JPS6243231A - Multiplex transmitting method for optical heterodyne/ homodyne detection wavelength - Google Patents
Multiplex transmitting method for optical heterodyne/ homodyne detection wavelengthInfo
- Publication number
- JPS6243231A JPS6243231A JP60183326A JP18332685A JPS6243231A JP S6243231 A JPS6243231 A JP S6243231A JP 60183326 A JP60183326 A JP 60183326A JP 18332685 A JP18332685 A JP 18332685A JP S6243231 A JPS6243231 A JP S6243231A
- Authority
- JP
- Japan
- Prior art keywords
- channel
- signal
- light
- wavelength
- local oscillation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Communication System (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は光フアイバ通信方法、特に光ヘテロダイン・ホ
モダイン検波通信方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical fiber communication method, and particularly to an optical heterodyne/homodyne detection communication method.
(従来技術の説明)
光ヘテロダイン・ホモダイン検波通信方法は、従来の光
の強度のみを検出する光直接検波方法に比べて、大幅な
光受信感度の改善や、高密度の波長多重通信が可能であ
るため、将来の長距離、大容量通信を可能にする方法と
して期待されている(大越、“光ヘテロダインもしくは
光ホモダイン形周波数多重光ファイバ通信の可能性と問
題点の検討、″電子通信学会技術研究報告、0QE78
−139. p61゜1978)。(Description of Prior Art) Optical heterodyne/homodyne detection communication methods can significantly improve optical reception sensitivity and enable high-density wavelength multiplexing communication compared to conventional optical direct detection methods that detect only the intensity of light. Therefore, it is expected to be a method to enable long-distance, high-capacity communication in the future (Okoshi, “Study of the possibilities and problems of optical heterodyne or optical homodyne type frequency division multiplexed optical fiber communication,” IEICE Technology Research report, 0QE78
-139. p61゜1978).
特に波長多重通信においては、例えば、波長1゜311
mから1.5pmの間に実に10.000チャンネル以
上を配分することが可能であり、通信容量を飛躍的に増
大させることができる。In particular, in wavelength division multiplexing communication, for example, a wavelength of 1°311
In fact, it is possible to allocate more than 10,000 channels between m and 1.5 pm, and communication capacity can be dramatically increased.
光ヘテロダイン検波方法は、受信部において信号光とは
わづかに波長の異なる局部発振光を用意して信号光と合
波し、両者の差周波数に対応するビート信号を光検出器
によって得、このビート信号(中間周波信号)から信号
を復調する方法である。In the optical heterodyne detection method, local oscillation light with a slightly different wavelength from that of the signal light is prepared in the receiving section, multiplexed with the signal light, and a beat signal corresponding to the difference frequency between the two is obtained by a photodetector. This is a method of demodulating a signal from a beat signal (intermediate frequency signal).
従って波長多重通信を行なう場合、短い波長間隔で並ん
だ多数の信号光のそれぞれに対して、波長制御された局
部発振光を受信側で用意しなければならない。しかし1
人以内に数チャンネルが並ぶような光ヘテロダイン・ホ
モダイン検波波長多重通信方法においては、各チャンネ
ルの搬送波波長の絶対値を正確に検出することが困難な
ため、局部発振光の波長が設定できず、送信側の各チャ
ンネルと受信側の各チャンネルを1=1あるいは適切に
対応させて送受信させる方法が従来なかった。Therefore, when wavelength multiplexing communication is performed, wavelength-controlled local oscillation light must be prepared on the receiving side for each of a large number of signal lights arranged at short wavelength intervals. But 1
In optical heterodyne/homodyne detection wavelength division multiplexing communication methods where several channels are lined up within one person, it is difficult to accurately detect the absolute value of the carrier wavelength of each channel, so the wavelength of the locally oscillated light cannot be set. Conventionally, there has been no method for transmitting and receiving each channel on the transmitting side and each channel on the receiving side in a 1=1 or appropriate correspondence.
(発明の目的)
本発明の目的はこのような問題点を解決し、各チャンネ
ルの識別が可能であり、送信側の各チャンネルと受信側
の各チャンネルが1:1あるいは適切に対応するように
各局部発振光の波長設定ができる光ヘテロダイン・ホモ
ダイン検波波長多重伝送方法を提供することにある。(Object of the Invention) The object of the present invention is to solve these problems, to enable each channel to be identified, and to ensure that each channel on the transmitting side and each channel on the receiving side correspond 1:1 or appropriately. An object of the present invention is to provide an optical heterodyne/homodyne detection wavelength multiplexing transmission method that allows wavelength setting of each locally oscillated light.
(発明の構成)
本発明によれば、送信側において、互いに搬送波波長が
異なる複数のチャンネル送信部からの信号光を波長多重
して送信し、一方受信系において、各チャンネル受信部
ごとに波長を適切に制御した局部発振光源出力光を信号
光と合波して光ヘテロダイン・ホモダイン検波を行ない
、所望のチャンネルの信号を取り出す光ヘテロダイン・
ホモダイン検波波長多重伝送方法において、送信側では
、各チャンネル送信部ごとにチャンネル識別信号が主信
号に重畳された信号光を送信し、一方前記受信側では、
各チャンネル受信部が所望のチャンネル送信部からのチ
ャンネル識別信号を受信するように各局部発振光源の波
長をそれぞれ制御することによって、所望のチャンネル
送信部と接続することを特徴とする光ヘテロダイン・ホ
モダイン検波波長多重伝送方式が得られる。(Structure of the Invention) According to the present invention, on the transmitting side, signal lights from a plurality of channel transmitting units having different carrier wavelengths are wavelength-multiplexed and transmitted, while in the receiving system, the wavelengths are multiplexed for each channel receiving unit. Optical heterodyne/homodyne detection is performed by combining appropriately controlled local oscillation light source output light with signal light to extract the signal of the desired channel.
In the homodyne detection wavelength division multiplexing transmission method, on the transmitting side, a signal light in which a channel identification signal is superimposed on the main signal is transmitted for each channel transmitter, while on the receiving side,
An optical heterodyne/homodyne system characterized in that each channel receiving section connects to a desired channel transmitting section by controlling the wavelength of each local oscillation light source so that the channel receiving section receives a channel identification signal from the desired channel transmitting section. A detection wavelength multiplexing transmission system is obtained.
(発明の原理)
この発明は、各チャンネル送信部の送信信号に予めその
チャンネルの識別符号を挿入して送信し、受信側におい
ては復調信号の中からチャンネル識別信号を読み出すこ
とにより正しいチャンネル信号を受信しているかどうか
判別するものである。もし誤ったチャンネルの信号を受
信していることが分った場合、局部発振光源の波長を変
化させ、正しいチャンネルとのビート信号が得られた所
で局部発振光源の波長を固定する。(Principle of the Invention) This invention inserts an identification code of the channel into the transmission signal of each channel transmitter in advance and transmits it, and the receiving side reads the channel identification signal from the demodulated signal to obtain the correct channel signal. This is to determine whether or not it is being received. If it is found that a signal on the wrong channel is being received, the wavelength of the local oscillation light source is changed, and when a beat signal with the correct channel is obtained, the wavelength of the local oscillation light source is fixed.
この結果本発明によれば、各チャンネルの識別が可能で
あり、送信側の各チャンネルと受信側の各チャンネルが
1=1あるいは適切に対応するように各局部発振光の波
長設定ができる光ヘテロダイン・ホモダイン検波波長多
重伝送方法を提供できる。As a result, according to the present invention, each channel can be identified, and the wavelength of each local oscillation light can be set so that each channel on the transmitting side and each channel on the receiving side correspond 1=1 or appropriately. - A homodyne detection wavelength multiplexing transmission method can be provided.
(実施例)
第1図は本発明に基づいて得られる光通信装置の第1の
実施例のブロック図、第2図は同じ実施例におけるチャ
ンネル識別信号の構成を示す図である。この実施例は波
長1.511m帯において、波長間隔0.5人(約6G
Hz)で10チヤンネルの波長多重信号を伝送する装置
である。変復調方式は周波数偏移変調(FSX)方式で
、各チャンネルの符号伝送速度は4000Mb/sであ
る。第1図は第1チヤンネルを中心に示しである。(Embodiment) FIG. 1 is a block diagram of a first embodiment of an optical communication device obtained based on the present invention, and FIG. 2 is a diagram showing the structure of a channel identification signal in the same embodiment. In this example, the wavelength interval is 0.5 people (approximately 6G) in the 1.511m wavelength band.
This is a device that transmits wavelength multiplexed signals of 10 channels at 10 channels (Hz). The modulation and demodulation method is a frequency shift keying (FSX) method, and the code transmission rate of each channel is 4000 Mb/s. FIG. 1 mainly shows the first channel.
第1チャンネル送信部1は半導体レーザ(国光せず)か
ら構成される光出力部2、半導体レーザを駆動する駆動
回路3、第1チヤンネル送信信号4にチャンネル識別信
号5を加える符号変換回路6等から構成されている。半
導体レーザは駆動回路3からの印加電流による直接変調
によって2値周波数偏移変調される。周波数偏移量は6
00MHzである。The first channel transmitter 1 includes an optical output section 2 composed of a semiconductor laser (Kunimitsu), a drive circuit 3 that drives the semiconductor laser, a code conversion circuit 6 that adds a channel identification signal 5 to the first channel transmit signal 4, etc. It consists of The semiconductor laser is binary frequency shift modulated by direct modulation using an applied current from the drive circuit 3. The amount of frequency deviation is 6
00MHz.
チャンネル識別信号5は第2図a)に示すように1フレ
ーム内のフレーム周期パルス9の後に1ビツトづつ挿入
されており、10フレームごとに同一符号をくり返す。As shown in FIG. 2a), the channel identification signal 5 is inserted one bit after the frame periodic pulse 9 within one frame, and repeats the same code every 10 frames.
このチャンネル識別信号5の符号列は第2図b)に示す
ように、チャンネルごとに異なった構成に予め設定され
ている。The code string of this channel identification signal 5 is preset in a different configuration for each channel, as shown in FIG. 2b).
第1チヤンネル信号光7は、合波回路10によって第2
〜第10チヤンネル信号光52・・・60と波長多重さ
れて光フアイバ伝送路40中を伝搬する。光フアイバ伝
送路40を伝搬したこれら合波光11は光分配器12に
よって等分された後第1〜第10の分配光71〜80と
して第1〜第10チヤンネル受信部にそれぞれ送られる
。The first channel signal light 7 is transferred to the second channel by the multiplexing circuit 10.
- It is wavelength-multiplexed with the tenth channel signal light 52 . . . 60 and propagates through the optical fiber transmission line 40 . These multiplexed lights 11 propagated through the optical fiber transmission line 40 are divided into equal parts by the optical splitter 12 and then sent to the first to tenth channel receivers as first to tenth distributed lights 71 to 80, respectively.
第1チャンネル受信部61では、第1の分配光71はま
ず受信光合波513によって局部発振光14と合波され
、光検出器15に入射して電気信号(中間周波信号16
)に変換される。局部発振光14の波長は、受信動作の
開始時には必ずしも第1チヤンネル信号光7の波長に合
っているとは限らず、第1〜第10チヤンネル信号光1
,52・・・60のいずれか1チヤンネルの波長に自ら
の波長を合わせて中間周波信号16を得ることになる。In the first channel receiving section 61, the first distributed light 71 is first multiplexed with the local oscillation light 14 by the received light multiplexer 513, enters the photodetector 15, and enters the electrical signal (intermediate frequency signal 16).
) is converted to The wavelength of the local oscillation light 14 does not necessarily match the wavelength of the first channel signal light 7 at the start of the receiving operation, and the wavelength of the local oscillation light 14 does not necessarily match the wavelength of the first channel signal light 7.
, 52, . . . , 60, the intermediate frequency signal 16 is obtained by adjusting its own wavelength to the wavelength of one of the channels.
(このような操作は後述するマイクロプロセッサ20で
行なわれる)。得られた中間周波信号16は増幅回路1
7で増幅された後、復調回路18によって復調信号19
に変換される。復調信号19の一部はチャンネル識別回
路21に送られるが、この回路ではチャンネル識別信号
5が検出され、復調信号19がどのチャンネルの信号で
あるのか認識できる。認識結果はマイクロプロセッサ2
0で読み取られるが、もし復調信号19が第1チヤンネ
ル送信信号4でない場合は、局部発振光源22の周波数
制御回路23にコントロール信号24が送られ、局部発
振光14の波長を第1チヤンネル送信信号4の波長にま
で動かす。なお、周波数制御回路23は、局部発振光源
22を構成している半導体レーザ(口糸せず)の印加電
流の大きさを変えて波長を制御している。第1チヤンネ
ル送信信号4が正しく受信されたのちは、中間周波信号
16の周波数を検出する周波数弁別回路25からの誤差
信号26を主に用い、中間周波数が所定の値(この実施
例ではIGHz)になるように周波数制御回路23を動
作させている。(Such operations are performed by microprocessor 20, which will be described later). The obtained intermediate frequency signal 16 is sent to the amplifier circuit 1
7, the demodulated signal 19 is then amplified by the demodulation circuit 18.
is converted to A part of the demodulated signal 19 is sent to a channel identification circuit 21, which detects the channel identification signal 5 and can recognize which channel the demodulated signal 19 belongs to. The recognition result is processed by microprocessor 2.
However, if the demodulated signal 19 is not the first channel transmission signal 4, a control signal 24 is sent to the frequency control circuit 23 of the local oscillation light source 22, and the wavelength of the local oscillation light 14 is read as the first channel transmission signal. Move it to the wavelength of 4. It should be noted that the frequency control circuit 23 controls the wavelength by changing the magnitude of the current applied to the semiconductor laser (without a loop) that constitutes the local oscillation light source 22. After the first channel transmission signal 4 is correctly received, the error signal 26 from the frequency discrimination circuit 25 that detects the frequency of the intermediate frequency signal 16 is mainly used to determine that the intermediate frequency is a predetermined value (IGHz in this embodiment). The frequency control circuit 23 is operated so that.
第2〜第10の受信チャンネル部(口糸せず)において
も同様な操作によってそれぞれのチャンネル識別符号が
読み取られ、対応するチャンネル同志が正しく接続され
るように制御できる。In the second to tenth receiving channel units (without any gagging), the respective channel identification codes are read by the same operation, and control can be performed so that the corresponding channels are correctly connected.
チャンネル識別回路21における識別は、まずフレーム
周期パルス9を読み出し、次にフレーム周期パルス9の
1つの後のパルスを順次ゲートを用いて読み出し、その
符号列からチャンネル番号を検知するという順序で遂行
している。このような識別動作は、ディジタル通信にお
いて一般的に使われている技術を用いて容易に遂行可能
なので詳細な説明は省略する。またマイクロプロセッサ
20における制御方法の詳細な内容についても従来技術
で実施可能なので説明を省略する。また、この実施例中
に示した合波回路10、光分配512、受信光合波器1
3等はいずれも光フアイバ同志を加熱、融着、伸延して
得たものである。Identification in the channel identification circuit 21 is performed in the order of first reading out the frame periodic pulse 9, then sequentially reading out the pulse after one of the frame periodic pulses 9 using a gate, and detecting the channel number from the code string. ing. Such an identification operation can be easily performed using techniques commonly used in digital communications, so a detailed description thereof will be omitted. Furthermore, since the detailed content of the control method in the microprocessor 20 can be implemented using conventional technology, the explanation will be omitted. In addition, the multiplexing circuit 10, optical distribution 512, and receiving optical multiplexer 1 shown in this embodiment
All of the 3rd prize were obtained by heating, fusing, and drawing optical fibers together.
第3図は本発明の第2の実施例を説明するためのブロッ
ク図である。第2の実施例は各チャンネルの送信信号光
強度を低速の一定周波数の正弦波で微小に変調し、その
微小変調周波数をチャンネルごとに変えることによって
、受信側でチャンネルの識別ができるようにしたことが
特徴である。この実施例は波長1.3um帯において波
長間隔0.6人(約10GHz)で15チヤンネルの波
長多重信号を伝送する装置の例である。変復調方式は位
相偏移変調(PSK)方式で、伝送速度は各チャンネル
とも280Mb/sである。第3図は第1チヤンネルを
中心に示しである。FIG. 3 is a block diagram for explaining a second embodiment of the present invention. In the second embodiment, the transmitted signal light intensity of each channel is minutely modulated by a slow constant frequency sine wave, and by changing the minute modulation frequency for each channel, the receiving side can identify the channel. This is a characteristic. This embodiment is an example of a device that transmits wavelength multiplexed signals of 15 channels with a wavelength interval of 0.6 (approximately 10 GHz) in the 1.3 um wavelength band. The modulation and demodulation method is phase shift keying (PSK), and the transmission rate is 280 Mb/s for each channel. FIG. 3 mainly shows the first channel.
第1の実施例と共通する部分についての説明は省略する
。Description of parts common to the first embodiment will be omitted.
第1チャンネル送信部1は、光出力部2、光変調器30
、駆動回路3、チャンネル識別信号5付加用の正弦波発
振531等から成る。光変調器30はニオブ酸リチウム
から成る導波路形変調器で構成し、光出力部2からの出
力光32を2値位相偏移変調している。The first channel transmitter 1 includes an optical output section 2 and an optical modulator 30.
, a drive circuit 3, a sine wave oscillation 531 for adding a channel identification signal 5, and the like. The optical modulator 30 is constituted by a waveguide type modulator made of lithium niobate, and performs binary phase shift modulation on the output light 32 from the optical output section 2.
発振器31の発振周波数は1.0kHzであり、この信
号を光出力部2中の半導体レーザの印加電流に重畳する
ことによって出力光32をわずかに強度変調している(
変調度約1%)。発振′631の発振周波数はチャンネ
ルごとに200Hzづつ変えてあり、第2.第3チヤン
ネルでそれぞれ1.2kHz、1.4kHz、第15チ
ヤンネルで3.8kHzである。The oscillation frequency of the oscillator 31 is 1.0 kHz, and by superimposing this signal on the current applied to the semiconductor laser in the optical output section 2, the output light 32 is slightly intensity-modulated (
modulation degree of approximately 1%). The oscillation frequency of oscillation '631 is changed by 200Hz for each channel. The third channel has a frequency of 1.2 kHz and 1.4 kHz, respectively, and the fifteenth channel has a frequency of 3.8 kHz.
一方策1チャンネル受信部61においては、チャンネル
識別回路21を用いて中間周波信号16から上述の強度
変調周波数成分を検出することにより、復調信号19の
チャンネル番号を検知している。マイクロプロセッサ2
0による正しいチャンネルの選択操作等は第1の実施例
の場合と同様なので説明は省略する。On the other hand, in the one-channel receiving section 61, the channel number of the demodulated signal 19 is detected by detecting the above-mentioned intensity modulation frequency component from the intermediate frequency signal 16 using the channel identification circuit 21. microprocessor 2
The operation for selecting the correct channel using 0 is the same as in the first embodiment, so the explanation will be omitted.
(変形例)
本発明おいては以上の実施例の他にも多くの変形例が考
えられる。チャンネル識別信号5の挿入方法としてパル
ス列中に挿入する方法、信号光強度・の微小変調周波数
として挿入する方法の例を示したが、その他にも信号光
波長や信号光位相を微小に変化させ、その変化周波数等
にチャンネル識別信号5を挿入することも可能である。(Modifications) In the present invention, many modifications can be made in addition to the above-described embodiments. Examples of methods for inserting the channel identification signal 5 include inserting it into a pulse train and inserting it as a minute modulation frequency of the signal light intensity, but there are other ways to insert the channel identification signal 5, such as by slightly changing the signal light wavelength or the signal light phase. It is also possible to insert the channel identification signal 5 into the changing frequency or the like.
またパルス列中に挿入する方法としてフレーム周期パル
ス9の後に1ビツト入れる例を示したが、入れる場所、
ビット数等は任意に設計して良い。またフレーム周期パ
ルス9自体をチャンネルごとに変えてチャンネル識別信
号と兼用しても良いし、スタッフパルス中等に入れるこ
とも可能である。さらには信号帯域外にパイロット信号
を挿入して、そのパイロット信号中にチャンネル識別符
号を挿入しても良い。In addition, an example of inserting one bit after frame period pulse 9 was shown as a method of inserting it into the pulse train, but where to insert it,
The number of bits etc. may be designed arbitrarily. Further, the frame period pulse 9 itself may be changed for each channel and may be used as a channel identification signal, or may be included in a stuff pulse or the like. Furthermore, a pilot signal may be inserted outside the signal band, and a channel identification code may be inserted into the pilot signal.
なお、各チャンネルすべてにチャンネル識別信号5を挿
入する必要はなく、識別信号を有する基準チャンネルの
信号光の波長から、自らの対応するチャンネルの信号光
波長を割出すこと等も可能である。Note that it is not necessary to insert the channel identification signal 5 into each channel, and it is also possible to determine the signal light wavelength of the corresponding channel from the wavelength of the signal light of the reference channel having the identification signal.
信号の変復調方法の例としてFSK方式、 PSk方式
の例を示したが、その他にも強度変調方式(ASK)、
多値FSK、多値PSK方式等一般に光ヘテロダイン、
光ホモダイン検波方式として知られているすべての方式
に適用が可能である。また本実施例ではチャンネル送信
部と、チャンネル受信部が1=1に対応する例を示した
が、1:n(nは2以上の整数)に対応させることも可
能であるし、またチャンネル受信部が任意、チャンネル
送信部からの信号光を必要に応じて受信することも可能
である。Examples of signal modulation/demodulation methods are FSK and PSk, but there are also intensity modulation (ASK),
Generally, optical heterodyne, multi-value FSK, multi-value PSK method, etc.
It is applicable to all known optical homodyne detection methods. Furthermore, in this embodiment, an example was shown in which the channel transmitting section and the channel receiving section correspond to 1=1, but it is also possible to make them correspond to 1:n (n is an integer of 2 or more), or the channel receiving section corresponds to 1:n. It is also possible to receive signal light from an arbitrary channel transmitter as needed.
(発明の効果)
以上詳しく述べたように、本発明においては各チャンネ
ルの識別が可能であり、送信側と受信側の各チャンネル
が1:1あるいは適切に対応するように各受信チャンネ
ルの局部発振光の波長設定ができる光ヘテロダイン・ホ
モダイン検波波長多重伝送方式を実現できた。(Effects of the Invention) As described in detail above, in the present invention, each channel can be identified, and the local oscillation of each receiving channel can be performed so that each channel on the transmitting side and the receiving side corresponds 1:1 or appropriately. We have achieved an optical heterodyne/homodyne detection wavelength division multiplexing transmission system that allows the wavelength of light to be set.
第1図は本発明の第1の実施例のブロック図、第2図は
第1の実施例におけるチャンネル識別信号の構成例を示
す図、第3図は第2の実施例のブロック図である。ここ
で
1・・・第1チャンネル送信部 2・・・光出力部4・
・・第1チヤンネル送信信号
5・・・チャンネル識別信号
10・・・合波回路 12・・・光分配器1
4・・・局部発振光 15・・・光検出器16
・・・中間周波信号 18・・・復調回路20・
・・マイクロプロセッサ
21、・・チャンネル識別回路 22・・・局部発振光
源23・・・周波数制御回路 40・・・伝送路5
2〜60・・・第2−第10チヤンネル信号光61・・
・第1チヤンネル受信韻
である。FIG. 1 is a block diagram of a first embodiment of the present invention, FIG. 2 is a diagram showing a configuration example of a channel identification signal in the first embodiment, and FIG. 3 is a block diagram of a second embodiment. . Here, 1...first channel transmitting section 2...optical output section 4.
・・First channel transmission signal 5・・Channel identification signal 10・・Multiplex circuit 12・・Optical splitter 1
4... Local oscillation light 15... Photodetector 16
...Intermediate frequency signal 18...Demodulation circuit 20.
... Microprocessor 21 ... Channel identification circuit 22 ... Local oscillation light source 23 ... Frequency control circuit 40 ... Transmission line 5
2 to 60... 2nd to 10th channel signal light 61...
・This is the first channel reception rhyme.
Claims (1)
ンネル送信部からの送信光を波長多重して送信し、一方
受信側において、複数のチャンネル受信部ごとに、波長
を適切に制御した局部発振光源出力光を前記信号光に合
波して光ヘテロダイン・ホモダイン検波を行ない、所望
の前記チャンネル送信部からの信号を取出す光ヘテロダ
イン・ホモダイン検波波長多重伝送方法であって、前記
送信側では、前記各チャンネル送信部ごとにチャンネル
識別信号が主信号に重畳された前記信号光を送信し、一
方前記受信側では、受信信号中のチャンネル識別信号が
所望の前記チャンネル送信部からのチャンネル識別信号
となるように前記各局部発振光源の波長をそれぞれ制御
することによって、所望の前記チャンネル送信部からの
前記信号光を受信することを特徴とする光ヘテロダイン
・ホモダイン検波波長多重伝送方法。On the transmitting side, the transmitted light from multiple channel transmitters with different carrier wavelengths is wavelength-multiplexed and transmitted, while on the receiving side, the output light from a local oscillation light source is outputted from a local oscillation light source with the wavelength appropriately controlled for each of the multiple channel receivers. An optical heterodyne/homodyne detection wavelength division multiplexing transmission method for multiplexing the signal light with the signal light and performing optical heterodyne/homodyne detection to extract a signal from the desired channel transmitting section, the transmitting side comprising: Each unit transmits the signal light in which a channel identification signal is superimposed on the main signal, while the receiving side transmits the signal light so that the channel identification signal in the received signal becomes the channel identification signal from the desired channel transmitting unit. An optical heterodyne/homodyne detection wavelength division multiplexing transmission method, characterized in that the signal light from the desired channel transmitter is received by controlling the wavelength of each local oscillation light source.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60183326A JPS6243231A (en) | 1985-08-20 | 1985-08-20 | Multiplex transmitting method for optical heterodyne/ homodyne detection wavelength |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60183326A JPS6243231A (en) | 1985-08-20 | 1985-08-20 | Multiplex transmitting method for optical heterodyne/ homodyne detection wavelength |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6243231A true JPS6243231A (en) | 1987-02-25 |
Family
ID=16133751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60183326A Pending JPS6243231A (en) | 1985-08-20 | 1985-08-20 | Multiplex transmitting method for optical heterodyne/ homodyne detection wavelength |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6243231A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62272614A (en) * | 1986-05-20 | 1987-11-26 | Fujitsu Ltd | Automatic optical heterodyne receiver for selecting frequency |
JPS6477325A (en) * | 1987-09-18 | 1989-03-23 | Nec Corp | Intermediate frequency pulling-in device |
JPS6482829A (en) * | 1987-09-25 | 1989-03-28 | Canon Kk | Optical communication system |
JPH01147437A (en) * | 1987-12-02 | 1989-06-09 | Nec Corp | Optical heterodyne and homodyne detecting and receiving device |
US4989200A (en) * | 1988-12-22 | 1991-01-29 | Gte Laboratories Incorporated | Coherent subcarrier multiplexed optical communication system |
US5101450A (en) * | 1991-01-23 | 1992-03-31 | Gte Laboratories Incorporated | Quadrature optical phase modulators for lightwave systems |
EP0486874A2 (en) * | 1990-11-21 | 1992-05-27 | Mitsubishi Denki Kabushiki Kaisha | Multiplex digital communication system for transmitting channel identification information |
US5134509A (en) * | 1988-12-22 | 1992-07-28 | Gte Laboratories Incorporated | Coherent subcarrier multiplexed optical communication system |
US5239401A (en) * | 1990-12-31 | 1993-08-24 | Gte Laboratories Incorporated | Optical modulator for cancellation of second-order intermodulation products in lightwave systems |
US5301058A (en) * | 1990-12-31 | 1994-04-05 | Gte Laboratories Incorporated | Single sideband optical modulator for lightwave systems |
US5305134A (en) * | 1989-08-30 | 1994-04-19 | Hitachi, Ltd. | Optical frequency division multiplexing transmitter and optical frequency division multiplexing transmission apparatus |
US5351147A (en) * | 1992-10-27 | 1994-09-27 | Bell Communications Research, Inc. | Pulse frequency division multiplexing |
US5390043A (en) * | 1991-02-12 | 1995-02-14 | Gte Laboratories Incorporated | Compressed channel spacing for optical heterodyne communication systems |
JPH0818541A (en) * | 1994-06-30 | 1996-01-19 | Nec Corp | Optical communication equipment |
JP2015103976A (en) * | 2013-11-26 | 2015-06-04 | 日本電気株式会社 | Optical transmitter, optical receiver, and optical communication method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5465413A (en) * | 1977-10-14 | 1979-05-26 | Gottstein Dietrich | Traffic information broadcasting radio receiver |
JPS5593328A (en) * | 1979-01-09 | 1980-07-15 | Mitsubishi Electric Corp | Reception unit for traffic information |
-
1985
- 1985-08-20 JP JP60183326A patent/JPS6243231A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5465413A (en) * | 1977-10-14 | 1979-05-26 | Gottstein Dietrich | Traffic information broadcasting radio receiver |
JPS5593328A (en) * | 1979-01-09 | 1980-07-15 | Mitsubishi Electric Corp | Reception unit for traffic information |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62272614A (en) * | 1986-05-20 | 1987-11-26 | Fujitsu Ltd | Automatic optical heterodyne receiver for selecting frequency |
JPS6477325A (en) * | 1987-09-18 | 1989-03-23 | Nec Corp | Intermediate frequency pulling-in device |
JPS6482829A (en) * | 1987-09-25 | 1989-03-28 | Canon Kk | Optical communication system |
JPH01147437A (en) * | 1987-12-02 | 1989-06-09 | Nec Corp | Optical heterodyne and homodyne detecting and receiving device |
US4989200A (en) * | 1988-12-22 | 1991-01-29 | Gte Laboratories Incorporated | Coherent subcarrier multiplexed optical communication system |
US5134509A (en) * | 1988-12-22 | 1992-07-28 | Gte Laboratories Incorporated | Coherent subcarrier multiplexed optical communication system |
US5305134A (en) * | 1989-08-30 | 1994-04-19 | Hitachi, Ltd. | Optical frequency division multiplexing transmitter and optical frequency division multiplexing transmission apparatus |
US5400163A (en) * | 1990-11-21 | 1995-03-21 | Mitsubishi Denki Kabushiki Kaisha | Multiplex digital communication system for transmitting channel identification information |
EP0486874A2 (en) * | 1990-11-21 | 1992-05-27 | Mitsubishi Denki Kabushiki Kaisha | Multiplex digital communication system for transmitting channel identification information |
US5239401A (en) * | 1990-12-31 | 1993-08-24 | Gte Laboratories Incorporated | Optical modulator for cancellation of second-order intermodulation products in lightwave systems |
US5301058A (en) * | 1990-12-31 | 1994-04-05 | Gte Laboratories Incorporated | Single sideband optical modulator for lightwave systems |
US5101450A (en) * | 1991-01-23 | 1992-03-31 | Gte Laboratories Incorporated | Quadrature optical phase modulators for lightwave systems |
US5390043A (en) * | 1991-02-12 | 1995-02-14 | Gte Laboratories Incorporated | Compressed channel spacing for optical heterodyne communication systems |
US5351147A (en) * | 1992-10-27 | 1994-09-27 | Bell Communications Research, Inc. | Pulse frequency division multiplexing |
JPH0818541A (en) * | 1994-06-30 | 1996-01-19 | Nec Corp | Optical communication equipment |
JP2015103976A (en) * | 2013-11-26 | 2015-06-04 | 日本電気株式会社 | Optical transmitter, optical receiver, and optical communication method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6243231A (en) | Multiplex transmitting method for optical heterodyne/ homodyne detection wavelength | |
JP4545257B2 (en) | Auxiliary data transmission apparatus and auxiliary data transmission method in wavelength division multiplexing system | |
JPH1168704A (en) | Optical power measurement system and terminal station and repeater for the system | |
US4791407A (en) | Alternate mark/space inversion line code | |
AU709302B2 (en) | Optical telecommunication method providing a transmitting and receiving service channel | |
RU2636391C1 (en) | System and method for tone modulation of pilot signal by means of data offset | |
US4843382A (en) | Method for monitoring a digital transmission line | |
US5440415A (en) | Optical successive modulation-muliplexing for fiber optical network | |
US6556325B1 (en) | Optical repeater monitoring system and a method thereof | |
US7248802B2 (en) | Distribution of a synchronization signal in an optical communication system | |
US6178022B1 (en) | Optical transmitter and optical receiver for optical time division multiplexing transmission | |
JP3720537B2 (en) | Method for transmitting an auxiliary channel in an optical transmission system | |
JP2890031B2 (en) | Millimeter-wave signal optical multiplex transmission system and device | |
JP2000201106A (en) | Optical transmission system | |
EP1026840B1 (en) | Polarisation modulation for optical transmission | |
JP3740537B2 (en) | Clock synchronization signal transmission system, data transmission system, and methods thereof | |
JPS5932932B2 (en) | Optical communication method | |
KR20020053546A (en) | WDM Optical transponder with overhead for OAM and FEC functions | |
WO1998028847A1 (en) | A method and a circuit for the transfer of data information | |
JPH104386A (en) | Optical homodyne detection communication system and equipment, and system and equipment for optical code division multiplex transmission using same | |
EP1004178B1 (en) | A teletransmission network, network elements therefor and a method of identifying the synchronization of a network element | |
JPS6210940A (en) | Light repeater monitoring system | |
JPS61255137A (en) | Multiplex communication system in optical waveform | |
JPS62502162A (en) | Line transmission method and device | |
JPS6248140A (en) | Optical communication method by frequency shift keying |