JPS6243315B2 - - Google Patents

Info

Publication number
JPS6243315B2
JPS6243315B2 JP6558682A JP6558682A JPS6243315B2 JP S6243315 B2 JPS6243315 B2 JP S6243315B2 JP 6558682 A JP6558682 A JP 6558682A JP 6558682 A JP6558682 A JP 6558682A JP S6243315 B2 JPS6243315 B2 JP S6243315B2
Authority
JP
Japan
Prior art keywords
antenna
heating chamber
outer conductor
inner conductor
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6558682A
Other languages
Japanese (ja)
Other versions
JPS58181291A (en
Inventor
Shigeru Komai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6558682A priority Critical patent/JPS58181291A/en
Publication of JPS58181291A publication Critical patent/JPS58181291A/en
Publication of JPS6243315B2 publication Critical patent/JPS6243315B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Description

【発明の詳細な説明】 本発明は高周波加熱装置に関する。[Detailed description of the invention] The present invention relates to a high frequency heating device.

現在のこの種装置における高周波供給手段とし
てはマグネトロンが使用されている。また、斯る
マグネトロンから発せられたマイクロ波を加熱室
への伝送する手段としては、マグネトロンの出力
インピーダンスとのマツチング等の観点から導波
管が用いられている。
A magnetron is currently used as a high frequency supply means in this type of device. In addition, a waveguide is used as a means for transmitting the microwaves emitted from the magnetron to the heating chamber from the viewpoint of matching with the output impedance of the magnetron.

ところが斯る導波管を用いると装置が大型とな
るという問題が生じる。そこで、高周波供給手段
から発せられたマイクロ波を同軸ケーブルで伝送
しアンテナ放射により加熱室内にマイクロ波を供
給する方法が提案されている。このような構成で
は同軸ケーブルがフレキシブルで、かつ、導波管
より容積が小となるので、装置が小型化できる。
However, when such a waveguide is used, a problem arises in that the device becomes large. Therefore, a method has been proposed in which microwaves emitted from a high frequency supply means are transmitted through a coaxial cable and the microwaves are supplied into the heating chamber by radiation from an antenna. In such a configuration, the coaxial cable is flexible and has a smaller volume than the waveguide, so the device can be made smaller.

しかし、斯る構成において従来提案されている
アンテナは同軸ケーブルの内導体を加熱室の中へ
張出した電界結合や、ループ状にした磁界結合と
いつた単純な結合方法のものであつた。このよう
なアンテナでは加熱室内のインピーダンスが一定
のときはマツチングがとれるが、それが変化する
とマツチングがとれないという問題が生じる。
However, the antennas that have been proposed in the past with such a configuration have used simple coupling methods such as electric field coupling in which the inner conductor of the coaxial cable is extended into the heating chamber, or magnetic field coupling in which the inner conductor of the coaxial cable is formed into a loop. In such an antenna, matching can be achieved when the impedance inside the heating chamber is constant, but when the impedance changes, a problem arises in that matching cannot be achieved.

本発明は、上記の諸点に鑑みてなされたもので
以下図面に基づいて本発明を説明する。
The present invention has been made in view of the above points, and will be described below based on the drawings.

第1図は本発明の実施例を示し、1は加熱室、
2は該加熱室内に配されたアンテナ、3は該アン
テナに接続されたマイクロ波伝送手段としての同
軸ケーブル、4は該ケーブルを介して上記アンテ
ナ2にマイクロ波を供給する高周波供給手段であ
り、該手段はマグネトロンもしくは固体発振器か
らなる。
FIG. 1 shows an embodiment of the present invention, in which 1 is a heating chamber;
2 is an antenna arranged in the heating chamber; 3 is a coaxial cable connected to the antenna as a microwave transmission means; 4 is a high frequency supply means for supplying microwaves to the antenna 2 via the cable; The means consist of a magnetron or a solid state oscillator.

上記アンテナ2は第2図に示す如く、内導体5
と外導体6とからなる同軸線路において外導体6
にスリツト7が設けられると共に斯る外導体6の
外周面には、金属片8,8……の夫々の一端が電
気的に接続されている。また斯るアンテナ2と同
軸ケーブル3との接続はアンテナ2の内導体5を
同軸ケーブル3の心線と、外導体6を同軸ケーブ
ル3の外径線と夫々電気的に接続することにより
行える。また斯るアンテナ2は単に同軸ケーブル
3を加熱室1内に引き込み、外径線を部分的に除
去する(スリツトの形成)と共に除去されなかつ
た外径線に一端が電気的に接続された金属片を装
着するだけでもよい。
The antenna 2 has an inner conductor 5 as shown in FIG.
In a coaxial line consisting of an outer conductor 6 and an outer conductor 6, the outer conductor 6
A slit 7 is provided in the outer conductor 6, and one end of each of the metal pieces 8, 8, . . . is electrically connected to the outer peripheral surface of the outer conductor 6. The antenna 2 and the coaxial cable 3 can be connected by electrically connecting the inner conductor 5 of the antenna 2 to the core wire of the coaxial cable 3 and the outer conductor 6 to the outer diameter wire of the coaxial cable 3, respectively. In addition, such an antenna 2 is constructed by simply pulling the coaxial cable 3 into the heating chamber 1, partially removing the outer diameter wire (forming a slit), and then using a metal wire with one end electrically connected to the outer diameter wire that was not removed. You can just attach one piece.

更に斯るアンテナ2の他端は、加熱室1の内壁
に取着された絶縁性材料からなる冶具9により支
持されている。
Further, the other end of the antenna 2 is supported by a jig 9 made of an insulating material and attached to the inner wall of the heating chamber 1.

第3図は同軸ケーブル3中をTEMモードでマ
イクロ波が伝送された際のアンテナ2における電
磁界を示す。尚図中電気力線及び磁力線は夫々実
線及び破線で示してある。また図中1aは加熱室
天面、1bは上記アンテナ2と平行に位置する加
熱室の一側壁である。
FIG. 3 shows the electromagnetic field at the antenna 2 when microwaves are transmitted in the coaxial cable 3 in TEM mode. In the figure, electric lines of force and magnetic lines of force are shown by solid lines and broken lines, respectively. Further, in the figure, 1a is the top surface of the heating chamber, and 1b is one side wall of the heating chamber located parallel to the antenna 2.

第4図A,Bは第3図のA−A断面を示す。図
から明らかな如く、斯る部分での電磁界は同軸ケ
ーブル3内と同様に周知のTEMモードモードと
なつている。つまり電気力線は内導体5から外導
体6に向つて放射状に存在し、磁力線は内導体5
を中心として同心円状に存在する。従つてエネル
ギーは外導体6内に存在することとなる。
4A and 4B show cross sections taken along the line AA in FIG. 3. As is clear from the figure, the electromagnetic field in this portion is in the well-known TEM mode, similar to that in the coaxial cable 3. In other words, the electric lines of force exist radially from the inner conductor 5 to the outer conductor 6, and the magnetic lines of force exist radially from the inner conductor 5 to the outer conductor 6.
They exist in concentric circles around the center. Energy therefore exists within the outer conductor 6.

第4図Bは第3図のB−B断面斜視図を示す。
内導体5が露出している場合(スリツト7部分)
には、斯る部分での電磁界は電気力線が内導体5
から天面1a及び一側壁1bに夫々直交するよう
に存在する平行2線モードとなる。従つて電気力
線が直交する面(以下イメージ線路10とする)
と内導体5との2線内にエネルギーが存在するこ
ととなる。
FIG. 4B shows a sectional perspective view taken along the line BB in FIG. 3.
When the inner conductor 5 is exposed (slit 7 part)
In this case, the electromagnetic field in such a part is caused by the lines of electric force in the inner conductor 5.
This results in a parallel two-line mode that exists perpendicularly to the top surface 1a and one side wall 1b, respectively. Therefore, the plane where the lines of electric force intersect at right angles (hereinafter referred to as image line 10)
Energy exists within the two wires between the inner conductor 5 and the inner conductor 5.

ところがアンテナ2のインピーダンスは不連続
であるため内導体5とイメージ線路10との間に
発生する電磁界に乱れが生じ、また斯る電磁界は
外導体6に装着された金属片8で発生する電磁界
と結合する。この結果、金属片8での電磁界は放
射モードとなり、アンテナ2より加熱室1内にマ
イクロ波エネルギーが発振されることとなる。ま
たこの時、放射されるマイクロ波の指向方向は上
記金属片8,8…の延在方向と一致する。
However, since the impedance of the antenna 2 is discontinuous, a disturbance occurs in the electromagnetic field generated between the inner conductor 5 and the image line 10, and this electromagnetic field is generated in the metal piece 8 attached to the outer conductor 6. Combines with electromagnetic fields. As a result, the electromagnetic field in the metal piece 8 becomes a radiation mode, and microwave energy is oscillated from the antenna 2 into the heating chamber 1. Further, at this time, the directional direction of the radiated microwaves coincides with the extending direction of the metal pieces 8, 8, . . . .

本発明者の実験によれば上記金属片8,8…の
長さLによつて加熱室1とアンテナ2とのインピ
ーダンスマツチングが変化することが確認され
た。
According to the inventor's experiments, it was confirmed that the impedance matching between the heating chamber 1 and the antenna 2 changes depending on the length L of the metal pieces 8, 8, . . . .

例えば加熱室1として寸法が幅l1=375mm、奥
行l2=414mm、高さl3=248mmのものを用い、アン
テナ2としては第2図に示す如く内導体5の直径
T1=3mm、外導体6の直径T2=7mm、スリツト
幅B1=20mm、スリツト間隔B2=60mm(各外導体
の延在方向の長さ)のものを用い、上記金属片
8,8…の長さLを15mm、30mm、60mmとすると共
に加熱室1内の負荷(水)を500c.c.、1、2
としてインピーダンスマツチングを調べた。尚こ
のときのマイクロ波の波長は約2450MHzであつ
た。
For example, the dimensions of the heating chamber 1 are width l 1 = 375 mm, depth l 2 = 414 mm, and height l 3 = 248 mm, and the antenna 2 has the diameter of the inner conductor 5 as shown in FIG.
The metal pieces 8 , 8...The length L is 15 mm, 30 mm, 60 mm, and the load (water) in heating chamber 1 is 500 c.c., 1, 2.
We investigated impedance matching as follows. The wavelength of the microwave at this time was approximately 2450MHz.

第5図は斯る実験結果を示すスミスチヤートで
あり、図中〇印は負荷が500c.c.のとき、△印は負
荷が1のとき、×印は負荷が2のときを示
す。
FIG. 5 is a Smith Chart showing the results of such an experiment, in which the ○ mark indicates when the load is 500 c.c., the △ mark indicates when the load is 1, and the × mark indicates when the load is 2.

第5図から明らかな如く、金属片8の長さがL
=30mmのとき負荷が変動しても定在波比V・S=
4以内の範囲でマツチングがとれることが判つ
た。斯る定在波比V・S=4以内でのマツチング
とは実用的なマツチングであり、かつ従来の導波
管による給電の場合と同程度のマツチングであ
る。
As is clear from Fig. 5, the length of the metal piece 8 is L.
= 30mm Even if the load fluctuates, the standing wave ratio V・S=
It was found that matching could be achieved within a range of 4 or less. Matching within such a standing wave ratio V·S=4 is a practical matching, and is a matching comparable to that in the case of power feeding using a conventional waveguide.

尚、上記金属片8の長さL=30mmは上記発振マ
イクロ波の1/4波長にあたり、本発明者の実験に
よれば発振波長の1/4波長の長さにしたとき最も
インピーダンスマツチングが良好となるという結
果が得られている。
Incidentally, the length L of the metal piece 8 = 30 mm corresponds to 1/4 wavelength of the oscillated microwave, and according to the inventor's experiments, the impedance matching is the best when the length is set to 1/4 wavelength of the oscillation wavelength. Good results have been obtained.

また、上記アンテナのスリツト幅B1、スリツ
ト間隔B2は加熱室1とのインピーダンスマツチ
ングにより決めればよく、上記実施例寸法に限る
ものではなく、かつ金属片8からのマイクロ波放
射を均一になすべく、1つのアンテナにおいてス
リツト幅B1及び間隔B2を変化させてもよい。
Further, the slit width B 1 and the slit interval B 2 of the antenna may be determined by impedance matching with the heating chamber 1, and are not limited to the dimensions of the above embodiment, and the microwave radiation from the metal piece 8 can be uniformly determined. To achieve this, the slit width B 1 and the spacing B 2 may be varied in one antenna.

更に本実施例ではアンテナ2を加熱室1の天面
1aと一側壁1bとで構成されるコーナーに近接
配置したが、これに限るものではなく配設位置に
限定はない。しかし、このようにコーナーに配設
すると加熱室の有効体積を広くとることができ、
かつコーナーリフレクタ効果によりマイクロ波エ
ネルギーを加熱室の略中央に集中させることも可
能である。
Further, in this embodiment, the antenna 2 is arranged close to the corner formed by the top surface 1a and one side wall 1b of the heating chamber 1, but the antenna 2 is not limited to this and the arrangement position is not limited. However, when placed in a corner like this, the effective volume of the heating chamber can be increased.
Furthermore, it is also possible to concentrate the microwave energy approximately at the center of the heating chamber due to the corner reflector effect.

更に、本実施例の全ての金属片8の延在方向は
加熱室底面の略中央に向つているが、アンテナ2
から放射されるマイクロ波は上記金属片8の延在
方向に指向性を有しているので各金属片8の延在
方向を異ならしめて種々の指向性を有したマイク
ロ波を放射させ、加熱室内の電界分布を均一にす
ることも可能である。
Furthermore, although the extending direction of all the metal pieces 8 in this embodiment is toward the approximate center of the bottom surface of the heating chamber, the antenna 2
Since the microwaves emitted from the metal pieces 8 have directivity in the extending direction of the metal pieces 8, the extending direction of each metal piece 8 is made different to emit microwaves with various directivities. It is also possible to make the electric field distribution uniform.

また、同軸線路の内導体5と外導体6とは通常
低誘電物質、例えばプラスチツクにより相対的に
固定されているが、外導体6を内導体5を中心に
回転自在に装着してもよく、このように構成した
場合、調理の種類によつて加熱室1に対して相対
的に金属片8,8…の延在方向を変化させること
が可能であるので、調理の種類にあつた電界をつ
くることができ大変便利である。
Further, the inner conductor 5 and outer conductor 6 of the coaxial line are usually fixed relative to each other by a low dielectric material, for example, plastic, but the outer conductor 6 may be rotatably mounted around the inner conductor 5. With this configuration, it is possible to change the extending direction of the metal pieces 8, 8... relative to the heating chamber 1 depending on the type of cooking, so the electric field suitable for the type of cooking can be changed. It is very convenient to make.

以上の説明から明らかな如く、本発明の高周波
加熱装置では負荷の変動に対しても良好なインピ
ーダンスマツチングがとれ、かつアンテナ給電で
あるので装置自体も小型化できる。
As is clear from the above description, the high-frequency heating device of the present invention can achieve good impedance matching even with load fluctuations, and since it is antenna-fed, the device itself can be made smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第5図は本発明の実施例を示し、第
1図は斜視透視図、第2図及び第3図は要部拡大
斜視図、第4図Aは第3図のA−A線断面図、第
4図Bは第3図のB−B線断面斜視図、第5図は
スミスチヤートである。 1……加熱室、2……アンテナ、4……高周波
供給手段、5……内導体、6……外導体、7……
スリツト、8……金属片。
1 to 5 show embodiments of the present invention, FIG. 1 is a perspective perspective view, FIGS. 2 and 3 are enlarged perspective views of main parts, and FIG. 4A is A-A in FIG. 3. 4B is a cross-sectional perspective view taken along the line B--B in FIG. 3, and FIG. 5 is a Smith Chart. DESCRIPTION OF SYMBOLS 1... Heating chamber, 2... Antenna, 4... High frequency supply means, 5... Inner conductor, 6... Outer conductor, 7...
Slit, 8...metal piece.

Claims (1)

【特許請求の範囲】[Claims] 1 加熱室、該加熱室内に配設されたアンテナ、
該アンテナを介して加熱室内にマイクロ波を供給
する高周波供給手段を具備せる高周波加熱装置に
おいて、上記アンテナは同軸線路からなり、その
外導体にスリツトが形成されると共に、上記外導
体外周面には金属片の一端が電気的に接続された
ことを特徴とする高周波加熱装置。
1 a heating chamber, an antenna disposed within the heating chamber,
In a high-frequency heating device comprising a high-frequency supply means for supplying microwaves into the heating chamber through the antenna, the antenna consists of a coaxial line, a slit is formed in the outer conductor, and a slit is formed on the outer circumferential surface of the outer conductor. A high-frequency heating device characterized in that one end of a metal piece is electrically connected.
JP6558682A 1982-04-19 1982-04-19 High frequency heater Granted JPS58181291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6558682A JPS58181291A (en) 1982-04-19 1982-04-19 High frequency heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6558682A JPS58181291A (en) 1982-04-19 1982-04-19 High frequency heater

Publications (2)

Publication Number Publication Date
JPS58181291A JPS58181291A (en) 1983-10-22
JPS6243315B2 true JPS6243315B2 (en) 1987-09-12

Family

ID=13291253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6558682A Granted JPS58181291A (en) 1982-04-19 1982-04-19 High frequency heater

Country Status (1)

Country Link
JP (1) JPS58181291A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6911410B2 (en) * 2017-03-14 2021-07-28 富士通株式会社 Microwave heating device

Also Published As

Publication number Publication date
JPS58181291A (en) 1983-10-22

Similar Documents

Publication Publication Date Title
US4845508A (en) Electric wave device and method for efficient excitation of a dielectric rod
US5053786A (en) Broadband directional antenna
JP2002513616A5 (en)
CA1207843A (en) Microwave applicator for frozen ground
KR100368943B1 (en) microwave
GB1573112A (en) Microwave oven
US4185181A (en) Microwave oven
JPS56126302A (en) Circular polarized wave microstrip line antenna
JPS60193292A (en) Electronic range
US4507664A (en) Dielectric image waveguide antenna array
US4130823A (en) Miniature, flush mounted, microwave dual band cavity backed slot antenna
JPS6243315B2 (en)
SE463339B (en) DEVICE FOR POWER SUPPLY OF A HAIR SPACE CONTROLLER INTENDED FOR ELECTROMAGNETIC MICROVAAGS
US3761938A (en) Ferrite dipole antenna radiator
US2635189A (en) Wave guide antenna with bisectional radiator
EP0048817B1 (en) Rod-excited waveguide slot antenna
JP2001016027A (en) Laminated aperture surface antenna
JPS6352438B2 (en)
JP2643498B2 (en) High frequency heating equipment
JPH0330782A (en) Antenna for microwave medical treatment device
US3771161A (en) Printed-circuit feed for reflector antennas
US3321762A (en) Slot antenna array useful with top mounted beacon light and decoupled internal powerline
JP2626267B2 (en) Scalar feed horn
Hui et al. A cylindrical DR rod antenna fed by a short helix
JP3903671B2 (en) Planar antenna