JPS6243429B2 - - Google Patents

Info

Publication number
JPS6243429B2
JPS6243429B2 JP14075282A JP14075282A JPS6243429B2 JP S6243429 B2 JPS6243429 B2 JP S6243429B2 JP 14075282 A JP14075282 A JP 14075282A JP 14075282 A JP14075282 A JP 14075282A JP S6243429 B2 JPS6243429 B2 JP S6243429B2
Authority
JP
Japan
Prior art keywords
fixed electrode
reciprocating drive
electromagnetic coils
movable element
drive actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14075282A
Other languages
Japanese (ja)
Other versions
JPS5932353A (en
Inventor
Masahiro Honma
Iwane Inokuchi
Naohiko Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP14075282A priority Critical patent/JPS5932353A/en
Publication of JPS5932353A publication Critical patent/JPS5932353A/en
Publication of JPS6243429B2 publication Critical patent/JPS6243429B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/12Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moving in alternate directions by alternate energisation of two coil systems
    • H02K33/14Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moving in alternate directions by alternate energisation of two coil systems wherein the alternate energisation and de-energisation of the two coil systems are effected or controlled by movement of the armatures

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Position Or Direction (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Description

【発明の詳細な説明】 この発明は、被駆動体を往復動させるための往
復駆動アクチユエータに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reciprocating drive actuator for reciprocating a driven body.

従来、往復駆動アクチユエータとして、例えば
第1図又は第2図に示すようなものがある(実開
昭56―35890号公報参照)。
Conventionally, there is a reciprocating actuator as shown in FIG. 1 or 2, for example (see Japanese Utility Model Application Publication No. 56-35890).

まず、第1図に示す往復駆動アクチユエータ
は、軟磁性体からなる筒状ヨーク1内に、ベーク
ライトからなるボビン2,3に相隣合う部分に同
極が発生するように巻回してなる一対の筒状電磁
コイル4,5を嵌挿し、この一対の筒状電磁コイ
ル4,5内に、軸線方向に磁化された円柱状マグ
ネツト6の両端部に磁極片7,8及びシヤフト
9,10を一体に固着してなる可動子11を、そ
のシヤフト9,10を端板12,13で支持し
て、筒状電磁コイル4,5の軸線方向に変位可能
に配設して構成したものである。
First, the reciprocating drive actuator shown in FIG. 1 consists of a pair of bobbins 2 and 3 made of Bakelite wound in a cylindrical yoke 1 made of a soft magnetic material so that the same polarity occurs in adjacent parts. The cylindrical electromagnetic coils 4 and 5 are inserted into the pair of cylindrical electromagnetic coils 4 and 5, and the magnetic pole pieces 7 and 8 and the shafts 9 and 10 are integrated at both ends of the cylindrical magnet 6 which is magnetized in the axial direction. The movable element 11 is fixed to a movable member 11, its shafts 9 and 10 are supported by end plates 12 and 13, and the movable member 11 is disposed so as to be displaceable in the axial direction of the cylindrical electromagnetic coils 4 and 5.

この往復駆動アクチユエータにおいては、マグ
ネツト6が図示のように左側がN極,右側がS極
に着磁されている場合に、電磁コイル4,5に相
隣合う部分がN極、両端がS極になる励磁電流を
流すと、マグネツト6のN極側は電磁コイル4の
S極側と吸引し合い、S極側は電磁コイル5のS
極側と反発し合うので、可動子11が図で左方向
に変位する。
In this reciprocating drive actuator, when the magnet 6 is magnetized with an N pole on the left side and an S pole on the right side as shown in the figure, the part adjacent to the electromagnetic coils 4 and 5 is the N pole, and both ends are the S pole. When an excitation current is applied, the N pole side of the magnet 6 attracts the S pole side of the electromagnetic coil 4, and the S pole side
Since they repel each other from the pole side, the movable element 11 is displaced to the left in the figure.

また、電磁コイル4,5に相隣合う部分がS
極、両端がN極になる励磁電流を流すと、マグネ
ツト6のN極側は電磁コイル4のN極側と反発し
合い、S極側は電磁コイル5のN極側と吸引し合
うので、可動子11が図で右方向に変位する。
In addition, the portions adjacent to the electromagnetic coils 4 and 5 are S
When an excitation current with N poles at both ends is applied, the N pole side of the magnet 6 repels the N pole side of the electromagnetic coil 4, and the S pole side attracts the N pole side of the electromagnetic coil 5. The mover 11 is displaced to the right in the figure.

次に、第2図に示す往復駆動アクチユエータ
は、一対の電磁コイル4,5内に、両端にシヤフ
ト9,10を固着した円柱状ヨーク18の両端部
に径方向に磁化された2個のマグネツト19,2
0を固着してなる可動子21を軸線方向に変位可
能に配設したものであり、可動子21の変位原理
は第1図に示すものと同様である。
Next, the reciprocating drive actuator shown in FIG. 2 has two magnets magnetized in the radial direction at both ends of a cylindrical yoke 18, which has shafts 9 and 10 fixed to both ends, in a pair of electromagnetic coils 4 and 5. 19,2
A movable element 21 formed by fixing a movable element 0 is disposed so as to be displaceable in the axial direction, and the principle of displacement of the movable element 21 is the same as that shown in FIG.

このような従来の往復駆動アクチユエータにお
いて、可動子の微小変位を検出する場合には、シ
ヤフトに差動変圧器の可動コアを直結したり、可
動子に検知レバーを嵌合して渦電流方式又はイン
ダクタンス方式の検知センサを外付けしなければ
ならなかつた。
In such conventional reciprocating drive actuators, when detecting minute displacements of the movable element, the movable core of the differential transformer is directly connected to the shaft, or a detection lever is fitted to the movable element to detect the eddy current method or the movable element. An inductance type detection sensor had to be attached externally.

しかしながら、差動変圧器や渦電流又はインダ
クタンス方式の検知センサは、電磁コイル等によ
る磁界の影響を受けて検出精度が悪くなるので、
高精度に検出するためには磁気シールド等が必要
になり、装置が大型化する。
However, detection accuracy of differential transformer, eddy current, or inductance type detection sensors deteriorates due to the influence of magnetic fields from electromagnetic coils, etc.
In order to detect with high precision, a magnetic shield or the like is required, which increases the size of the device.

また、検知レバーを用いると、機械的振動が生
じ易くなつて制御系と共振現象を起し易くなり、
高精度の変位検出ができないという不都合があ
る。
In addition, when a detection lever is used, mechanical vibration is likely to occur, which may easily cause resonance with the control system.
There is a disadvantage that highly accurate displacement detection cannot be performed.

この発明は上記の点に鑑みてなされたものであ
り、上述のような往復駆動アクチユエータにおい
て、装置を大型化することなく、可動子の変位量
を高精度に検出できるようにすることを目的とす
る。
This invention was made in view of the above points, and an object of the present invention is to enable highly accurate detection of the amount of displacement of a movable element in a reciprocating drive actuator as described above, without increasing the size of the device. do.

そのため、この発明による往復駆動アクチユエ
ータは、一対の筒状電磁コイルの内周面側又は外
周面側に導電体からなる固定電極を、可動子の外
周面に固定電極と対向する可動電極を夫々設け、
可動子の変位による可動電極の変位に伴う固定電
極と可動電極との間の静電容量の変化を検出する
ことによつて可動子の変位量を検出できるように
したものである。
Therefore, in the reciprocating drive actuator according to the present invention, a fixed electrode made of a conductor is provided on the inner peripheral surface side or the outer peripheral surface side of the pair of cylindrical electromagnetic coils, and a movable electrode facing the fixed electrode is provided on the outer peripheral surface of the movable element. ,
The amount of displacement of the movable element can be detected by detecting the change in capacitance between the fixed electrode and the movable electrode due to the displacement of the movable electrode due to the displacement of the movable element.

以下、この発明の実施例を添付図面の第3図以
降を参照して説明する。なお、第1図及び第2図
と対応する部分には同一符号を付してその部分の
説明は省略する。
Embodiments of the present invention will be described below with reference to FIG. 3 and subsequent figures of the accompanying drawings. Note that portions corresponding to those in FIGS. 1 and 2 are designated by the same reference numerals, and explanations of those portions will be omitted.

第3図は、この発明を実施した軸線方向磁化型
の往復駆動アクチユエータの一例を示す縦断面図
である。
FIG. 3 is a longitudinal sectional view showing an example of an axially magnetized reciprocating actuator embodying the present invention.

この往復駆動アクチユエータにおいては、一対
の筒状電磁コイル4,5をボビン状に形成した導
電体からなる筒状の第1、第2の固定電極31,
32に巻回してヨーク1内に嵌挿すると共に、可
動子11の外周面に第1、第2の固定電極31,
32と対向する導電体からなる筒状の可動電極3
3を嵌挿している。
In this reciprocating drive actuator, a pair of cylindrical electromagnetic coils 4 and 5 are connected to cylindrical first and second fixed electrodes 31 made of a conductor formed into a bobbin shape,
32 and fitted into the yoke 1, and the first and second fixed electrodes 31,
A cylindrical movable electrode 3 made of a conductor facing 32
3 is inserted.

そして、第1、第2の固定電極31,32及び
可動電極33には端子34,35及び36を接続
し、またヨーク1と第1、第2の固定電極31,
32との間には絶縁用の絶縁フイルム37を介装
している。なお、端子36は可動電極33の変位
に影響を及ぼさないように接続する。
Terminals 34, 35 and 36 are connected to the first and second fixed electrodes 31 and 32 and the movable electrode 33, and the yoke 1 and the first and second fixed electrodes 31 and 33 are connected to terminals 34, 35 and 36, respectively.
32, an insulating film 37 for insulation is interposed. Note that the terminal 36 is connected so as not to affect the displacement of the movable electrode 33.

このように構成したので、可動子11が図で左
方向へ変位すると、第1の固定電極31と可動電
極33との対向面積が広くなつて両電極31,3
3間の静電容量が大きくなるのに対し、第2の固
定電極32と可動電極33との対向面積が狭くな
つて両電極32,33間の静電容量が小さくな
る。
With this configuration, when the movable element 11 is displaced to the left in the figure, the opposing area between the first fixed electrode 31 and the movable electrode 33 becomes wider, and both electrodes 31, 3
While the capacitance between the second fixed electrode 32 and the movable electrode 33 becomes narrower, the capacitance between the two electrodes 32 and 33 becomes smaller.

これに対して、可動子11が図で右方向へ変位
すると第1の固定電極31と可動電極33との対
向面積が狭くなつて両電極31,33間の静電容
量が小さくなるのに対し、第2の固定電極32と
可動電極33との対向面積が広くなつて両電極3
2,33間の静電容量が大きくなる。
On the other hand, when the movable element 11 is displaced to the right in the figure, the opposing area between the first fixed electrode 31 and the movable electrode 33 becomes narrower, and the capacitance between the two electrodes 31 and 33 becomes smaller. , the opposing area between the second fixed electrode 32 and the movable electrode 33 is increased, so that both electrodes 3
The capacitance between 2 and 33 increases.

このように、可動子11の変位に応じて第1、
第2の固定電極31,32と可動電極33との間
の各静電容量が変化するので、その静電容量を検
出することによつて可動子11の変位量を検出で
きる。
In this way, depending on the displacement of the mover 11, the first
Since each capacitance between the second fixed electrodes 31, 32 and the movable electrode 33 changes, the amount of displacement of the movable element 11 can be detected by detecting the capacitance.

このように、往復駆動アクチユエータに静電容
量型変位センサーを一体的に組み込んでいるの
で、電磁コイル4,5等による磁界の影響を受け
ることなく高精度に可動子11の変位量を検出で
き、磁気シールド等も不要である。
In this way, since the capacitive displacement sensor is integrated into the reciprocating drive actuator, the amount of displacement of the mover 11 can be detected with high precision without being affected by the magnetic field from the electromagnetic coils 4, 5, etc. There is no need for magnetic shielding, etc.

また、この実施例では電磁コイル4,5の各内
周面を保持する部材を第1、第2の固定電極3
1,32が兼ねているので、固定電極を別途設け
る場合よりも構成が簡単になる。
Further, in this embodiment, the members holding the inner peripheral surfaces of the electromagnetic coils 4 and 5 are connected to the first and second fixed electrodes 3.
1 and 32, the configuration is simpler than when a fixed electrode is provided separately.

第4図は、この発明を実施した径方向磁化型の
往復駆動アクチユエータの一例を示す縦断面であ
り、可動子21の変位量を検出するための固定電
極及び可動電極等の構成は第3図と同様であるの
で、同一符号を付してその説明は省略する。
FIG. 4 is a vertical cross section showing an example of a radial magnetization type reciprocating drive actuator according to the present invention, and FIG. Since it is the same as that, the same reference numerals are given and the explanation thereof will be omitted.

第5図は、この発明を実施した往復駆動アクチ
ユエータの制御部の一例を示すブロツク図であ
る。
FIG. 5 is a block diagram showing an example of a control section of a reciprocating drive actuator embodying the present invention.

同図において、制御回路40は、各種のパラメ
ータ、例えばこの往復駆動アクチユエータを内燃
機関に用いた場合には機関の各種動作パラメータ
を示す信号Sn(n=…n)を入力して被駆動
体の指定位置を演算する演算回路41の出力信号
Doと、可動子11の位置を検出するセンサ回路
42の検出位置信号Voとを入力して、被駆動体
が指定位置になるように駆動回路43を介して電
磁コイル4,5の励磁電流を制御して可動子11
を変位させる。
In the figure, a control circuit 40 inputs various parameters, for example, when this reciprocating drive actuator is used in an internal combustion engine, a signal Sn (n= 1 ...n) indicating various operating parameters of the engine, and controls the driven object. The output signal of the arithmetic circuit 41 that calculates the specified position of
Do and the detection position signal Vo of the sensor circuit 42 that detects the position of the movable element 11 are input, and the excitation current of the electromagnetic coils 4 and 5 is applied via the drive circuit 43 so that the driven body is at the specified position. Control the mover 11
Displace.

第6図は、第5図のセンサ回路の一例を示す回
路図である。
FIG. 6 is a circuit diagram showing an example of the sensor circuit of FIG. 5.

同図において、コンデンサC1,C2は、夫々第
5図の往復駆動アクチユエータの第1、第2の固
定電極31,32と可動電極33との間の静電容
量である。
In the figure, capacitors C 1 and C 2 are electrostatic capacitances between the first and second fixed electrodes 31 and 32 and the movable electrode 33 of the reciprocating drive actuator shown in FIG. 5, respectively.

そして、これ等のコンデンサC1,C2を直列接
続して、抵抗R1,R2とによつて交流ブリツジ回
路45を形成し、この交流ブリツジ回路45の
a,b点に交流電源46の交流電圧を印加してい
る。(第5図の端子36,34,35がそれぞれ
第6図のc,a,b点に相当する。) この交流ブリツジ回路45のc,d点から出力
される不平衡電圧を全波整流回路47で全波整流
して差動増幅器48で増幅した後、ダイオード
D1、抵抗R3及びコンデンサC3からなるピークホ
ールド回路49でピーク値をホールドし、バツフ
ア回路50を介してアナログ電圧V0を出力する
ように構成してある。
These capacitors C 1 and C 2 are connected in series to form an AC bridge circuit 45 with resistors R 1 and R 2 , and an AC power source 46 is connected to points a and b of this AC bridge circuit 45 . AC voltage is applied. (Terminals 36, 34, and 35 in FIG. 5 correspond to points c, a, and b in FIG. 6, respectively.) The unbalanced voltage output from points c and d of this AC bridge circuit 45 is converted into a full-wave rectifier circuit. After full wave rectification with 47 and amplification with differential amplifier 48, the diode
A peak hold circuit 49 consisting of a resistor R 3 , a resistor R 3 , and a capacitor C 3 holds the peak value , and outputs an analog voltage V 0 via a buffer circuit 50 .

ここで、可動子11の変位量検出の原理につい
て説明する。
Here, the principle of detecting the amount of displacement of the movable element 11 will be explained.

一般に、誘電体中の同心円筒状の2つの電極間
の静電容量Cは、真空の誘電率(8.85×10-12
[F/m])をεo、誘電体の比誘電率をεs、電
極の面積をS[m2]、電極間の距離をd[m]と
すると、 C=8.85×10-12・εs・S/d〔F〕 で表わされる。
In general, the capacitance C between two concentric cylindrical electrodes in a dielectric is determined by the dielectric constant of vacuum (8.85×10 -12
[F/m]) is εo, the dielectric constant is εs, the area of the electrode is S [m 2 ], and the distance between the electrodes is d [m], then C=8.85×10 -12・εs・It is expressed as S/d [F].

この回路においては、第1の固定電極31と可
動電極33との間の静電容量をC1、第2の固定
電極32と可動電極33との間の静電容量をC2
として、交流ブリツジ回路45の一片に介挿して
いる。
In this circuit, the capacitance between the first fixed electrode 31 and the movable electrode 33 is C1 , and the capacitance between the second fixed electrode 32 and the movable electrode 33 is C2.
As such, it is inserted into one piece of the AC bridge circuit 45.

したがつて、この交流ブリツジ回路45から出
力される不平衡電圧eは、印加電圧をVsとする
と、 e=−KC−C/C+C・Vs(KはR1,R2
より決ま る定数)で表わされ、この場合、第1、第2の固
定電極31,32と可動電極33との対向距離を
各々l1,l2とすると(第5図参照)、不平衡電圧e
と対向距離l1,l2との関係は、 e=−Kl−l/l+l(l1+l2=一定) で表わされる。
Therefore, the unbalanced voltage e output from this AC bridge circuit 45 is expressed as e=-KC 1 -C 2 /C 1 +C 2 ·Vs (K is determined by R 1 and R 2 ) , where Vs is the applied voltage. In this case, if the opposing distances between the first and second fixed electrodes 31 and 32 and the movable electrode 33 are respectively l 1 and l 2 (see Fig. 5), the unbalanced voltage e
The relationship between and the facing distances l 1 and l 2 is expressed as e=-Kl 1 -l 2 /l 1 +l 2 (l 1 +l 2 = constant).

したがつて、不平衡電圧eを求めることによ
り、可動子11の変位量が得られる。
Therefore, by determining the unbalanced voltage e, the amount of displacement of the movable element 11 can be obtained.

なお、第6図のセンサ回路における出力電圧
Voと可動子11の変位量との関係の一例を第7
図に示してある。
In addition, the output voltage in the sensor circuit in Fig. 6
An example of the relationship between Vo and the displacement amount of the mover 11 is shown in the seventh example.
It is shown in the figure.

また、第1、第2の固定電極31,32と可動
電極33との間の各静電容量の検出は、例えば
CR発振器を構成して周波数変化として、あるい
は遅延回路を構成して遅延時間の変化として検出
することもでき、上記の検出方法に限られない。
Furthermore, the detection of each capacitance between the first and second fixed electrodes 31 and 32 and the movable electrode 33 can be performed, for example.
It is also possible to configure a CR oscillator to detect a change in frequency, or to configure a delay circuit to detect a change in delay time, and is not limited to the above detection method.

なお、上記実施例においては、固定電極が一対
の電磁コイルの各内周面を保持する第1、第2の
固定電極からなる例について述べたが、これに限
るものではないことは勿論である。
In addition, in the above embodiment, an example was described in which the fixed electrode is composed of first and second fixed electrodes that hold the inner peripheral surfaces of a pair of electromagnetic coils, but it is needless to say that the present invention is not limited to this. .

例えば、固定電極を一対の電磁コイルの各外周
面を保持する第1、第2の固定電極によつて構成
してもよく、また1個の固定電極を一対の電磁コ
イルの内周面側又は外周面側に設けてもよく、要
は可動子の変位に伴う可動電極の変位によつて静
電容量が変化するように固定電極を設ければよい
のである。
For example, the fixed electrode may be constituted by first and second fixed electrodes that hold each outer peripheral surface of a pair of electromagnetic coils, and one fixed electrode may be configured to hold one fixed electrode on the inner peripheral surface side of a pair of electromagnetic coils or The fixed electrode may be provided on the outer peripheral surface side, and the point is that the fixed electrode may be provided so that the capacitance changes depending on the displacement of the movable electrode accompanying the displacement of the movable element.

以上説明したように、この発明によれば、往復
駆動アクチユエータに静電容量型変位センサを一
体的に組み込んだので、装置の大型化を招くこと
なく、可動子の変位量を高精度に検出できる。
As explained above, according to the present invention, the capacitive displacement sensor is integrated into the reciprocating drive actuator, so the amount of displacement of the mover can be detected with high accuracy without increasing the size of the device. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、従来の往復駆動アクチユ
エータの異なる例を示す縦断面図である。第3図
は、この発明の一実施例を示す縦断面図、第4図
は、この発明の他の実施例を示す縦断面図、第5
図は、第3図の往復駆動アクチユエータの制御部
の一例を示すブロツク図、第6図は、そのセンサ
回路の一例を示す回路図、第7図は、その出力電
圧Voと可動子の変位量との関係の一例を示す線
図である。 1……ヨーク、4,5……電磁コイル、6,1
9,20……マグネツト、7,8……磁極、9,
10……シヤフト、11,21……可動子、18
……円柱状ヨーク、31……第1の固定電極、3
2……第2の固定電極、33……可動電極、37
……絶縁フイルム。
FIGS. 1 and 2 are longitudinal sectional views showing different examples of conventional reciprocating drive actuators. FIG. 3 is a longitudinal sectional view showing one embodiment of the present invention, FIG. 4 is a longitudinal sectional view showing another embodiment of the invention, and FIG.
The figure is a block diagram showing an example of the control section of the reciprocating drive actuator shown in Fig. 3, Fig. 6 is a circuit diagram showing an example of the sensor circuit, and Fig. 7 shows the output voltage Vo and displacement amount of the mover. FIG. 2 is a diagram showing an example of the relationship between 1... Yoke, 4, 5... Electromagnetic coil, 6, 1
9,20...Magnet, 7,8...Magnetic pole, 9,
10... Shaft, 11, 21... Mover, 18
... Cylindrical yoke, 31 ... First fixed electrode, 3
2... Second fixed electrode, 33... Movable electrode, 37
...Insulating film.

Claims (1)

【特許請求の範囲】 1 相隣り合う部分に同極が発生するように巻回
した一対の筒状電磁コイル内に、永久磁石を一体
とする可動子を軸線方向に変位可能に配設してな
る往復駆動アクチユエータにおいて、前記一対の
電磁コイルの内周面側又は外周面側に導電体から
なる筒状の固定電極を、前記可動子の外周面に前
記固定電極と対向する導電体からなる筒状の可動
電極を夫々設けたことを特徴とする往復駆動アク
チユエータ。 2 固定電極が、前記一対の電磁コイルを各々保
持する第1、第2の固定電極からなる特許請求の
範囲第1項記載の往復駆動アクチユエータ。
[Claims] 1. A movable element including a permanent magnet is disposed so as to be displaceable in the axial direction within a pair of cylindrical electromagnetic coils wound so that the same polarity occurs in adjacent parts. In the reciprocating drive actuator, a cylindrical fixed electrode made of a conductive material is provided on the inner peripheral surface side or the outer peripheral surface side of the pair of electromagnetic coils, and a cylindrical fixed electrode made of a conductive material opposite to the fixed electrode is provided on the outer peripheral surface of the movable element. A reciprocating drive actuator characterized by having movable electrodes each having a shape. 2. The reciprocating drive actuator according to claim 1, wherein the fixed electrode comprises first and second fixed electrodes each holding the pair of electromagnetic coils.
JP14075282A 1982-08-13 1982-08-13 Reciprocally driven actuator Granted JPS5932353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14075282A JPS5932353A (en) 1982-08-13 1982-08-13 Reciprocally driven actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14075282A JPS5932353A (en) 1982-08-13 1982-08-13 Reciprocally driven actuator

Publications (2)

Publication Number Publication Date
JPS5932353A JPS5932353A (en) 1984-02-21
JPS6243429B2 true JPS6243429B2 (en) 1987-09-14

Family

ID=15275905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14075282A Granted JPS5932353A (en) 1982-08-13 1982-08-13 Reciprocally driven actuator

Country Status (1)

Country Link
JP (1) JPS5932353A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186911A (en) * 1984-03-05 1985-09-24 Ace Center Kk Method and device for controlling 3-position action of movable core
JPS61193936A (en) * 1985-02-21 1986-08-28 Mitsubishi Motors Corp Continuously variable transmission for automobile
JPS6244059A (en) * 1985-08-22 1987-02-26 Matsushita Electric Works Ltd Magnetic levitation type linear motor
JPS63110066A (en) * 1986-10-27 1988-05-14 日本車輌製造株式会社 Diesel motorcar
JPH0391205U (en) * 1989-12-29 1991-09-18
JP2582431Y2 (en) * 1992-12-11 1998-10-08 株式会社三協精機製作所 Linear drive
US6940989B1 (en) * 1999-12-30 2005-09-06 Insound Medical, Inc. Direct tympanic drive via a floating filament assembly
JP2006280033A (en) * 2005-03-28 2006-10-12 Juki Corp Linear actuator
JP5266697B2 (en) * 2007-09-19 2013-08-21 シンフォニアテクノロジー株式会社 Linear actuator
JP2010104864A (en) * 2008-10-28 2010-05-13 Sanyo Electric Co Ltd Reciprocating vibration generator

Also Published As

Publication number Publication date
JPS5932353A (en) 1984-02-21

Similar Documents

Publication Publication Date Title
US5444368A (en) Differential reactance permanent magnet position transducer
JP3041342B2 (en) Magnetic bearing device
JPS6243429B2 (en)
US5763783A (en) Acceleration sensor
Reddy et al. Low cost planar coil structure for inductive sensors to measure absolute angular position
US5247253A (en) Eddy current proximity sensing means and method useful for determining throttle position
US6229231B1 (en) Reciprocating motor having controllable rotor position
JP3666441B2 (en) Position detection device
US4132980A (en) High-sensitivity inductive transducer for rectilinear or rotational displacement
US4030085A (en) Nonferromagnetic linear variable differential transformer
JPH042785B2 (en)
JP3692494B2 (en) Torque sensor
EP0362881B1 (en) Magnetic bearing device
JPH01318901A (en) Magnetic induction type sensor
JPH05280914A (en) Detection sensor of amount of displacement
JPH0739922B2 (en) Position detector for hydraulic or pneumatic cylinders
JPH09281167A (en) Apparatus for measuring surface potential
JPH11325808A (en) Displacement sensor
JPH0624732Y2 (en) Differential transformer
KR100381192B1 (en) A stroke sensor and method of a motor
JPH01161701A (en) Solenoid with position sensor
RU2029231C1 (en) Contactless inductive angle-of-turn transducer
JPH0378617A (en) Position sensor
CN115962708A (en) Magnetic bearing stator and rotor air gap measuring method based on flexible circuit coil
JPH05223910A (en) Measuring method for magnetism