・オリフィス板  1
1・・・先端側  12・・・プレナム室  13・・
・基端側14・・・ll温室  15・・・オリフィス
孔  16・・・流体流入口  17・・・流体流出口
  18・・・測温装置  21・・・感温部  22
・・・栓体  23・・・取入ノズル  24・・・ノ
ズル孔 第1図 一二一
FIG. 1 is an enlarged vertical cross-sectional explanatory diagram showing a mixed-type fluid temperature measuring device according to one embodiment of the present invention, and FIG. 2 is an enlarged vertical cross-sectional view showing a mixed-type fluid temperature measuring device according to another embodiment of the present invention. An explanatory drawing, FIG. 3 is an enlarged vertical cross-sectional explanatory view showing a mixed fluid temperature measuring device according to another embodiment of the present invention, and FIG. 4 is a system diagram showing the primary system of a pressurized wooden nuclear reactor. FIG. 5 is an explanatory cross-sectional view showing a conventional fluid temperature measuring device, and FIG. 6 is an enlarged longitudinal cross-sectional view showing the conventional fluid temperature measuring device. 1... Fluid temperature measuring device! 2...Cover 3...
Mounting hole 4...Coolant 5...Flow path 6...
・Tip 7...Welding part 8...Orifice plate 1
1... Tip side 12... Plenum chamber 13...
- Base end side 14...ll Greenhouse 15... Orifice hole 16... Fluid inlet 17... Fluid outlet 18... Temperature measuring device 21... Temperature sensing part 22
... Plug body 23 ... Intake nozzle 24 ... Nozzle hole Fig. 1 121

Claims (3)

【特許請求の範囲】[Claims] (1)筒状体をなし流体の流路を構成する管体に流体密
に取付けられて前記流路内に突出しているカバーと、前
記カバーの内部に取付けられ前記カバーの内部空間を突
出先端側のプレナム室と基端側の測温室とに区画してい
るオリフィスと、前記カバーの壁を貫通して前記流路と
前記プレナム室とを連通させる流体流入口と、前記カバ
ーの壁を貫通して前記流路と前記測温室とを連通させる
流体流出口と、及び前記測温室内の流体の温度を測定す
る測温部材とを備えることを特徴とする混合型流体温度
測定装置
(1) A cover that is fluid-tightly attached to a cylindrical body constituting a fluid flow path and protrudes into the flow path, and a tip that is attached to the inside of the cover and protrudes into the internal space of the cover. an orifice dividing a side plenum chamber and a proximal side measuring chamber; a fluid inlet penetrating the wall of the cover to communicate the flow path with the plenum chamber; and a fluid inlet penetrating the wall of the cover. A mixed fluid temperature measuring device comprising: a fluid outlet that communicates the flow path with the temperature measurement chamber; and a temperature measurement member that measures the temperature of the fluid in the temperature measurement chamber.
(2)前記流体流入口は前記カバーの壁に取付けられた
取入ノズルのノズル孔によって構成されるものであるこ
とを特徴とする特許請求の範囲第1項記載の混合型流体
温度測定装置
(2) The mixed fluid temperature measuring device according to claim 1, wherein the fluid inlet is constituted by a nozzle hole of an intake nozzle attached to the wall of the cover.
(3)前記流体流入口は複数本形成され、そのうちの少
なくとも一部分の流体流入口の向きは他の流体流入口の
向きと異なるように形成されていることを特徴とする特
許請求の範囲第1項または第2項記載の混合型流体温度
測定装置
(3) A plurality of fluid inlets are formed, and at least some of the fluid inlets are formed in a direction different from that of the other fluid inlets. Mixed fluid temperature measuring device according to item 1 or 2
JP60183676A 1985-08-21 1985-08-21 Mixing type apparatus for measuring temperature of fluid Pending JPS6243528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60183676A JPS6243528A (en) 1985-08-21 1985-08-21 Mixing type apparatus for measuring temperature of fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60183676A JPS6243528A (en) 1985-08-21 1985-08-21 Mixing type apparatus for measuring temperature of fluid

Publications (1)

Publication Number Publication Date
JPS6243528A true JPS6243528A (en) 1987-02-25

Family

ID=16139973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60183676A Pending JPS6243528A (en) 1985-08-21 1985-08-21 Mixing type apparatus for measuring temperature of fluid

Country Status (1)

Country Link
JP (1) JPS6243528A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2712113A1 (en) * 1993-11-04 1995-05-12 Framatome Sa Device for measuring the temperature of the cooling fluid of a nuclear reactor mixing fluid samples
US7056013B2 (en) * 2003-10-28 2006-06-06 Honeywell International Inc. Sensor arrangement having an air inflow pattern for preventing direct debris impact
WO2016074410A1 (en) * 2014-11-11 2016-05-19 中科华核电技术研究院有限公司 Heat pipe temperature measuring sleeve tube

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2712113A1 (en) * 1993-11-04 1995-05-12 Framatome Sa Device for measuring the temperature of the cooling fluid of a nuclear reactor mixing fluid samples
US7056013B2 (en) * 2003-10-28 2006-06-06 Honeywell International Inc. Sensor arrangement having an air inflow pattern for preventing direct debris impact
WO2016074410A1 (en) * 2014-11-11 2016-05-19 中科华核电技术研究院有限公司 Heat pipe temperature measuring sleeve tube

Similar Documents

Publication Publication Date Title
CN104236917B (en) Full-ring micro-size backflow combustor tester
US5215704A (en) Method and apparatus for in situ testing of heat exchangers
US4130017A (en) Flow rate measuring device
KR101926649B1 (en) Pressure Vessel for Heat Transfer and Flow Control Experiments of Reactor Building
US20170322059A1 (en) Low pressure drop and high temperature flow measuring device
JPS6243528A (en) Mixing type apparatus for measuring temperature of fluid
KR100364871B1 (en) Shutdown cooling pump vortex detection system
US3993539A (en) Method and device for measuring fluid flow
EP0383628A2 (en) Coolant flow measuring and power controlling apparatus in a boiling-water reactor
WO2016074436A1 (en) Heat pipe
GB1335380A (en) Nuclear reactor plant
JP2007205799A (en) Coolant temperature measuring instrument for boiling water nuclear reactor and its measurement method
US4274280A (en) Plugging indicator
Wu On the transport mechanisms in simulated heterogeneous rod bundle subchannels
CZ289637B6 (en) Probe for measuring liquid flow in a pipe
CN209118781U (en) A kind of temperature measuring device and reactor coolant loop
US4854178A (en) Flowmeter for dangerous fluids
CN210271807U (en) Coolant hot section temperature measuring device and pressure vessel with same
JP2509753B2 (en) Reactor main steam flow meter
JPH0159558B2 (en)
JP3029349B2 (en) Heat exchanger
GB1577896A (en) Heat exchanger
Atherton et al. Method and device for measuring fluid flow
JPH02290596A (en) Flow rate measuring instrument and operating device for nuclear reactor utilizing this instrument
JPH03214098A (en) Purification-system and incorporation-type equipment of removing decay heat