JPS624314A - Susceptor for vapor growth apparatus - Google Patents

Susceptor for vapor growth apparatus

Info

Publication number
JPS624314A
JPS624314A JP14151285A JP14151285A JPS624314A JP S624314 A JPS624314 A JP S624314A JP 14151285 A JP14151285 A JP 14151285A JP 14151285 A JP14151285 A JP 14151285A JP S624314 A JPS624314 A JP S624314A
Authority
JP
Japan
Prior art keywords
temperature
semiconductor substrate
susceptor
gas
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14151285A
Other languages
Japanese (ja)
Inventor
Hideki Shirai
秀樹 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14151285A priority Critical patent/JPS624314A/en
Publication of JPS624314A publication Critical patent/JPS624314A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To heat an entire semiconductor substrate uniformly by providing a spouting-out part of high temperature inert gas so as to surround the circumference of a wafer mounting surface formed into a concave shape. CONSTITUTION:After a susceptor is placed in an airtight container and a semiconductor substrate W is mounted on the top surface of a wafer mounting part 2, high-temperature inert gas is supplied into a high-temperature gas passage 3b from a gas passage 3d. Then, the high-temperature inert gas supplied into the high-temperature gas passage 3b is spouted out into the space above the wafer mounting part through an annular porous substance 3a to heat the semiconductor substrate W directly. After the temperature of the semiconductor substrate W reaches the temperature at which vapor growth takes place and becomes constant, the supply of the high-temperature inert gas is controlled and reactive gas such as SiH4 gas is supplied into the apparatus through a gas supply tube to form a vapor growth layer on the surface of the semiconductor substrate W.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は半導体基板の表面に気相成長層(エピタキシ
ャル層を含む)を形成するための気相成長装置用のサセ
プタに関し、更に詳細には誘導加熱方式によらない高温
ガス加熱方式のサセプタに関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a susceptor for a vapor phase growth apparatus for forming a vapor phase growth layer (including an epitaxial layer) on the surface of a semiconductor substrate, and more particularly relates to a susceptor for a vapor growth apparatus for forming a vapor phase growth layer (including an epitaxial layer) on the surface of a semiconductor substrate. The present invention relates to a susceptor that uses a high temperature gas heating method regardless of the heating method.

[発明の技術的背景1 現在、半導体装置の製造工程において最も広く使用され
ている気相成長装置はいわゆる縦形気相成長装置と称さ
れるものである。 この装置においては、ベルジャと称
する密閉容器内に設置された回転円板状のサセプタ上に
半導体ウェハを取り付け、該サセプタをゆっくり回転さ
せつつ、該ベルジャ内に5iH4,Si C1a等の反
応ガスを導入する一方、該サセプタに装備した高周波コ
イルで該サセプタを誘導加熱し、該サセプタからの熱伝
導によって該半導体ウェハを間接加熱しつつ該半導体ウ
ェハ上に気相成長層を形成させている。
[Technical Background of the Invention 1 Currently, the most widely used vapor phase growth apparatus in the manufacturing process of semiconductor devices is a so-called vertical vapor growth apparatus. In this device, a semiconductor wafer is mounted on a rotating disc-shaped susceptor installed in a closed container called a bell jar, and while slowly rotating the susceptor, a reactive gas such as 5iH4, Si C1a, etc. is introduced into the bell jar. On the other hand, the susceptor is heated by induction using a high-frequency coil installed in the susceptor, and a vapor phase growth layer is formed on the semiconductor wafer while indirectly heating the semiconductor wafer by heat conduction from the susceptor.

[背景技術の問題点] 従来の縦形気相成長装置における半導体基板の加熱方式
は誘導加熱されたサセプタからの熱伝導による間接加熱
方式であるため、半導体基板の全面に渡って均一に加熱
することができず、その結果、不均一な熱分布による内
部応力が半導体基板内に発生して半導体基板に反りが生
じたり、スリップラインと称する転位(すなわち結晶欠
陥)が発生しやすかった。
[Problems with the background art] The method of heating a semiconductor substrate in a conventional vertical vapor phase growth apparatus is an indirect heating method using heat conduction from an induction-heated susceptor, so it is difficult to uniformly heat the entire surface of the semiconductor substrate. As a result, internal stress due to non-uniform heat distribution is generated within the semiconductor substrate, causing the semiconductor substrate to warp or causing dislocations (i.e., crystal defects) called slip lines.

第3図及び第4図は従来の縦形気相成長装置のサセプタ
1におけるウェハ載置部の断面形状を示したものであり
、第3図に示すサセプタではウェハ載置面1aが平坦面
として構成されており、第4図に示すサセプタではウェ
ハ載置面1aが凹曲面として構成されている(なお、図
中Cで示されているのはサセプタ1の中心軸線である)
3 and 4 show the cross-sectional shape of the wafer placement part in the susceptor 1 of a conventional vertical vapor phase growth apparatus. In the susceptor shown in FIG. 3, the wafer placement surface 1a is configured as a flat surface. In the susceptor shown in FIG. 4, the wafer mounting surface 1a is configured as a concave curved surface (note that C in the figure is the central axis of the susceptor 1).
.

第3図及び第4図に示した従来のサセプタ1における半
導体ウェハWの温度分布を、それぞれ第5図と第6図と
に示す(第5図は第3図のサセプタの、第6図は第4図
のサセプタの温度分布である)。
The temperature distribution of the semiconductor wafer W in the conventional susceptor 1 shown in FIGS. 3 and 4 is shown in FIGS. 5 and 6, respectively. (This is the temperature distribution of the susceptor in Figure 4).

第4図及び第5図において横軸はサセプタ1の中心軸線
Cを頂点とする半径方向位置Rを表し、縦軸は該載置面
1aに置かれた半導体ウェハの温度Tであり、各図にお
ける曲線はウェハ内温度分布を表している。
4 and 5, the horizontal axis represents the radial position R with the central axis C of the susceptor 1 at its apex, and the vertical axis represents the temperature T of the semiconductor wafer placed on the mounting surface 1a. The curve in represents the temperature distribution within the wafer.

前記のように従来の縦形気相成長装置では、サセプタを
誘導加熱した後、サセプタからの接触熱伝導で半導体基
板を加熱しているため、半導体基板が均一に加熱されず
、その結果、内部応力による反りや結晶欠陥が発生しや
すかった。
As mentioned above, in the conventional vertical vapor phase growth apparatus, after the susceptor is heated by induction, the semiconductor substrate is heated by contact heat conduction from the susceptor, so the semiconductor substrate is not heated uniformly, and as a result, internal stress Warpage and crystal defects were likely to occur.

[発明の目的] この発明の目的は、半導体基板に反りや結晶欠陥を生じ
させぬように半導体基板の全体をできるだけ均一に加熱
することができる新規な構造のサセプタを提供すること
である。 また、この発明の目的は従来の誘導加熱方式
の気相成長装置用サセプタに代わるウェハ直接加熱方式
の気相成長装置用サセプタを提供することである。
[Object of the Invention] An object of the present invention is to provide a susceptor with a novel structure that can heat the entire semiconductor substrate as uniformly as possible without causing warpage or crystal defects in the semiconductor substrate. Another object of the present invention is to provide a susceptor for a wafer direct heating type vapor phase growth apparatus that can replace the conventional induction heating type susceptor for a vapor phase growth apparatus.

[発明の概要] この発明によるサセプタは、凹曲面に形成されたウェハ
載置面と、該ウェハ載置面の周囲を囲むように配置され
た高温不活性ガス噴出部とから成っており、該ウェハ載
置面に置かれた半導体ウェハが高温不活性ガスによって
直接に加熱されるようになっていることを特徴とするも
のである。
[Summary of the Invention] A susceptor according to the present invention includes a wafer placement surface formed into a concave curved surface, and a high-temperature inert gas ejection section disposed to surround the wafer placement surface. This device is characterized in that a semiconductor wafer placed on a wafer mounting surface is directly heated by a high-temperature inert gas.

[発明の実施例] 第1図は本発明の第一実施例を示すもので、サセプタの
1つのウェハにかかる部分の断面図である。 同図にお
いて2は上面が凹曲面に形成されているウェハ載置部で
あり、該載置部2の上面に半導体基板Wが図示二点鎖線
の如く載置されるようになっている。 該ウェハ載置部
2の周囲には該載置部2を包囲する環状の高温ガス噴出
部3が設けられており、該高温ガス噴出部3の頂部の高
さは該載置部2の頂面、すなわちウェハ載置面よりも高
くなっている。 そして、ウェハ載置部2を包囲する円
筒状の壁部分の上方部は多数の気孔を有した多孔質体3
aで構成されており、この多孔質体3aは高温ガスを該
ウェハ載置部2の上方空間に噴出する環状ノズルを構成
している。 多孔質体3aの外側の該高温ガス噴出部3
内にはウェハ載置部2の中心軸線に関して放射状に延在
する高温ガス通路3bが設けられており、この高温ガス
通路3bは多孔質体3a内の気孔に連通している。 高
温ガス通路3bは高温ガス噴出部3の外周寄りの位置に
おいて高温不活性ガス(たとえばH2)供給管5に接続
されたガス通路3dから分岐している。 ガス通路3d
から分岐するもう1つの高温ガス通路3c 、3eは、
第二及び第三のウェハについての多孔質体(図示せず)
にそれぞれ連通している。 ガス供給管5には図示の如
き弁7が設けられており、弁7はウェハの温度を一定に
する所定のシーケンスで開閉されるようになっている。
[Embodiment of the Invention] FIG. 1 shows a first embodiment of the invention, and is a sectional view of a portion of a susceptor that covers one wafer. In the figure, reference numeral 2 denotes a wafer mounting portion whose upper surface is formed into a concave curved surface, and a semiconductor substrate W is placed on the upper surface of the mounting portion 2 as shown by the two-dot chain line. An annular high-temperature gas jetting section 3 surrounding the wafer mounting section 2 is provided around the wafer mounting section 2, and the height of the top of the high-temperature gas jetting section 3 is equal to the top of the mounting section 2. It is higher than the surface, that is, the wafer mounting surface. The upper part of the cylindrical wall surrounding the wafer placement part 2 is made of a porous body 3 having a large number of pores.
This porous body 3a constitutes an annular nozzle that spouts high-temperature gas into the space above the wafer placement section 2. The high temperature gas ejection part 3 outside the porous body 3a
A high-temperature gas passage 3b is provided inside the porous body 3a, and the high-temperature gas passage 3b extends radially with respect to the central axis of the wafer mounting portion 2, and the high-temperature gas passage 3b communicates with the pores within the porous body 3a. The high-temperature gas passage 3b branches from a gas passage 3d connected to a high-temperature inert gas (for example, H2) supply pipe 5 at a position near the outer periphery of the high-temperature gas jetting portion 3. gas passage 3d
Another high temperature gas passage 3c, 3e branching from
Porous bodies (not shown) for second and third wafers
are connected to each other. The gas supply pipe 5 is provided with a valve 7 as shown, and the valve 7 is opened and closed in a predetermined sequence to keep the temperature of the wafer constant.

 また、ウェハ載置部2はそれ自身の中心軸線に関して
回転しうるように構成されており、図示せぬ回転機構に
連結されている。
Further, the wafer platform 2 is configured to be able to rotate about its own central axis, and is connected to a rotation mechanism (not shown).

前記の如き構造の本発明のサセプタを用いて半導体基板
Wの表面に気相成長層を形成させる時には、該サセプタ
を密閉容器内に設置し、該ウェハ載置部2の頂面に半導
体基板Wを載置した後、まずガス通路3dから高温ガス
通路3bに高温不活性ガス(たとえば1200℃のH2
ガス)を供給すると、高温ガス通路3b内に供給された
高温不活性ガスは環状の多孔質体3aを通過してウェハ
載置部上方の空間に噴出され、半導体基板Wを直接に加
熱する。
When forming a vapor phase growth layer on the surface of a semiconductor substrate W using the susceptor of the present invention having the above-described structure, the susceptor is installed in a closed container, and the semiconductor substrate W is placed on the top surface of the wafer mounting section 2. After placing the
When gas) is supplied, the high-temperature inert gas supplied into the high-temperature gas passage 3b passes through the annular porous body 3a and is ejected into the space above the wafer platform, directly heating the semiconductor substrate W.

半導体基板Wの温度が気相成長の起こる温度に達し、且
つ半導体基板の温度が一定になった後、高温不活性ガス
の供給を制御し、図示しない反応ガス供給管から装置内
にsr Haガスなどの反応ガスを供給し、半導体基板
Wの表面に気相成長層を形成する。
After the temperature of the semiconductor substrate W reaches the temperature at which vapor phase growth occurs and the temperature of the semiconductor substrate becomes constant, the supply of high-temperature inert gas is controlled, and sr Ha gas is introduced into the apparatus from a reaction gas supply pipe (not shown). A vapor phase growth layer is formed on the surface of the semiconductor substrate W by supplying a reactive gas such as the following.

この場合、ウェハ載置部2をその中心軸線のまわりに回
転させてもよいが、回転させなくともよい。
In this case, the wafer mounting section 2 may be rotated about its central axis, but it is not necessary to rotate it.

第2図は本発明のサセプタの第二実施例の概略図である
。 なお、第2図において第1図と同じ符号で表示され
ている部分は第1図のサセプタと同一の部分であるから
、この同一部分についての説明を省略する。
FIG. 2 is a schematic diagram of a second embodiment of the susceptor of the present invention. Note that in FIG. 2, the parts indicated by the same reference numerals as in FIG. 1 are the same parts as those of the susceptor in FIG. 1, so a description of these same parts will be omitted.

第2図の実施例のサセプタではウェハ載置部2と一体に
形成された軸2aにたとえばブーりの如き回転駆動装置
2bが取り付けられている。 また、ウェハ載置部2の
頂面(すなわちウェハ載置面)には多数の孔2Cが開口
され、該孔2Cに連なる多数のガス流路2dがウェハ載
置部2内に形成されるとともに該ガス流路2dに連通す
るガス流路2eが軸2aの中心部に設けられており、該
軸2aの端部には回転式配管ジヨイント2fが連結され
、この回転式配管ジヨイント2rを介して軸2a内のガ
ス流路2eが外部の高温不活性ガス供給管4に連通され
るように構成され弁6によって制御されている。 高温
不活性ガス供給管4は高温ガス噴出部3内のガス通路3
Cに連通ずる高温不活性ガス供給管5と共通であっても
よい。
In the susceptor of the embodiment shown in FIG. 2, a rotation drive device 2b, such as a boot, is attached to a shaft 2a formed integrally with the wafer placement section 2. In addition, a large number of holes 2C are opened in the top surface (i.e., wafer mounting surface) of the wafer placement part 2, and a large number of gas flow paths 2d connected to the holes 2C are formed in the wafer placement part 2. A gas flow path 2e communicating with the gas flow path 2d is provided at the center of the shaft 2a, and a rotary piping joint 2f is connected to the end of the shaft 2a. A gas passage 2e within the shaft 2a is configured to communicate with an external high temperature inert gas supply pipe 4 and is controlled by a valve 6. The high-temperature inert gas supply pipe 4 is connected to the gas passage 3 in the high-temperature gas jetting section 3.
It may be common to the high temperature inert gas supply pipe 5 communicating with C.

第2図に示したサセプタでは、ウェハ載置部2の頂面す
なわちウェハ載置面からも高温不活性ガスが噴出するよ
うになっており、しかもウェハ載置部2が回転される構
造となっているため、第1図に示した実施例のサセプタ
よりも更にウェハの温度分布を均一にすることができる
In the susceptor shown in FIG. 2, high-temperature inert gas is ejected from the top surface of the wafer placement section 2, that is, the wafer placement surface, and the wafer placement section 2 is configured to be rotated. Therefore, the temperature distribution of the wafer can be made more uniform than in the susceptor of the embodiment shown in FIG.

前記の如き本発明の実施例(第1図及び第2図)におい
てウェハ載置部2を回転させる場合、回転速度は0.1
rp1以上であればウェハ内温度分布を均一化するのに
顕著な効果が得られることがわかった。 また、本実施
例の場合(第1図及び第2図)、ウェハ内温度差は1℃
以内とすることができた。
When rotating the wafer platform 2 in the embodiment of the present invention as described above (FIGS. 1 and 2), the rotation speed is 0.1.
It has been found that when rp1 or more, a remarkable effect can be obtained in making the temperature distribution within the wafer uniform. In addition, in the case of this example (Figures 1 and 2), the temperature difference inside the wafer is 1°C.
I was able to do it within.

なお、前記実施例において、ウェハ載置面を多孔質体で
形成したり、或いは、環状の多孔質体3aに代えて環状
のノズルを用いてもよいことは勿論である。 また、放
射状のガス通路3bは何本設けてもよく、放射状のガス
通路3bの代わりに環状のガス室を設けてもよい。
In the above embodiment, the wafer mounting surface may be formed of a porous material, or an annular nozzle may be used instead of the annular porous material 3a. Further, any number of radial gas passages 3b may be provided, and an annular gas chamber may be provided in place of the radial gas passages 3b.

[発明の効果] 前記実施例から明らかであるように、本発明のサセプタ
によれば、従来の高周波誘導加熱方式によるサセプタよ
りも著しくウェハ内温度分布を均一化することができる
ため、気相成長工程において半導体基板に反りや転位を
生じさせる恐れが少なくなり、その結果、半導体装置の
歩留りが向上し、且つ電気的特性がよく信頼性の高い半
導体装置、を製造することができる。
[Effects of the Invention] As is clear from the above embodiments, the susceptor of the present invention can make the temperature distribution within the wafer more uniform than the conventional susceptor using high-frequency induction heating. The risk of warping or dislocation occurring in the semiconductor substrate during the process is reduced, and as a result, the yield of semiconductor devices is improved, and semiconductor devices with good electrical characteristics and high reliability can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のサセプタの第一実施例を示す断面図、
第2図は本発明のサセプタの第二実施例を示す断面図、
第3図及び第4図は公知の縦形気相成長装置のサセプタ
におけるウェハ載置部近傍の断面図、第5図は第3図に
示したウェハ載置部に載置した半導体基板の温度分゛布
図、第6図は第4図に示したウェハ載置部に載置された
半導体基板の温度分布図である。 1・・・サセプタ、 1a・・・ウェハ載置面、 W・
・・半導体基板、 2・・・載置部、 2d・・・高温
ガス流路、 3・・・高温ガス噴出部、 3a・・・多
孔質体、3b・・・高温ガス通路、 4,5・・・高温
不活性ガス供給管。 M2FIJ 第一31i! 第4 m R 第5図 第6図  3
FIG. 1 is a sectional view showing a first embodiment of the susceptor of the present invention;
FIG. 2 is a sectional view showing a second embodiment of the susceptor of the present invention;
3 and 4 are cross-sectional views of the vicinity of the wafer mounting section in a susceptor of a known vertical vapor phase growth apparatus, and FIG. 5 shows the temperature distribution of the semiconductor substrate placed on the wafer mounting section shown in FIG. 6 is a temperature distribution diagram of the semiconductor substrate placed on the wafer placement section shown in FIG. 4. 1... Susceptor, 1a... Wafer placement surface, W.
... Semiconductor substrate, 2... Placement section, 2d... High temperature gas flow path, 3... High temperature gas ejection section, 3a... Porous body, 3b... High temperature gas passage, 4, 5 ...High temperature inert gas supply pipe. M2FIJ Daiichi 31i! 4th m R Figure 5 Figure 6 3

Claims (1)

【特許請求の範囲】[Claims] 1 気相における化学反応、熱分解などにより半導体基
板表面に被膜を形成する気相成長装置に用いるサセプタ
において、半導体基板を載置するための載置部と、該載
置部の周囲を包囲するように配置された高温不活性ガス
噴出部とを有して成り、該噴出部から噴出する高温不活
性ガスにより該半導体基板を加熱することを特徴とする
気相成長装置用サセプタ。
1 In a susceptor used in a vapor phase growth apparatus that forms a film on the surface of a semiconductor substrate by chemical reaction in the gas phase, thermal decomposition, etc., there is a mounting part for mounting the semiconductor substrate, and a susceptor that surrounds the mounting part. 1. A susceptor for a vapor phase growth apparatus, characterized in that the semiconductor substrate is heated by the high temperature inert gas ejected from the ejection part, and the semiconductor substrate is heated by the high temperature inert gas ejected from the ejection part.
JP14151285A 1985-06-29 1985-06-29 Susceptor for vapor growth apparatus Pending JPS624314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14151285A JPS624314A (en) 1985-06-29 1985-06-29 Susceptor for vapor growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14151285A JPS624314A (en) 1985-06-29 1985-06-29 Susceptor for vapor growth apparatus

Publications (1)

Publication Number Publication Date
JPS624314A true JPS624314A (en) 1987-01-10

Family

ID=15293685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14151285A Pending JPS624314A (en) 1985-06-29 1985-06-29 Susceptor for vapor growth apparatus

Country Status (1)

Country Link
JP (1) JPS624314A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160575A (en) * 1985-12-04 1992-11-03 Massachusetts Institute Of Technology Edge-heat sink technqiue for zone melting recrystallization of semiconductor-on-insulator films
US5296089A (en) * 1985-12-04 1994-03-22 Massachusetts Institute Of Technology Enhanced radiative zone-melting recrystallization method and apparatus
US5308594A (en) * 1985-12-04 1994-05-03 Massachusetts Institute Of Technology Edge-heat-sink technique for zone melting recrystallization of semiconductor-on-insulator films

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160575A (en) * 1985-12-04 1992-11-03 Massachusetts Institute Of Technology Edge-heat sink technqiue for zone melting recrystallization of semiconductor-on-insulator films
US5296089A (en) * 1985-12-04 1994-03-22 Massachusetts Institute Of Technology Enhanced radiative zone-melting recrystallization method and apparatus
US5308594A (en) * 1985-12-04 1994-05-03 Massachusetts Institute Of Technology Edge-heat-sink technique for zone melting recrystallization of semiconductor-on-insulator films

Similar Documents

Publication Publication Date Title
JP3178824B2 (en) High productivity multi-station type processing equipment for compound single wafer.
US8795435B2 (en) Susceptor, coating apparatus and coating method using the susceptor
US9194056B2 (en) Film-forming apparatus and method
JP2003133233A (en) Substrate processing apparatus
KR101447663B1 (en) Film-forming method and film-forming apparatus
JPH10183353A (en) Gas injection system and gas injection method for cvd reactor
JPH09219369A (en) Equipment and method for manufacturing semiconductor device
JPS612321A (en) Vertical hot wall type cvd reactor
JP2668687B2 (en) CVD device
JPS63144513A (en) Barrel type epitaxial growth device
JPS624314A (en) Susceptor for vapor growth apparatus
JPS6090894A (en) Vapor phase growing apparatus
JPS58169906A (en) Vapor growth device
JPS6242416A (en) Susceptor for heating semiconductor substrate
JPS6058613A (en) Epitaxial apparatus
JPS60152675A (en) Vertical diffusion furnace type vapor growth device
JPH06124909A (en) Vertical heat treatment device
CN116024654A (en) Wafer heating thermal field of film forming device
JPS6119119A (en) Vapor growth device
WO2022130926A1 (en) Vapor-phase growth apparatus and vapor-phase growth method
JP3093716B2 (en) Vertical vacuum deposition equipment
JPS60113921A (en) Method for vapor-phase reaction and device thereof
JPH11288887A (en) Semiconductor vapor growth device
JP2730155B2 (en) Vapor phase growth equipment
JPH0350185A (en) Vapor growth device of thin film