JPS6243161B2 - - Google Patents

Info

Publication number
JPS6243161B2
JPS6243161B2 JP56001410A JP141081A JPS6243161B2 JP S6243161 B2 JPS6243161 B2 JP S6243161B2 JP 56001410 A JP56001410 A JP 56001410A JP 141081 A JP141081 A JP 141081A JP S6243161 B2 JPS6243161 B2 JP S6243161B2
Authority
JP
Japan
Prior art keywords
wavelength
light
optical
optical fiber
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56001410A
Other languages
Japanese (ja)
Other versions
JPS57115042A (en
Inventor
Masahiro Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56001410A priority Critical patent/JPS57115042A/en
Publication of JPS57115042A publication Critical patent/JPS57115042A/en
Publication of JPS6243161B2 publication Critical patent/JPS6243161B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2537Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to scattering processes, e.g. Raman or Brillouin scattering

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Optical Communication System (AREA)

Description

【発明の詳細な説明】 この発明は光フアイバ伝送方式において大きい
光信号を小さい伝送歪で伝送する光伝送方式に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical fiber transmission system for transmitting large optical signals with small transmission distortion.

長距離、高帯域光伝送方式においては伝送路の
帯域制限の点から単一モード光フアイバが伝送路
として使用される。今、伝送容量1Gb/s以上の
伝送方式を考えるとすると、光源としては半導体
レーザを用いた直接変調方式のPCM−IM(光強
度変調)方式が考えられる。一方、単一モード光
フアイバの伝送帯域はほゞ使用される光源の発振
波長拡がりΔλによつて決定される。すなわち波
長拡がりに起因するシリカ系単一モード光フアイ
バの構造分散と材料分散とで決まる波長分散は波
長1.5μm帯で約10ps/Km・nmである。今、半
導体レーザの発振波長拡がりΔλを3nmとする
と波長拡がりによる群遅延時間差Δτは約
30ps/Kmとなり、最大許容伝送速度fnをfn
1/2Δτと定義すると、fnは約16Gb/s・Km
となる。従つて1Gb/sの信号伝送に関しては伝
送帯域の面のみから考えると16Km伝送可能とな
る。
In long-distance, high-bandwidth optical transmission systems, single-mode optical fibers are used as transmission lines to limit the bandwidth of the transmission line. Now, when considering a transmission system with a transmission capacity of 1 Gb/s or more, a direct modulation type PCM-IM (light intensity modulation) system using a semiconductor laser as a light source can be considered. On the other hand, the transmission band of a single mode optical fiber is determined approximately by the oscillation wavelength spread Δλ of the light source used. That is, the wavelength dispersion determined by the structural dispersion and material dispersion of the silica-based single mode optical fiber caused by wavelength broadening is about 10 ps/Km·nm in the wavelength band of 1.5 μm. Now, if the oscillation wavelength spread Δλ of the semiconductor laser is 3 nm, the group delay time difference Δτ due to the wavelength spread is approximately
30 ps/Km, and the maximum allowable transmission speed f n is f n =
Defining 1/2Δτ, f n is approximately 16 Gb/s・Km
becomes. Therefore, in terms of 1 Gb/s signal transmission, it is possible to transmit a signal over 16 km, considering only the transmission band.

ところが半導体レーザの出力及び単一モード光
フアイバへの結合等を考慮すると現時点では1〜
5mWの入力しか得られず、伝送路の損失等も考
慮すると高々1〜5Kmの中継スパンしか得られな
い。そこで光源から光フアイバへの入力パワを増
加させる事が考えられるが次のような理由で問題
がある。すなわち、何らかの光源で石英系単一モ
ード光フアイバに大きい光入力を与えると誘導ラ
マン散乱現象によつて入力光の発振波長とは異な
る光(ストークス光、アンチストークス光)が発
生し、そのため波長分散によつて伝送帯域が狭め
られる結果となる。第1図は長さ4Kmの石英系単
一モード光フアイバに波長1.06μm、出力20W、
パルス幅100nsecの光を入射させた場合の出力光
における波長に対する強度を表わしている。この
図からわかるように1.06μm以外の波長の光が伝
搬している。今簡単のため波長が1.06μmの光以
外に600Å長波長の第1ストークス光のみが発生
して伝搬する場合の最大許容伝送速度fnを求め
ると、1.06μm帯での波長分散値を30ps/Km・n
mとするとfn=278Mb/sKmとなり、1Gb/s
の信号は1Kmすら伝送不可能となる。
However, considering the output of the semiconductor laser and the coupling to a single mode optical fiber, the current
Only an input of 5 mW can be obtained, and if transmission path losses are taken into consideration, a relay span of 1 to 5 km can be obtained at most. Therefore, increasing the input power from the light source to the optical fiber may be considered, but this poses a problem for the following reasons. In other words, when a large optical input is applied to a silica-based single mode optical fiber using some kind of light source, light (Stokes light, anti-Stokes light) different from the oscillation wavelength of the input light is generated due to the stimulated Raman scattering phenomenon, resulting in chromatic dispersion. This results in a narrowing of the transmission band. Figure 1 shows a 4 km long silica single mode optical fiber with a wavelength of 1.06 μm and an output of 20 W.
It represents the intensity versus wavelength of output light when light with a pulse width of 100 nsec is incident. As can be seen from this figure, light with wavelengths other than 1.06 μm is propagating. For the sake of simplicity, let us calculate the maximum allowable transmission speed f n when only the first Stokes light with a long wavelength of 600 Å is generated and propagated in addition to the light with a wavelength of 1.06 μm.The chromatic dispersion value in the 1.06 μm band is 30 ps/ Km・n
m, then f n =278Mb/sKm, which is 1Gb/s
The signal cannot be transmitted even 1 km.

誘導ラマン散乱は如何なる波長帯でも起り、か
つ光フアイバの損失が低減するにつれて増大す
る。したがつて、大きい光入力に対する伝送容
量、中継スパンの制限は誘導ラマン散乱による波
長分散によるものである。今、低損失光フアイバ
における入力光パワしきい値を、入力信号光と第
一次ストークス光とが等しくなる光パワとして定
義すると、損失が0.2dB/Kmで50Km程度の長尺の
光フアイバでは約500mWとなり、大きい光パワ
を入力できないという欠点がある。
Stimulated Raman scattering occurs in any wavelength range and increases as optical fiber losses decrease. Therefore, limitations on transmission capacity and relay span for large optical inputs are due to wavelength dispersion due to stimulated Raman scattering. Now, if we define the input optical power threshold for a low-loss optical fiber as the optical power at which the input signal light and the first-order Stokes light are equal, then for a long optical fiber of about 50 km with a loss of 0.2 dB/Km, The output power is approximately 500mW, which has the disadvantage that large optical power cannot be input.

この発明はこれらの欠点を解決するため第一次
ストークス光が発生しないような構成とした光伝
送方式を提供するものである。
In order to solve these drawbacks, the present invention provides an optical transmission system configured to prevent the generation of first-order Stokes light.

この発明によれば使用光波長の損失係数、誘導
ラマン散乱における一次ストークス光波長での損
失係数、入力信号光パワ、伝送距離、光パワ閉じ
込め面積などを選定して第一次ストークス光が発
しないようにし、これにより高次のストークス光
の増大を押えて誘導ラマン散乱による波長分波を
無視できるようにする。このようにして大きな光
パワを入力し、かつ伝送帯域幅も広くすることが
できる。
According to this invention, the loss coefficient of the optical wavelength used, the loss coefficient at the primary Stokes optical wavelength in stimulated Raman scattering, the input signal optical power, the transmission distance, the optical power confinement area, etc. are selected to prevent primary Stokes light from being emitted. This suppresses the increase in higher-order Stokes light and makes it possible to ignore wavelength demultiplexing due to stimulated Raman scattering. In this way, it is possible to input large optical power and widen the transmission bandwidth.

単一モード光フアイバ中におけるポンピング光
(信号光)のパワPpとストークス光のパワPsi
の関係は次式で表わされる。
The relationship between the power P p of pumping light (signal light) and the power P si of Stokes light in a single mode optical fiber is expressed by the following equation.

(d/dZ+αp)Pp=−g/APs1p (1) (d/dZ+αs1)Ps1=gs1/A(Ps1P0−Ps1
s2)(2) (d/dZ+αs2)Ps2=gs2/A(Ps2s1−PS2
s3)(3) 〓 たゞし、αp及びαsiはそれぞれポンピング光
及び第i次ストークス光の波長に対する減衰係
数、g0及びgsiはそれぞれ単位面積当りのポンピ
ング光、及び第i次ストークス光に対する増幅係
数Aは光パワの集中している面積を、Zは距離を
それぞれ表わす。
(d/dZ+α p )P p =−g 0 /AP s1 P p (1) (d/dZ+α s1 )P s1 = g s1 /A(P s1 P 0 −P s1 P
s2 )(2) (d/dZ+α s2 )P s2 = g s2 /A(P s2 P s1 −P S2
P s3 )(3) 〓 Where, α p and α si are the attenuation coefficients for the wavelengths of the pumping light and the i-th Stokes light, respectively, g 0 and g si are the pumping light per unit area, and the i-th order Stokes light, respectively. The amplification coefficient A for Stokes light represents the area where the optical power is concentrated, and Z represents the distance.

(1)、(2)、(3)、………式からわかるように第2、
第3、………次ストークス光は第1次ストークス
光によつて増大する。したがつて第1次ストーク
ス光が増大しないようにすれば誘導ラマン散乱に
よる波長分散は無視できる。
(1), (2), (3),...As can be seen from the equation, the second
The third Stokes light is increased by the first Stokes light. Therefore, if the first-order Stokes light is prevented from increasing, wavelength dispersion due to stimulated Raman scattering can be ignored.

今、第1次ストークス光の増大が小さく、ポン
ピング光は吸収による減衰のみで変化すると仮定
すると、ポンピング光のパワPp(Z)は次のよ
うに近似できる。
Now, assuming that the increase in the first-order Stokes light is small and the pumping light changes only by attenuation due to absorption, the power P p (Z) of the pumping light can be approximated as follows.

p(Z)=Pp(0)exp(−αpZ) (4) (d/dZ+αs1)Ps1(Z)=g/APp(Z)Ps1
(Z)(5) (4)、(5)式より第一次ストークス光のパワPs1
次式となる。
P p (Z)=P p (0)exp(-α p Z) (4) (d/dZ+α s1 )P s1 (Z)=g/AP p (Z)P s1
(Z)(5) From equations (4) and (5), the power P s1 of the first Stokes light is expressed as follows.

s1(Z)=Ps1(0)exp{−αs1Z+gP(0)/αA〔1−exp(−αpZ)〕} (6) こゝで、αpL≫1の場合には(6)式は次のよう
に簡単化される。
P s1 (Z)=P s1 (0)exp{-α s1 Z+gP p (0)/α p A[1-exp(-α p Z)]} (6) Here, α p L≫1 In this case, equation (6) can be simplified as follows.

s1(L)=Ps1(0)exp〔−αs1L+gP(0)/αA (7) (7)式より、第1次ストークス光の距離Lにおけ
るパワPs1(L)が距離ゼロにおけるパワPs1
(0)より増大しない条件は次式で求まる。
P s1 (L)=P s1 (0) exp [−α s1 L+gP p (0)/α p A (7) From equation (7), the power P s1 (L) at the distance L of the first Stokes light is Power at zero distance P s1
The condition for not increasing more than (0) can be found by the following equation.

αs1≧gP(0)/LαA (8) したがつて(8)式を満足させるように第一次スト
ークス光波長での減衰係数を持つた光フアイバを
伝送路として使用すれば誘導ラマン散乱による波
長分散制限を受けることなく、大きい入力パワを
伝送することができる。
α s1 ≧gP p (0)/Lα p A (8) Therefore, if an optical fiber with an attenuation coefficient at the first Stokes wavelength that satisfies equation (8) is used as a transmission line, the guiding Large input power can be transmitted without being limited by chromatic dispersion due to Raman scattering.

今、シリカ系光フアイバでの(8)式を見積もると
次のようになる。
Now, estimating equation (8) for a silica-based optical fiber yields the following.

g=9.2×10-14m/W αp=1dB/Km=2.3×10-4-1 A=25μm=2.5×10-11p(0)=10W L=50Km 上記パラメータでの第1次ストークス光の波長
に対する減衰係数αs1は13.9dB/Kmとなる。こゝ
で第一次ストークス光の波長シフトは通常450cm
-1であるため1.3μm帯での波長シフトは約760Å
となる。
g=9.2× 10-14 m/W α p =1dB/Km=2.3× 10-4 m -1 A=25μm 2 =2.5× 10-11 m2 P p (0)=10W L =50Km With the above parameters The attenuation coefficient α s1 for the wavelength of the first-order Stokes light is 13.9 dB/Km. Here, the wavelength shift of the first Stokes light is usually 450 cm.
-1 , so the wavelength shift in the 1.3μm band is approximately 760Å
becomes.

第2図はシリカ系単一モード光フアイバの損失
−波長特性である。(文献、研究実用化報告第28
巻第6号PP955−962、1979)、第2図におけるA
点(波長約1.3μm)での損失係数は約3dB/
Km、A点から約760Å長波長側のB点での損失係
数は20dB/Km以上であるため(8)式の条件をを満
足している。
FIG. 2 shows the loss-wavelength characteristics of a silica-based single mode optical fiber. (Literature, Research and Practical Application Report No. 28
Volume 6 No. PP955-962, 1979), A in Figure 2
The loss coefficient at the point (wavelength approximately 1.3μm) is approximately 3dB/
Km, the loss coefficient at point B on the longer wavelength side of about 760 Å from point A is 20 dB/Km or more, so the condition of equation (8) is satisfied.

すなわち、A点での波長を信号光として使用す
れば大きい光入力に対しても誘導ラマン散乱は起
らず長距離、広帯域伝送が可能となる。
That is, if the wavelength at point A is used as the signal light, stimulated Raman scattering does not occur even with a large optical input, and long-distance, broadband transmission becomes possible.

また光フアイバを製造する段階である波長に対
して大きい損失を与えるように設計することは可
能である。またある波長のみ結合させ損失を与え
る構造とした光フアイバにおいても同様の効果を
得ることができる。
Furthermore, it is possible to design an optical fiber to give a large loss to a certain wavelength at the stage of manufacturing the optical fiber. A similar effect can also be obtained with an optical fiber having a structure in which only a certain wavelength is coupled and loss is caused.

以上説明したようにこの発明の光伝送方式では
ストークス光が増大しないため、波長分散による
帯域制限がなく、更に大きい入力パワを伝送する
ことができるため長距離、広帯域伝送が可能とな
る利点がある。
As explained above, in the optical transmission system of the present invention, Stokes light does not increase, so there is no band limitation due to chromatic dispersion, and even greater input power can be transmitted, which has the advantage of enabling long-distance, broadband transmission. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は単一モード光フアイバにおける誘導ラ
マン散乱特性の一例を示す図、第2図は単一モー
ド光フアイバの損失−波長特性の一例を示す図で
ある。 A点:信号光の波長、B点:第一次ストークス
光の波長。
FIG. 1 is a diagram showing an example of stimulated Raman scattering characteristics in a single mode optical fiber, and FIG. 2 is a diagram showing an example of loss-wavelength characteristics of the single mode optical fiber. Point A: wavelength of signal light, point B: wavelength of first-order Stokes light.

Claims (1)

【特許請求の範囲】 1 単一モード光フアイバを利用する光伝送方式
において、伝送信号光波長での損失係数αp、誘
導ラマン散乱における1次ストークス光波長での
損失係数αsが αs≧gP(0)/LαA (たゞしgはラマンゲイン、Pp(0)は入力信号
光パワ、Lは伝送距離、Aは光パワ閉じ込め面
積)を満足するように構成した光フアイバを用い
て信号光を伝送することを特徴としたハイパワ光
伝送方式。
[Claims] 1. In an optical transmission system using a single mode optical fiber, the loss coefficient α p at the wavelength of the transmission signal light and the loss coefficient α s at the first-order Stokes light wavelength in stimulated Raman scattering satisfy α s ≧ An optical fiber configured to satisfy gP p (0)/Lα p A (where g is Raman gain, P p (0) is input signal optical power, L is transmission distance, and A is optical power confinement area) is A high-power optical transmission system characterized by the use of optical signals to transmit signal light.
JP56001410A 1981-01-08 1981-01-08 High power optical transmission system Granted JPS57115042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56001410A JPS57115042A (en) 1981-01-08 1981-01-08 High power optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56001410A JPS57115042A (en) 1981-01-08 1981-01-08 High power optical transmission system

Publications (2)

Publication Number Publication Date
JPS57115042A JPS57115042A (en) 1982-07-17
JPS6243161B2 true JPS6243161B2 (en) 1987-09-11

Family

ID=11500711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56001410A Granted JPS57115042A (en) 1981-01-08 1981-01-08 High power optical transmission system

Country Status (1)

Country Link
JP (1) JPS57115042A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508845A (en) * 1990-10-18 1996-04-16 Telstra Corporation Limited Quasi-soliton communication system
US5303318A (en) * 1991-11-01 1994-04-12 Nippon Telegraph & Telephone Corporation High power acceptable optical fiber and fabrication method thereof
GB9315231D0 (en) * 1993-07-22 1993-09-08 York Ltd Optical time domain reflextometry

Also Published As

Publication number Publication date
JPS57115042A (en) 1982-07-17

Similar Documents

Publication Publication Date Title
US6263139B1 (en) Optical transmission system with group velocity dispersion compensation
EP1102114B1 (en) Raman amplification method
US7372622B2 (en) Optical transmission system, optical repeater, and optical transmission method
EP1168530B1 (en) Raman amplifier
JPH03139617A (en) Optical signal transmission system
JPH10308706A (en) Optical transmission line
EP0146262B1 (en) Optical amplifier
US7038842B2 (en) Reduced four-wave mixing and Raman amplification architecture
US6888669B2 (en) Raman amplifier
US7038838B2 (en) Optical amplifier
JP4137211B2 (en) Dispersion compensating fiber and optical amplifier using the same
JP4107072B2 (en) Optical module and optical transmission system
US5530585A (en) Optical soliton transmission system
JPS6243161B2 (en)
JP2002323710A (en) Raman amplifier and optical communication system
JPH09211511A (en) Optical communication system
Laming et al. High sensitivity optical pre-amplifier at 10Gbit/s employing a low noise composite EDFA with 46dB gain
US20080074733A1 (en) Raman amplifier and optical communication system including the same
EP1489763B1 (en) Optical amplifier, transmission system and method for optimization
JPS5884550A (en) Optical fiber bidirectional transmission system
JP4411748B2 (en) Optical transmission system and optical transmission method
CN209844967U (en) Hybrid amplifier
US20240258760A1 (en) Distributed Optical Amplifier, Distributed Optical Amplifier System, And Distributed Optical Amplification Method
JP3503720B2 (en) Soliton transmission line
EP1289078A2 (en) Optical transmission line and optical communication system