JPS624319A - Adjustment of image forming optical system - Google Patents

Adjustment of image forming optical system

Info

Publication number
JPS624319A
JPS624319A JP60143775A JP14377585A JPS624319A JP S624319 A JPS624319 A JP S624319A JP 60143775 A JP60143775 A JP 60143775A JP 14377585 A JP14377585 A JP 14377585A JP S624319 A JPS624319 A JP S624319A
Authority
JP
Japan
Prior art keywords
aperture
mask
aperture mask
parallelism
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60143775A
Other languages
Japanese (ja)
Inventor
Toshiya Muraguchi
要也 村口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60143775A priority Critical patent/JPS624319A/en
Publication of JPS624319A publication Critical patent/JPS624319A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate adjusting parallelism of a forming beam by a method wherein fine heavy metal particles are scanned by the forming beam with a small width and the parallelism of the two facing sides of the forming beam is detected from a reflected electronic signal profile from the heavy metal particles. CONSTITUTION:The image of the aperture 13a of the first aperture mask 13 is projected and formed on the second aperture mask 15 by a projecting lens 14. Then, the shape of a beam passes through the aperture 15a of the mask 15 becomes a rectangular with dimensions (a)X(b) and its image is formed on the surface 18 of a specimen. If, at that time, the position of the beam image formation of the second aperture mask 15 is varied by a forming deflector 21 to reduce the dimension (b) gradually, the beam dimension at the specimen 18 becomes a resolution of the linear beam. Therefore, the beam density distribution is reduced in accordance with the access of the two sides to each other. If there is no parallelism between the two sides, the magnitudes of (b) at both ends of the beam are different from each other. Therefore, by detecting this beam density, the parallelism of the beam can be determined.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、荷電ビーム露光装置等に用いられる結像光学
系の物面、像面の物体の光軸周りの相対的な高精度角度
調整を行う結像光学系調整方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention provides high-precision relative angular adjustment around the optical axis of an object surface or image surface of an imaging optical system used in a charged beam exposure device or the like. The present invention relates to a method for adjusting an imaging optical system.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、半導体ウェハやマスク基板等の試料上に所望パタ
ーンを形成するものとして、各種の電子ビーム露光装置
が用いられている。さらに、露光スルーブツトを上げる
ため、矩形ビームの寸法を可変できる可変成形ビーム方
式の電子ビーム露光装置も研究開発されている。可変寸
法ビーム方式の電子ビーム露光装置は、矩形アパーチャ
を有する第1のアパーチャマスクに電子ビームを照射し
、このマスクのアパーチャを通過したビームを矩形アパ
ーチャを有する第2のアパーチャマスクに結像すると共
に、各アパーチャマスク間でビームを偏向することによ
りアパーチャの光学的重なりを変えてビーム寸法を可変
するものである。
In recent years, various electron beam exposure apparatuses have been used to form desired patterns on samples such as semiconductor wafers and mask substrates. Furthermore, in order to increase the exposure throughput, research and development is also being conducted on a variable shaped beam type electron beam exposure apparatus in which the dimensions of the rectangular beam can be varied. A variable dimension beam type electron beam exposure apparatus irradiates an electron beam onto a first aperture mask having a rectangular aperture, and images the beam passing through the aperture of this mask onto a second aperture mask having a rectangular aperture. , the beam size is varied by changing the optical overlap of the apertures by deflecting the beam between each aperture mask.

ところで、試料上に形成するパターンには0.5[μm
]程度の寸法が要求され、ビーム形状は試料の露光処理
時間の短縮化とビーム密度の均一性の制限及びビーム空
間電荷効果によるボケの低減等から、一般に10Eμm
]程度まで可能テアル。従ッテ、0.5 [μm’] 
xl 0 [μm]の長方形の成形ビー、ムを形成する
ことが必要である。この形状の寸法精度はビームの寸法
測定により行えるが、第2図に示す如く対向する2辺の
平行性を決めるアパーチャの方位の高精度な測定方法が
なく実際にアパーチャマスクのアパーチャの重なった像
を結像露光し、その形状を測定することにより行ってい
た。
By the way, the pattern formed on the sample has a thickness of 0.5 μm.
], and the beam shape is generally 10Eμm in order to shorten sample exposure processing time, limit uniformity of beam density, and reduce blur due to beam space charge effect.
] Possible to a degree. 0.5 [μm']
It is necessary to form a rectangular shaped beam of xl 0 [μm]. The dimensional accuracy of this shape can be determined by measuring the dimensions of the beam, but as shown in Figure 2, there is no highly accurate method for measuring the orientation of the aperture, which determines the parallelism of the two opposing sides, and in reality the images of the apertures of the aperture mask overlap. This was done by exposing the image to light and measuring its shape.

しかしながら、ビーム寸法0.5[μTrL]の設定精
度を1/20とすると、アパーチャの方位精度は0.5
[μ71A] X1/20X1/10−2、5 [mr
ad ]であり、試料の露光形状の測定と装置操作に多
大な時間を要し、装置実用上の重要な問題となっていた
。また、このような確度をアパーチャマスクの組込みで
達成するのは困罷であり、従ってアパーチャマスクを組
立てた後、試験的に露光した試料を観察して成形ビーム
の回転量を知る以外になかった。そして、観察手段とし
てはSEM(走査型電子顕微鏡)以外になく、多大の測
定時間を要し、アパーチャマスクの回転調整にも熟練を
要した。
However, if the setting accuracy of the beam size 0.5 [μTrL] is 1/20, the aperture orientation accuracy is 0.5
[μ71A] X1/20X1/10-2, 5 [mr
ad], and it takes a lot of time to measure the exposed shape of the sample and operate the device, which is an important problem in practical use of the device. Furthermore, it is difficult to achieve this level of accuracy by incorporating an aperture mask, so the only way to find out the amount of rotation of the shaped beam was to assemble the aperture mask and then observe a sample that was experimentally exposed. . The only observation means available is an SEM (scanning electron microscope), which requires a large amount of measurement time and also requires skill in adjusting the rotation of the aperture mask.

なお、上記の問題は、電子ビーム露光装置に限らず、イ
オンビーム露光装置についても同様に言えることである
。また、荷電ビーム露光装置に限らず光を用いた露光装
置、さらに露光装置に限らず成形ビームを用いる各種の
装置についても同様な問題があった。
Note that the above problem is not limited to electron beam exposure apparatuses, but also applies to ion beam exposure apparatuses. Furthermore, similar problems occur not only in charged beam exposure devices but also in exposure devices that use light, and not only exposure devices but also various devices that use shaped beams.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情を考慮してなされたもので、その目的
とするところは、2組のアパーチャマスクのアパーチャ
平行度調整を容易且つ単時間に行うことができ、露光装
置の稼働率向上等に寄与し得る結像光学系調整方法を提
供することにある。
The present invention has been made in consideration of the above circumstances, and its purpose is to be able to easily and quickly adjust the aperture parallelism of two sets of aperture masks, and to improve the operating rate of exposure equipment. It is an object of the present invention to provide an imaging optical system adjustment method that can contribute to the present invention.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、成形ビームの対向する2辺を近付けた
ときの該2辺の各端部におけるビーム強度を検出して、
2辺の平行度を測定することにある。
The gist of the present invention is to detect the beam intensity at each end of the two opposing sides of the shaped beam when they are brought close together,
Its purpose is to measure the parallelism of two sides.

即ち本発明は、ビーム放出源から放出されたビームを第
1のアパーチャマスクに照射し、該アパーチャマスクの
アパーチャを通過したビームを第1のレンズにより第2
のアパーチャマスク上に結像或いは直接照射し、第2の
アパーチャマスクのアパーチャを通過して成形されたビ
ームを試料面上に結像する結像光学系において、前記試
料面上でのビームにおける平行な関係になるべき第1及
び第2のアパーチャマスクの各アパーチャエツジに相当
する2辺とが1、結像系の分解能程度或いはそれ以下離
れた位置で結像されるよう第2のアパーチャマスク上で
の第1の7パーチヤマスクのアパーチャ像を移動させ、
上記2辺の近接する端部同志の各結像点におけるビーム
強度が略同一となるよう、前記第1或いは第2のアパー
チャマスクを回転させるようにした方法である。
That is, in the present invention, a beam emitted from a beam emission source is irradiated onto a first aperture mask, and the beam that has passed through the aperture of the aperture mask is irradiated by a first lens into a second aperture mask.
In an imaging optical system that images or directly irradiates a beam onto a second aperture mask and passes through an aperture of a second aperture mask to form an image on a sample surface, the beam is parallel to the sample surface. on the second aperture mask so that the two sides corresponding to each aperture edge of the first and second aperture masks, which should have a similar relationship, are imaged at a position separated by one degree or less from the resolution of the imaging system. Move the aperture image of the first 7 percha mask in
In this method, the first or second aperture mask is rotated so that the beam intensity at each imaging point of the adjacent end portions of the two sides is approximately the same.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、試料を試験的に一旦露光する必要もな
く、ざらに高価なSEMを用いる必要もなく、成形ビー
ムp平行度調整を簡易に行うことができる。そして、熟
練者が従来略1日を昼していた成形ビームの回転調整を
、非熟練者であっても約10分程度で容易に行えるよう
になる。このため、荷電ビーム露光装置等の稼働率の大
幅な向上をはかり得る。
According to the present invention, it is not necessary to once testly expose a sample, and there is no need to use a very expensive SEM, and the parallelism of the shaped beam p can be easily adjusted. In addition, even an unskilled person can easily adjust the rotation of the forming beam in about 10 minutes, which conventionally took a skilled person almost a day. Therefore, it is possible to significantly improve the operating rate of the charged beam exposure apparatus and the like.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細を図示の実施例によって説明する。 Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図は本発明の一実施例方法に使用した電子ビーム露
光装置を示す概略構成図である。電子銃(荷電ビーム源
)11から放出された電子ビームは、集束レンズ12に
より第1のアパーチャマスク13に均一に照射される。
FIG. 1 is a schematic diagram showing the structure of an electron beam exposure apparatus used in a method according to an embodiment of the present invention. An electron beam emitted from an electron gun (charged beam source) 11 is uniformly irradiated onto a first aperture mask 13 by a focusing lens 12 .

アパーチャマスク13のアパーチャ13aを通過したビ
ームは、投影レンズ14により第2のアパーチャマスク
15上に結像される。アパーチャマスク15のアパーチ
ャ15aを通過して成形されたビームは、縮小レンズ1
6及び対物レンズ17により試料面18上に結像される
The beam that has passed through the aperture 13a of the aperture mask 13 is imaged onto the second aperture mask 15 by the projection lens 14. The beam that is shaped after passing through the aperture 15a of the aperture mask 15 is transmitted through the reduction lens 1
6 and an objective lens 17 onto a sample surface 18 .

レンズ16.17間には、走査用偏向器19が配置され
、この偏向器19により試料面18上でのビーム位置が
変えられる。アパーチャマスク13とレンズ14との間
には、ブランキング偏向器2o及び成形偏向器21が配
置されている。そして、ブランキング偏向器20により
、ビーム照射のタイミングが制御される。さらに、成形
偏向器21によりアパーチャマスク15上に結像される
ビーム位置を変えることによって、成形ビームの寸法が
可変される。
A scanning deflector 19 is arranged between the lenses 16 and 17, and the beam position on the sample surface 18 is changed by this deflector 19. A blanking deflector 2o and a shaping deflector 21 are arranged between the aperture mask 13 and the lens 14. Then, the timing of beam irradiation is controlled by the blanking deflector 20. Furthermore, by changing the position of the beam imaged onto the aperture mask 15 by the shaping deflector 21, the dimensions of the shaped beam can be varied.

偏向器19.20.21には、計算機(CPU)30か
らインターフェース32を介して所定の偏向信号が供給
される。つまり、メモリ31のパターンデータに従って
CPU30によりそれぞれの偏向電圧が制御され、各偏
向器19.20.21にそれぞれ所定の偏向電圧が印加
されるものとなっている。
A predetermined deflection signal is supplied to the deflectors 19, 20, and 21 from a computer (CPU) 30 via an interface 32. That is, each deflection voltage is controlled by the CPU 30 according to the pattern data in the memory 31, and a predetermined deflection voltage is applied to each deflector 19, 20, 21, respectively.

一方、試料面18の上方には、反射電子を検出する反射
電子検出器41が配置されている。この検出器41の検
出信号は、増幅器42を介してモニタ43に供給される
と共に、A/D変換器44を介してCPU30に供給さ
れる。モニタ43では、反射電子信号のプロファイルが
表示される。
On the other hand, above the sample surface 18, a backscattered electron detector 41 for detecting backscattered electrons is arranged. The detection signal of this detector 41 is supplied to a monitor 43 via an amplifier 42 and also to the CPU 30 via an A/D converter 44. The monitor 43 displays the profile of the reflected electron signal.

また、前記各アパーチャマスク13.15は、回転モー
タや圧電素子等からなる駆動機構45゜46により回転
可能な構造となっている。そして、モニタ43の表示情
報に応じてCPU30にビームの傾き情報を与えること
により、或いは上記CPU30により反射電子信号に基
きビームの傾きが求められ、この傾きに応じてアパーチ
ャマスク13.15が回転制御されるものとなっている
Further, each of the aperture masks 13, 15 has a structure in which it can be rotated by a drive mechanism 45.degree. 46 consisting of a rotary motor, a piezoelectric element, or the like. Then, by providing beam inclination information to the CPU 30 according to the display information on the monitor 43, or by the CPU 30, the beam inclination is determined based on the backscattered electron signal, and the aperture mask 13.15 is controlled to rotate according to this inclination. It has become something that will be done.

次に、上記装置を用いた成形ビームの平行度調整方法に
ついて説明する。
Next, a method for adjusting the parallelism of a shaped beam using the above device will be explained.

第1のアパーチャマスク13のアパーチャ13aを投影
レンズ14により第2のアパーチャマスク15上に投影
結像すると、このマスク15の7バーヂヤ15aを通過
したビーム形状は第2図に示す如<aXbなる寸法の長
方形となる。この成形ビームは、倍率1/Mの縮小レン
ズ系(16゜17)により試料面18上に結像される。
When the aperture 13a of the first aperture mask 13 is projected and imaged onto the second aperture mask 15 by the projection lens 14, the shape of the beam that has passed through the seven barges 15a of this mask 15 has dimensions <aXb as shown in FIG. It becomes a rectangle. This shaped beam is imaged onto the sample surface 18 by a reduction lens system (16° 17) with a magnification of 1/M.

試料面18でのビーム形状は(a/M)x (b/M)
の長方形となる。このとき、成形偏向器21により第2
のアパーチャマスク15上でのビーム結像位置を変え、
寸法すを小さくしていくと、第3図に示す如く試料面1
8でのビーム寸法Bは微小領域ではb/Mより大きい数
値となり、ざらにb/M#0ではBは線ビームの分解能
BOとなる。これは、対向する2辺の試料面でのボケが
2辺が近付くに従い重なって遂には同一になるためであ
る。
The beam shape at the sample surface 18 is (a/M) x (b/M)
It becomes a rectangle. At this time, the shaping deflector 21 causes the second
changing the beam imaging position on the aperture mask 15,
As the dimensions are made smaller, the sample surface 1 becomes smaller as shown in Figure 3.
The beam size B at 8 is a value larger than b/M in a minute area, and roughly at b/M#0, B becomes the line beam resolution BO. This is because the blurring on the sample surface of the two opposing sides overlaps as the two sides get closer and eventually become the same.

従って、ビーム密度分布は該2辺を近付けるに伴い第4
図に示す如く減少していく。
Therefore, as the two sides are brought closer, the beam density distribution becomes
It decreases as shown in the figure.

ここで、第5図(a)に示す如く該2辺に平行性がない
と、ビームの両端部でbの大きざが異なることになり、
同図(b)に示す如く試料面18でのビーム密度に差が
できる。従って、このビーム密度(ビーム強度のプロフ
ァイル)を検出することによって、ビームの平行度が判
ることになる。
Here, if the two sides are not parallel as shown in FIG. 5(a), the size of b will be different at both ends of the beam,
As shown in FIG. 2(b), there is a difference in beam density at the sample surface 18. Therefore, by detecting this beam density (beam intensity profile), the parallelism of the beam can be determined.

そこで、前記成形偏向器21によりビーム寸法を所定の
大きさく平行な関係になるべき2辺が結像系の分解能或
いはそれ以下離れた位置で結像される程度)に制御し、
第6図に示す如く成形ビーム51が微小な金等の重金属
粒子52上を通るように、前記走査偏向器19により成
形ビーム51を走査する。ここで、重金属粒子52は試
料面18、例えばシリコン(或いはカーボン)面よりも
大きい反射電子係数を有するものであるから、成形ビー
ム51がこの重金属粒子52を上を通るときに反射電子
強度が大きくなる。そして、成形ビーム51で走査した
ときに得られる反射電子プロファイル(モニタ43に表
示される)は、第7図に示す如くなる。即ち、成形ビー
ム51の平行度がずれているときは第7図(a)(C)
に示す如(傾いたビームプロファイルとなり、傾きがな
いときは同図(b)に示す如く均一なものとなる。
Therefore, the beam size is controlled by the shaping deflector 21 to such an extent that the two sides that should be in a predetermined size and in a parallel relationship are imaged at a position that is at or below the resolution of the imaging system,
As shown in FIG. 6, the shaped beam 51 is scanned by the scanning deflector 19 so that the shaped beam 51 passes over fine heavy metal particles 52 such as gold. Here, since the heavy metal particles 52 have a larger reflected electron coefficient than the sample surface 18, for example, the silicon (or carbon) surface, when the shaped beam 51 passes over the heavy metal particles 52, the reflected electron intensity is large. Become. The reflected electron profile (displayed on the monitor 43) obtained when scanning with the shaped beam 51 is as shown in FIG. That is, when the parallelism of the shaped beam 51 is deviated, FIGS. 7(a) and (C)
As shown in (b) of the same figure, the beam profile is tilted; when there is no tilt, the beam profile is uniform as shown in FIG.

従って、このプロファイルを観察しながらアパーチャマ
スク13.15を回転させることにより、・2片の平行
度を合わせることができる。なお、アパーチャマスク1
3.15を回転させるには、前記駆動機構45.46或
いは外部からの手動の回転導入機により行えばよい。
Therefore, by rotating the aperture mask 13, 15 while observing this profile, the parallelism of the two pieces can be adjusted. In addition, aperture mask 1
3.15 can be rotated by the drive mechanism 45, 46 or a manual rotation introducing device from the outside.

かくして本実施例方法によれば、ビーム幅を十分小さく
した成形ビームで微小な重金属粒子を走査することによ
り、その反射電子信号プロファイルから成形ビームの対
向する2辺の平行度を容易に検出することができ、この
傾きによりアパーチャマスク13.15を回転させるこ
とにより成形ビームの平行度のずれをなくすことができ
る。従って、従来のように試料を試験的に露光する必要
もなく、さらにSEMII察する必要もな(、成形ビー
ムの平行度調整を極めて容易に、且つ単時間に行うこと
ができる。従って、電子ビーム露光装置の稼働率の大幅
な向上をはかり得、半導体製造技術における有用性は絶
大である。
Thus, according to the method of this embodiment, by scanning minute heavy metal particles with a shaped beam whose beam width is sufficiently small, the parallelism of two opposing sides of the shaped beam can be easily detected from the reflected electron signal profile. By rotating the aperture mask 13, 15 using this inclination, it is possible to eliminate deviations in the parallelism of the shaped beam. Therefore, unlike the conventional method, there is no need to test the sample to light, and there is no need to perform SEMII detection. It is possible to significantly improve the operating rate of equipment, and its usefulness in semiconductor manufacturing technology is enormous.

なお、本発明は上述した実施例方法に限定されるもので
はなはい。例えば、前記アパーチャマスクを回転させる
代りに、2組のアパーチャマスク間のレンズの強度を変
えて成形ビームを回転させてもよい。また、反射電子信
号強度プロファイルをデジタル信号に変換して計算機で
プロファイルの傾きを求め、この傾き農に暴きアパーチ
ャマスクをモータ等で回転させることにより、成形ビー
ムの平行度調整の自動化を行うことも可能である。
Note that the present invention is not limited to the method of the embodiment described above. For example, instead of rotating the aperture masks, the strength of the lenses between the two sets of aperture masks may be varied to rotate the shaped beam. It is also possible to automate the parallelism adjustment of the shaped beam by converting the backscattered electron signal intensity profile into a digital signal, calculating the slope of the profile using a computer, and then rotating the aperture mask using a motor, etc. It is possible.

さらに、成形ビームの平行度のずれを検出する手段とし
ては、反射電子の代りに試料面からの2次電子を検出す
るようにしてもよい。また、電子ビーム露光装置に限ら
ず、成形ビームを用いるものであれば、イオンビーム露
光装置に適用することも可能である。さらに、露光装置
に限らず、成形ビームを用いる各種の装置に適用するこ
とも可能である。その他、本発明の要旨を逸脱しない範
囲で、種々変形して実施することができる。
Furthermore, as a means for detecting the deviation in parallelism of the shaped beam, secondary electrons from the sample surface may be detected instead of reflected electrons. Furthermore, the present invention is not limited to electron beam exposure apparatuses, but can also be applied to ion beam exposure apparatuses that use shaped beams. Furthermore, the invention is not limited to exposure apparatuses, but can also be applied to various apparatuses that use shaped beams. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例方法に使用した電子ビーム露
光装置を示すI!略構成図、第2図は第1アパーチヤ像
と第2アパーチヤとの重なりによる成形ビームの形状を
示す模式図、第3図は設定ビーム寸法に対する試料面で
のビーム寸法の変化を示す特性図、第4図はビーム寸法
に対するビーム密度の変化を示す特性図、第5図はビー
ム形状及びビーム密度を示す模式図、第6図は成形ビー
ムの走査方向と重金属粒子との関係を示す模式図、第7
図はビーム形状と反射電子信号プロファイルとの関係を
示す模式図である。 11・・・電子銃(荷電ビーム源)、12・・・集束レ
ンズ、13・・・第1のアパーチャマスク、13a。 15a・・・アパーチャ、14・・・投影レンズ、15
・・・第2のアパーチャマスク、16・・・縮小レンズ
、17・・・対物レンズ、18・・・試料面、19・・
・走査偏向器、20・・・ブランキング偏向器、20・
・・成形偏向器、30・・・CPU、31・・・メモリ
、32・・・インターフェース、41°・・・反射電子
検出器、43・・・モ二り、45.46・・・駆動機構
、51・・・成形ビーム、52・・・重金属粒子。 出願人代理人 弁理士 鈴江武彦 −え− 第2y1
FIG. 1 shows an electron beam exposure apparatus used in a method according to an embodiment of the present invention. A schematic configuration diagram, FIG. 2 is a schematic diagram showing the shape of the shaped beam due to the overlap of the first aperture image and the second aperture, and FIG. 3 is a characteristic diagram showing the change in beam dimension on the sample surface with respect to the set beam dimension. FIG. 4 is a characteristic diagram showing changes in beam density with respect to beam dimensions, FIG. 5 is a schematic diagram showing beam shape and beam density, and FIG. 6 is a schematic diagram showing the relationship between the scanning direction of the shaped beam and heavy metal particles. 7th
The figure is a schematic diagram showing the relationship between the beam shape and the backscattered electron signal profile. 11... Electron gun (charged beam source), 12... Focusing lens, 13... First aperture mask, 13a. 15a...Aperture, 14...Projection lens, 15
...Second aperture mask, 16...Reducing lens, 17...Objective lens, 18...Sample surface, 19...
・Scanning deflector, 20...Blanking deflector, 20・
... Molding deflector, 30... CPU, 31... Memory, 32... Interface, 41°... Backscattered electron detector, 43... Monitor, 45.46... Drive mechanism , 51... Shaped beam, 52... Heavy metal particles. Applicant's agent Patent attorney Takehiko Suzue 2y1

Claims (3)

【特許請求の範囲】[Claims] (1)ビーム放出源から放出されたビームを第1のアパ
ーチャマスクに照射し、該アパーチャマスクのアパーチ
ャを通過したビームを第1のレンズにより第2のアパー
チャマスク上に結像或いは直接照射し、第2のアパーチ
ャマスクのアパーチャを通過して成形されたビームを試
料面上に結像する結像光学系において、前記試料面上で
のビームにおける平行な関係になるべき第1及び第2の
アパーチャマスクの各アパーチャエッジに相当する2辺
とが、結像系の分解能程度或いはそれ以下離れた位置で
結像されるよう第2のアパーチャマスク上での第1のア
パーチャマスクのアパーチャ像を移動させ、上記2辺の
近接する端部同志の各結像点におけるビーム強度が略同
一となるよう、前記第1或いは第2のアパーチャマスク
を回転させることを特徴とする結像光学系調整方法。
(1) A first aperture mask is irradiated with a beam emitted from a beam emission source, and the beam that has passed through the aperture of the aperture mask is imaged or directly irradiated onto a second aperture mask by a first lens; In an imaging optical system that images a beam shaped by passing through an aperture of a second aperture mask onto a sample surface, first and second apertures are arranged in a parallel relationship in the beam on the sample surface. moving the aperture image of the first aperture mask on the second aperture mask so that two sides corresponding to each aperture edge of the mask are imaged at positions separated by or less than the resolution of the imaging system; . A method for adjusting an imaging optical system, comprising rotating the first or second aperture mask so that the beam intensities at each imaging point on adjacent ends of the two sides are approximately the same.
(2)前記ビーム放出源は、電子ビーム或いはイオンビ
ームを放出する荷電ビーム放出源であることを特徴とす
る特許請求の範囲第1項記載の結像光学系調整方法。
(2) The method for adjusting an imaging optical system according to claim 1, wherein the beam emission source is a charged beam emission source that emits an electron beam or an ion beam.
(3)前記第1及び第2のアパーチャマスクの各アパー
チャ形状は矩形であることを特徴とする特許請求の範囲
第1項記載の結像光学系調整方法。
(3) The imaging optical system adjustment method according to claim 1, wherein each aperture shape of the first and second aperture masks is rectangular.
JP60143775A 1985-06-29 1985-06-29 Adjustment of image forming optical system Pending JPS624319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60143775A JPS624319A (en) 1985-06-29 1985-06-29 Adjustment of image forming optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60143775A JPS624319A (en) 1985-06-29 1985-06-29 Adjustment of image forming optical system

Publications (1)

Publication Number Publication Date
JPS624319A true JPS624319A (en) 1987-01-10

Family

ID=15346725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60143775A Pending JPS624319A (en) 1985-06-29 1985-06-29 Adjustment of image forming optical system

Country Status (1)

Country Link
JP (1) JPS624319A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007054087A (en) * 2005-08-22 2007-03-08 Uni Charm Corp Individual packaging body for sanitary tampon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007054087A (en) * 2005-08-22 2007-03-08 Uni Charm Corp Individual packaging body for sanitary tampon

Similar Documents

Publication Publication Date Title
US7340111B2 (en) Image evaluation method and microscope
US7595482B2 (en) Standard component for length measurement, method for producing the same, and electron beam metrology system using the same
US7923701B2 (en) Charged particle beam equipment
US6218671B1 (en) On-line dynamic corrections adjustment method
JP7080264B2 (en) Equipment and methods for locating elements on a photolithography mask
TWI711818B (en) Charged particle beam inspection method
US5155359A (en) Atomic scale calibration system
KR100399621B1 (en) Test method of mask for electron-beam exposure and method of electron-beam exposure
JPH09320931A (en) Method for measuring imaging characteristic and transfer device by the method
US5900937A (en) Optical interferometer using beam energy modulation to measure surface topology
JP5663591B2 (en) Scanning electron microscope
US5712488A (en) Electron beam performance measurement system and method thereof
US5936252A (en) Charged particle beam performance measurement system and method thereof
US6207962B1 (en) Charged-particle-beam microlithography apparatus and methods exhibiting reduced thermal deformation of mark-defining member
JPS624319A (en) Adjustment of image forming optical system
WO2017208560A1 (en) Electron microscope for magnetic field measurement and magnetic field measurement method
JP3282324B2 (en) Charged particle beam exposure method
JP3041055B2 (en) Charged beam drawing equipment
JPS624318A (en) Adjustment of forming beam rotation in charged beam exposure apparatus
US20230298848A1 (en) Charged particle beam pattern forming device and charged particle beam apparatus
JP3369835B2 (en) Shape evaluation method of shaping aperture in charged beam writing apparatus and rotation adjustment method of shaping aperture
JP3714280B2 (en) Electron beam tilt measurement method and tilt calibration method in an electron beam proximity exposure apparatus and electron beam proximity exposure apparatus
JP2007087639A (en) Electron beam device and pattern evaluation method
JP2001021334A (en) Sample inspection device
JP3002246B2 (en) Charged beam correction method